code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[str] = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[Any] = CLIPConfig _lowerCamelCase : Optional[Any] = ["""CLIPEncoderLayer"""] def __init__( self : Dict , snake_case_ : CLIPConfig ): super().__init__(snake_case_ ) _UpperCAmelCase = CLIPVisionModelWithProjection(config.vision_config ) _UpperCAmelCase = nn.Linear(config.vision_config.projection_dim , 1 ) _UpperCAmelCase = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowercase ( self : List[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=0.5 , snake_case_ : List[str]=0.5 ): _UpperCAmelCase = self.vision_model(snake_case_ )[0] _UpperCAmelCase = self.p_head(snake_case_ ) _UpperCAmelCase = nsfw_detected.flatten() _UpperCAmelCase = nsfw_detected > p_threshold _UpperCAmelCase = nsfw_detected.tolist() if any(snake_case_ ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(snake_case_ ): if nsfw_detected_: _UpperCAmelCase = np.zeros(images[idx].shape ) _UpperCAmelCase = self.w_head(snake_case_ ) _UpperCAmelCase = watermark_detected.flatten() _UpperCAmelCase = watermark_detected > w_threshold _UpperCAmelCase = watermark_detected.tolist() if any(snake_case_ ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(snake_case_ ): if watermark_detected_: _UpperCAmelCase = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
22
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCamelCase__: List[str] = logging.get_logger(__name__) UpperCamelCase__: Any = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : Optional[int]=None , **__snake_case : str ) -> Union[str, Any]: logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) UpperCAmelCase : Union[str, Any] = model UpperCAmelCase : Optional[Any] = kwargs.get('''model_save_dir''' , __snake_case ) UpperCAmelCase : Optional[int] = kwargs.get('''latest_model_name''' , __snake_case ) def __call__( self : Optional[Any] , **__snake_case : Optional[Any] ) -> List[Any]: UpperCAmelCase : Optional[int] = {k: np.array(__snake_case ) for k, v in kwargs.items()} return self.model.run(__snake_case , __snake_case ) @staticmethod def A ( __snake_case : Union[str, Path] , __snake_case : List[str]=None , __snake_case : Optional[int]=None ) -> Optional[int]: if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) UpperCAmelCase : List[Any] = '''CPUExecutionProvider''' return ort.InferenceSession(__snake_case , providers=[provider] , sess_options=__snake_case ) def A ( self : Optional[Any] , __snake_case : Union[str, Path] , __snake_case : Optional[str] = None , **__snake_case : int ) -> str: UpperCAmelCase : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase : int = Path(__snake_case ).joinpath(__snake_case ) try: shutil.copyfile(__snake_case , __snake_case ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase : Tuple = self.model_save_dir.joinpath(__snake_case ) if src_path.exists(): UpperCAmelCase : List[Any] = Path(__snake_case ).joinpath(__snake_case ) try: shutil.copyfile(__snake_case , __snake_case ) except shutil.SameFileError: pass def A ( self : Optional[int] , __snake_case : Union[str, os.PathLike] , **__snake_case : int , ) -> List[Any]: if os.path.isfile(__snake_case ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(__snake_case , exist_ok=__snake_case ) # saving model weights/files self._save_pretrained(__snake_case , **__snake_case ) @classmethod def A ( cls : Optional[int] , __snake_case : Union[str, Path] , __snake_case : Optional[Union[bool, str, None]] = None , __snake_case : Optional[Union[str, None]] = None , __snake_case : bool = False , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional["ort.SessionOptions"] = None , **__snake_case : Any , ) -> List[str]: UpperCAmelCase : Dict = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__snake_case ): UpperCAmelCase : Optional[Any] = OnnxRuntimeModel.load_model( os.path.join(__snake_case , __snake_case ) , provider=__snake_case , sess_options=__snake_case ) UpperCAmelCase : List[Any] = Path(__snake_case ) # load model from hub else: # download model UpperCAmelCase : List[str] = hf_hub_download( repo_id=__snake_case , filename=__snake_case , use_auth_token=__snake_case , revision=__snake_case , cache_dir=__snake_case , force_download=__snake_case , ) UpperCAmelCase : int = Path(__snake_case ).parent UpperCAmelCase : Union[str, Any] = Path(__snake_case ).name UpperCAmelCase : Optional[Any] = OnnxRuntimeModel.load_model(__snake_case , provider=__snake_case , sess_options=__snake_case ) return cls(model=__snake_case , **__snake_case ) @classmethod def A ( cls : Any , __snake_case : Union[str, Path] , __snake_case : bool = True , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , **__snake_case : Optional[int] , ) -> str: UpperCAmelCase : str = None if len(str(__snake_case ).split('''@''' ) ) == 2: UpperCAmelCase , UpperCAmelCase : Optional[Any] = model_id.split('''@''' ) return cls._from_pretrained( model_id=__snake_case , revision=__snake_case , cache_dir=__snake_case , force_download=__snake_case , use_auth_token=__snake_case , **__snake_case , )
23
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : int , a__ : int , a__ : int , a__ : int , a__ : Dict=0.0 , a__ : Optional[int] = None , a__ : str = "geglu" , a__ : Optional[int] = None , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = False , a__ : bool = True , a__ : str = "layer_norm" , a__ : bool = False , ): """simple docstring""" super().__init__() __snake_case = only_cross_attention __snake_case = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __snake_case = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __snake_case = AdaLayerNorm(a__ , a__ ) elif self.use_ada_layer_norm_zero: __snake_case = AdaLayerNormZero(a__ , a__ ) else: __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ ) __snake_case = Attention( query_dim=a__ , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __snake_case = ( AdaLayerNorm(a__ , a__ ) if self.use_ada_layer_norm else nn.LayerNorm(a__ , elementwise_affine=a__ ) ) __snake_case = Attention( query_dim=a__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a__ , dim_head=a__ , dropout=a__ , bias=a__ , upcast_attention=a__ , ) # is self-attn if encoder_hidden_states is none else: __snake_case = None __snake_case = None # 3. Feed-forward __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ ) __snake_case = FeedForward(a__ , dropout=a__ , activation_fn=a__ , final_dropout=a__ ) # let chunk size default to None __snake_case = None __snake_case = 0 def a (self : int , a__ : Optional[int] , a__ : int ): """simple docstring""" __snake_case = chunk_size __snake_case = dim def a (self : Dict , a__ : torch.FloatTensor , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.LongTensor] = None , a__ : Dict[str, Any] = None , a__ : Optional[torch.LongTensor] = None , ): """simple docstring""" if self.use_ada_layer_norm: __snake_case = self.norma(a__ , a__ ) elif self.use_ada_layer_norm_zero: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = self.norma( a__ , a__ , a__ , hidden_dtype=hidden_states.dtype ) else: __snake_case = self.norma(a__ ) __snake_case = cross_attention_kwargs if cross_attention_kwargs is not None else {} __snake_case = self.attna( a__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a__ , **a__ , ) if self.use_ada_layer_norm_zero: __snake_case = gate_msa.unsqueeze(1 ) * attn_output __snake_case = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __snake_case = ( self.norma(a__ , a__ ) if self.use_ada_layer_norm else self.norma(a__ ) ) __snake_case = self.attna( a__ , encoder_hidden_states=a__ , attention_mask=a__ , **a__ , ) __snake_case = attn_output + hidden_states # 3. Feed-forward __snake_case = self.norma(a__ ) if self.use_ada_layer_norm_zero: __snake_case = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __snake_case = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __snake_case = torch.cat( [self.ff(a__ ) for hid_slice in norm_hidden_states.chunk(a__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __snake_case = self.ff(a__ ) if self.use_ada_layer_norm_zero: __snake_case = gate_mlp.unsqueeze(1 ) * ff_output __snake_case = ff_output + hidden_states return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Any , a__ : int , a__ : Optional[int] = None , a__ : int = 4 , a__ : float = 0.0 , a__ : str = "geglu" , a__ : bool = False , ): """simple docstring""" super().__init__() __snake_case = int(dim * mult ) __snake_case = dim_out if dim_out is not None else dim if activation_fn == "gelu": __snake_case = GELU(a__ , a__ ) if activation_fn == "gelu-approximate": __snake_case = GELU(a__ , a__ , approximate='''tanh''' ) elif activation_fn == "geglu": __snake_case = GEGLU(a__ , a__ ) elif activation_fn == "geglu-approximate": __snake_case = ApproximateGELU(a__ , a__ ) __snake_case = nn.ModuleList([] ) # project in self.net.append(a__ ) # project dropout self.net.append(nn.Dropout(a__ ) ) # project out self.net.append(nn.Linear(a__ , a__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a__ ) ) def a (self : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" for module in self.net: __snake_case = module(a__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Tuple , a__ : int , a__ : int , a__ : str = "none" ): """simple docstring""" super().__init__() __snake_case = nn.Linear(a__ , a__ ) __snake_case = approximate def a (self : Any , a__ : str ): """simple docstring""" if gate.device.type != "mps": return F.gelu(a__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def a (self : Any , a__ : List[str] ): """simple docstring""" __snake_case = self.proj(a__ ) __snake_case = self.gelu(a__ ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Optional[int] , a__ : int , a__ : int ): """simple docstring""" super().__init__() __snake_case = nn.Linear(a__ , dim_out * 2 ) def a (self : Dict , a__ : Optional[int] ): """simple docstring""" if gate.device.type != "mps": return F.gelu(a__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a (self : str , a__ : List[Any] ): """simple docstring""" __snake_case , __snake_case = self.proj(a__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a__ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Dict , a__ : int , a__ : int ): """simple docstring""" super().__init__() __snake_case = nn.Linear(a__ , a__ ) def a (self : str , a__ : Tuple ): """simple docstring""" __snake_case = self.proj(a__ ) return x * torch.sigmoid(1.7_0_2 * x ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Dict , a__ : Optional[Any] , a__ : Union[str, Any] ): """simple docstring""" super().__init__() __snake_case = nn.Embedding(a__ , a__ ) __snake_case = nn.SiLU() __snake_case = nn.Linear(a__ , embedding_dim * 2 ) __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ ) def a (self : Any , a__ : Optional[int] , a__ : Union[str, Any] ): """simple docstring""" __snake_case = self.linear(self.silu(self.emb(a__ ) ) ) __snake_case , __snake_case = torch.chunk(a__ , 2 ) __snake_case = self.norm(a__ ) * (1 + scale) + shift return x class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Dict , a__ : Dict , a__ : str ): """simple docstring""" super().__init__() __snake_case = CombinedTimestepLabelEmbeddings(a__ , a__ ) __snake_case = nn.SiLU() __snake_case = nn.Linear(a__ , 6 * embedding_dim , bias=a__ ) __snake_case = nn.LayerNorm(a__ , elementwise_affine=a__ , eps=1E-6 ) def a (self : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Union[str, Any]=None ): """simple docstring""" __snake_case = self.linear(self.silu(self.emb(a__ , a__ , hidden_dtype=a__ ) ) ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = emb.chunk(6 , dim=1 ) __snake_case = self.norm(a__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : Optional[int] , a__ : int , a__ : int , a__ : int , a__ : Optional[str] = None , a__ : float = 1E-5 ): """simple docstring""" super().__init__() __snake_case = num_groups __snake_case = eps if act_fn is None: __snake_case = None else: __snake_case = get_activation(a__ ) __snake_case = nn.Linear(a__ , out_dim * 2 ) def a (self : List[str] , a__ : Dict , a__ : List[str] ): """simple docstring""" if self.act: __snake_case = self.act(a__ ) __snake_case = self.linear(a__ ) __snake_case = emb[:, :, None, None] __snake_case , __snake_case = emb.chunk(2 , dim=1 ) __snake_case = F.group_norm(a__ , self.num_groups , eps=self.eps ) __snake_case = x * (1 + scale) + shift return x
24
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , a__ , ) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : str = RobertaConfig __UpperCamelCase : Optional[Any] = '''roberta''' def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = RobertaEmbeddings(SCREAMING_SNAKE_CASE__ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = RobertaConfig __UpperCamelCase : List[str] = '''roberta''' def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = config.num_labels SCREAMING_SNAKE_CASE__ : Tuple = config.num_hidden_layers SCREAMING_SNAKE_CASE__ : int = DeeRobertaModel(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ : Tuple = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=-1 , SCREAMING_SNAKE_CASE__=False , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.num_layers try: SCREAMING_SNAKE_CASE__ : Optional[Any] = self.roberta( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , inputs_embeds=SCREAMING_SNAKE_CASE__ , ) SCREAMING_SNAKE_CASE__ : List[str] = outputs[1] SCREAMING_SNAKE_CASE__ : str = self.dropout(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.classifier(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ : Optional[Any] = e.message SCREAMING_SNAKE_CASE__ : Optional[int] = e.exit_layer SCREAMING_SNAKE_CASE__ : Any = outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ : List[Any] = entropy(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : Union[str, Any] = MSELoss() SCREAMING_SNAKE_CASE__ : Optional[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ : List[Any] = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(SCREAMING_SNAKE_CASE__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ : Any = MSELoss() SCREAMING_SNAKE_CASE__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ : str = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(SCREAMING_SNAKE_CASE__ ) if train_highway: SCREAMING_SNAKE_CASE__ : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ : List[str] = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ : str = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
25
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case = 16 _snake_case = 32 def lowerCAmelCase_ ( snake_case_ ): return int(x / 2**20 ) class lowercase : def __enter__( self ) -> Any: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _A : Any = torch.cuda.memory_allocated() return self def __exit__( self , *_a ) -> List[str]: gc.collect() torch.cuda.empty_cache() _A : List[Any] = torch.cuda.memory_allocated() _A : Dict = torch.cuda.max_memory_allocated() _A : str = bamb(self.end - self.begin ) _A : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( snake_case_,snake_case_ = 16,snake_case_ = "bert-base-cased",snake_case_ = 320,snake_case_ = 160,): _A : List[Any] = AutoTokenizer.from_pretrained(snake_case_ ) _A : List[str] = load_dataset( """glue""","""mrpc""",split={"""train""": f'''train[:{n_train}]''', """validation""": f'''validation[:{n_val}]'''} ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) _A : Union[str, Any] = tokenizer(examples["""sentence1"""],examples["""sentence2"""],truncation=snake_case_,max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A : List[Any] = datasets.map( snake_case_,batched=snake_case_,remove_columns=["""idx""", """sentence1""", """sentence2"""],load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A : List[Any] = tokenized_datasets.rename_column("""label""","""labels""" ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_,padding="""max_length""",max_length=128,return_tensors="""pt""" ) return tokenizer.pad(snake_case_,padding="""longest""",return_tensors="""pt""" ) # Instantiate dataloaders. _A : Dict = DataLoader( tokenized_datasets["""train"""],shuffle=snake_case_,collate_fn=snake_case_,batch_size=snake_case_ ) _A : int = DataLoader( tokenized_datasets["""validation"""],shuffle=snake_case_,collate_fn=snake_case_,batch_size=snake_case_ ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Initialize accelerator _A : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A : Optional[int] = config["""lr"""] _A : Tuple = int(config["""num_epochs"""] ) _A : Any = int(config["""seed"""] ) _A : Tuple = int(config["""batch_size"""] ) _A : Any = args.model_name_or_path set_seed(snake_case_ ) _A , _A : Union[str, Any] = get_dataloaders(snake_case_,snake_case_,snake_case_,args.n_train,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A : Optional[int] = AutoModelForSequenceClassification.from_pretrained(snake_case_,return_dict=snake_case_ ) # Instantiate optimizer _A : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _A : Tuple = optimizer_cls(params=model.parameters(),lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: _A : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _A : int = 1 _A : str = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _A : str = get_linear_schedule_with_warmup( optimizer=snake_case_,num_warmup_steps=0,num_training_steps=snake_case_,) else: _A : Union[str, Any] = DummyScheduler(snake_case_,total_num_steps=snake_case_,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A : Dict = accelerator.prepare( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ) # We need to keep track of how many total steps we have iterated over _A : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly _A : Optional[Any] = 0 # Now we train the model _A : Optional[Any] = {} for epoch in range(snake_case_,snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): _A : Dict = model(**snake_case_ ) _A : Dict = outputs.loss _A : Dict = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _A : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir,"""peak_memory_utilization.json""" ),"""w""" ) as f: json.dump(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""",type=snake_case_,default="""bert-base-cased""",help="""Path to pretrained model or model identifier from huggingface.co/models.""",required=snake_case_,) parser.add_argument( """--output_dir""",type=snake_case_,default=""".""",help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""",) parser.add_argument( """--peak_memory_upper_bound""",type=snake_case_,default=snake_case_,help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""",) parser.add_argument( """--n_train""",type=snake_case_,default=320,help="""Number of training examples to use.""",) parser.add_argument( """--n_val""",type=snake_case_,default=160,help="""Number of validation examples to use.""",) parser.add_argument( """--num_epochs""",type=snake_case_,default=1,help="""Number of train epochs.""",) _A : Optional[int] = parser.parse_args() _A : Optional[int] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_,snake_case_ ) if __name__ == "__main__": main()
26
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self , __a , __a=2 , __a=True , __a=False , __a=10 , __a=3 , __a=32 * 8 , __a=32 * 8 , __a=4 , __a=64 , ): '''simple docstring''' __a : Any = parent __a : Any = batch_size __a : Tuple = is_training __a : Optional[int] = use_auxiliary_loss __a : List[Any] = num_queries __a : Any = num_channels __a : str = min_size __a : str = max_size __a : Any = num_labels __a : Union[str, Any] = hidden_dim __a : Optional[Any] = hidden_dim def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __a ) __a : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__a ) __a : Optional[int] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__a ) > 0.5 ).float() __a : Tuple = (torch.rand((self.batch_size, self.num_labels) , device=__a ) > 0.5).long() __a : Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __a : Dict = self.num_queries __a : List[str] = self.num_labels __a : List[str] = [1, 1, 1, 1] __a : Any = self.num_channels __a : int = 64 __a : Optional[int] = 128 __a : str = self.hidden_dim __a : int = self.hidden_dim __a : List[Any] = self.hidden_dim return config def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a , __a , __a , __a : int = self.prepare_config_and_inputs() __a : List[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : Tuple = output.encoder_hidden_states __a : Dict = output.pixel_decoder_hidden_states __a : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__a ) , config.decoder_layers ) def __UpperCAmelCase ( self , __a , __a , __a , __a=False ): '''simple docstring''' with torch.no_grad(): __a : List[str] = MaskaFormerModel(config=__a ) model.to(__a ) model.eval() __a : List[str] = model(pixel_values=__a , pixel_mask=__a ) __a : Optional[int] = model(__a , output_hidden_states=__a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__a , __a ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' __a : Optional[int] = MaskaFormerForUniversalSegmentation(config=__a ) model.to(__a ) model.eval() def comm_check_on_output(__a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __a : Union[str, Any] = model(pixel_values=__a , pixel_mask=__a ) __a : Optional[Any] = model(__a ) comm_check_on_output(__a ) __a : Dict = model( pixel_values=__a , pixel_mask=__a , mask_labels=__a , class_labels=__a ) comm_check_on_output(__a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = MaskaFormerModelTester(self ) __a : str = ConfigTester(self , config_class=__a , has_text_modality=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__a ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[int] = model_class(__a ) __a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Tuple = [*signature.parameters.keys()] __a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __a : Optional[Any] = MaskaFormerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = (self.model_tester.min_size,) * 2 __a : Optional[int] = { 'pixel_values': torch.randn((2, 3, *size) , device=__a ), 'mask_labels': torch.randn((2, 10, *size) , device=__a ), 'class_labels': torch.zeros(2 , 10 , device=__a ).long(), } __a : Dict = self.model_tester.get_config() __a : List[Any] = MaskaFormerForUniversalSegmentation(__a ).to(__a ) __a : List[str] = model(**__a ) self.assertTrue(outputs.loss is not None ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__a , **__a , output_hidden_states=__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a , __a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Optional[int] = model_class(__a ).to(__a ) __a : List[str] = model(**__a , output_attentions=__a ) self.assertTrue(outputs.attentions is not None ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __a : List[str] = self.all_model_classes[1] __a , __a , __a , __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs() __a : List[str] = model_class(__a ) model.to(__a ) model.train() __a : Union[str, Any] = model(__a , mask_labels=__a , class_labels=__a ).loss loss.backward() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.all_model_classes[1] __a , __a , __a , __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs() __a : List[Any] = True __a : Optional[int] = True __a : Optional[int] = model_class(__a ).to(__a ) model.train() __a : Optional[int] = model(__a , mask_labels=__a , class_labels=__a ) __a : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __a : List[str] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __a : Dict = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __a : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowercase : Any = 1E-4 def lowerCamelCase (): __a : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def __UpperCAmelCase ( self ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__a ) __a : List[Any] = self.default_image_processor __a : Dict = prepare_img() __a : Union[str, Any] = image_processor(__a , return_tensors='pt' ).to(__a ) __a : int = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__a , (1, 3, 384, 384) ) with torch.no_grad(): __a : List[str] = model(**__a ) __a : str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __a : Optional[int] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __a , atol=__a ) ) __a : Dict = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __a , atol=__a ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __a : List[Any] = self.default_image_processor __a : Optional[Any] = prepare_img() __a : Optional[int] = image_processor(__a , return_tensors='pt' ).to(__a ) __a : Optional[int] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__a , (1, 3, 384, 384) ) with torch.no_grad(): __a : Union[str, Any] = model(**__a ) # masks_queries_logits __a : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __a : Dict = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] __a : List[str] = torch.tensor(__a ).to(__a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __a , atol=__a ) ) # class_queries_logits __a : Optional[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __a : Tuple = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __a , atol=__a ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__a ).eval() __a : Optional[int] = self.default_image_processor __a : Tuple = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __a : Any = inputs['pixel_values'].to(__a ) __a : int = [el.to(__a ) for el in inputs['mask_labels']] __a : List[Any] = [el.to(__a ) for el in inputs['class_labels']] with torch.no_grad(): __a : Union[str, Any] = model(**__a ) self.assertTrue(outputs.loss is not None )
27
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __lowerCamelCase ( A__ ) -> list[list[float]]: """simple docstring""" UpperCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase , UpperCamelCase = matrix[1][1], matrix[0][0] UpperCamelCase , UpperCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix UpperCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase = array(A__ ) for i in range(3 ): for j in range(3 ): UpperCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
28
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=1_3 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=9_9 , _UpperCamelCase=6_4 , _UpperCamelCase=3_2 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=3_7 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=1_6 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ) -> Tuple: UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Dict = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : str = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[int] = embedding_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : Optional[Any] = scope def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ) -> Optional[Any]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Dict = MegatronBertModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Dict = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) UpperCAmelCase_ : Tuple = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = MegatronBertForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Tuple = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: UpperCAmelCase_ : Any = MegatronBertForCausalLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : List[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = MegatronBertForNextSentencePrediction(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Optional[Any] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = MegatronBertForPreTraining(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : List[str] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , next_sentence_label=_UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Optional[int] = MegatronBertForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Dict = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = MegatronBertForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Any = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Optional[Any] = MegatronBertForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Optional[int] = self.num_choices UpperCAmelCase_ : str = MegatronBertForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() UpperCAmelCase_ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Tuple = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Tuple = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _snake_case : str = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Any = True # test_resize_embeddings = False _snake_case : List[str] = False def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ) -> Any: UpperCAmelCase_ : Dict = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) if return_labels: if model_class in get_values(_UpperCamelCase ): UpperCAmelCase_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCamelCase ) UpperCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) return inputs_dict def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : int = MegatronBertModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_UpperCamelCase ) def lowercase__ ( __snake_case : Optional[Any] ): '''simple docstring''' return torch.tensor( __snake_case , dtype=torch.long , device=__snake_case , ) __UpperCAmelCase = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('Model is not available.' ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: UpperCAmelCase_ : List[str] = os.path.join(os.environ['MYDIR'] , _UpperCamelCase ) UpperCAmelCase_ : Tuple = MegatronBertModel.from_pretrained(_UpperCamelCase ) model.to(_UpperCamelCase ) model.half() UpperCAmelCase_ : Any = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): UpperCAmelCase_ : str = model(_UpperCamelCase )[0] UpperCAmelCase_ : List[Any] = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): UpperCAmelCase_ : Optional[int] = output[0, ii, jj] UpperCAmelCase_ : Any = expected[3 * ii + jj] UpperCAmelCase_ : List[Any] = 'ii={} jj={} a={} b={}'.format(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertTrue(math.isclose(_UpperCamelCase , _UpperCamelCase , rel_tol=_UpperCamelCase , abs_tol=_UpperCamelCase ) , msg=_UpperCamelCase )
29
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def a ( snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) lowercase_ = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , snake_case__ ) if matches: lowercase_ = float(matches[1] ) lowercase_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowercase_ = 1_001 lowercase_ = '''imagenet-1k-id2label.json''' lowercase_ = '''huggingface/label-files''' lowercase_ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase_ = {int(snake_case__ ) + 1: v for k, v in idalabel.items()} lowercase_ = '''background''' lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} return config def a ( ): '''simple docstring''' lowercase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def a ( snake_case__: Optional[int] , snake_case__: int , snake_case__: Dict , snake_case__: Optional[Any]=False ): '''simple docstring''' lowercase_ = get_mobilenet_va_config(snake_case__ ) # Load 🤗 model lowercase_ = MobileNetVaForImageClassification(snake_case__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(snake_case__ , snake_case__ , snake_case__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowercase_ = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) lowercase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowercase_ = model(**snake_case__ ) lowercase_ = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": lowercase_ = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowercase_ = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowercase_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print('''Pushing to the hub...''' ) lowercase_ = '''google/''' + model_name image_processor.push_to_hub(snake_case__ ) model.push_to_hub(snake_case__ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
30
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : List[Any] ): _UpperCAmelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING _UpperCAmelCase : int = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(A ) def _A ( self : int ): _UpperCAmelCase : int = logging.get_verbosity() _UpperCAmelCase : int = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : List[str] = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(A ) as cl: logger.warning(A ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(A ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def _A ( self : Dict ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _UpperCAmelCase : str = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY" , A ) _UpperCAmelCase : Any = logging.log_levels[env_level_str] _UpperCAmelCase : Tuple = logging.get_verbosity() self.assertEqual( A , A , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _UpperCAmelCase : int = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def _A ( self : Union[str, Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _UpperCAmelCase : List[Any] = logging.logging.getLogger() with CaptureLogger(A ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def _A ( self : List[Any] ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _UpperCAmelCase : Optional[Any] = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : List[Any] = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(A ) as cl: logger.warning_advice(A ) self.assertEqual(cl.out , msg + "\n" ) def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
31
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCAmelCase_ : Union[str, Any] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) snake_case__ : bool = field(default=lowercase__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) snake_case__ : bool = field( default=lowercase__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) snake_case__ : bool = field(default=lowercase__ , metadata={'''help''': '''whether to use adafactor'''} ) snake_case__ : Optional[float] = field( default=lowercase__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) snake_case__ : Optional[float] = field( default=lowercase__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) snake_case__ : Optional[float] = field(default=lowercase__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) snake_case__ : Optional[float] = field( default=lowercase__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) snake_case__ : Optional[str] = field( default='''linear''' , metadata={'''help''': f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
32
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Any , A : int ) -> None: lowercase_ : List[str] = value lowercase_ : Node | None = None lowercase_ : Node | None = None class _UpperCAmelCase : def __init__( self : Optional[int] , A : Node ) -> None: lowercase_ : Optional[Any] = tree def A ( self : Any , A : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
33
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A =logging.getLogger() def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase = parser.parse_args() return args.f def snake_case_ (_a : List[str] , _a : Union[str, Any]="eval" ): UpperCAmelCase = os.path.join(_a , F"{split}_results.json" ) if os.path.exists(_a ): with open(_a , '''r''' ) as f: return json.load(_a ) raise ValueError(F"can't find {path}" ) A =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_glue.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_clm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_summarization_flax.main() UpperCAmelCase = get_results(lowercase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_ta_mlm_flax.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_flax_ner.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = f"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(lowercase , '''argv''' , lowercase ): run_qa.main() UpperCAmelCase = get_results(lowercase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
34
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "xlm" lowercase = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : Tuple , snake_case_ : Optional[int]=30_145 , snake_case_ : Optional[Any]=2_048 , snake_case_ : Optional[Any]=12 , snake_case_ : Dict=16 , snake_case_ : Optional[Any]=0.1 , snake_case_ : str=0.1 , snake_case_ : Tuple=True , snake_case_ : Union[str, Any]=False , snake_case_ : Dict=False , snake_case_ : Optional[int]=False , snake_case_ : Dict=1 , snake_case_ : List[Any]=True , snake_case_ : Tuple=512 , snake_case_ : List[str]=2_048**-0.5 , snake_case_ : List[Any]=1E-1_2 , snake_case_ : int=0.02 , snake_case_ : List[str]=0 , snake_case_ : Optional[int]=1 , snake_case_ : List[Any]=2 , snake_case_ : str=3 , snake_case_ : Union[str, Any]=5 , snake_case_ : List[str]=True , snake_case_ : List[str]="first" , snake_case_ : List[Any]=True , snake_case_ : List[Any]=None , snake_case_ : List[str]=True , snake_case_ : Dict=0.1 , snake_case_ : Any=5 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=0 , snake_case_ : List[str]=0 , snake_case_ : str=2 , snake_case_ : Tuple=0 , **snake_case_ : List[Any] , ): snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = emb_dim snake_case__ : int = n_layers snake_case__ : Dict = n_heads snake_case__ : Union[str, Any] = dropout snake_case__ : List[str] = attention_dropout snake_case__ : Optional[int] = gelu_activation snake_case__ : Union[str, Any] = sinusoidal_embeddings snake_case__ : Union[str, Any] = causal snake_case__ : Tuple = asm snake_case__ : int = n_langs snake_case__ : int = use_lang_emb snake_case__ : List[Any] = layer_norm_eps snake_case__ : Union[str, Any] = bos_index snake_case__ : int = eos_index snake_case__ : str = pad_index snake_case__ : str = unk_index snake_case__ : Tuple = mask_index snake_case__ : Optional[int] = is_encoder snake_case__ : int = max_position_embeddings snake_case__ : List[Any] = embed_init_std snake_case__ : List[str] = init_std snake_case__ : Any = summary_type snake_case__ : Tuple = summary_use_proj snake_case__ : int = summary_activation snake_case__ : Optional[int] = summary_proj_to_labels snake_case__ : Optional[int] = summary_first_dropout snake_case__ : str = start_n_top snake_case__ : Union[str, Any] = end_n_top snake_case__ : List[Any] = mask_token_id snake_case__ : Optional[Any] = lang_id if "n_words" in kwargs: snake_case__ : Any = kwargs["""n_words"""] super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( _a ): """simple docstring""" @property def lowerCamelCase ( self : Dict ): if self.task == "multiple-choice": snake_case__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case__ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
35
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCAmelCase_ ( a): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = tempfile.mkdtemp() _lowerCAmelCase : int = 8 # DPR tok _lowerCAmelCase : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : Dict = os.path.join(self.tmpdirname, "dpr_tokenizer") os.makedirs(__a, exist_ok=__a) _lowerCAmelCase : str = os.path.join(__a, DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok _lowerCAmelCase : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _lowerCAmelCase : Optional[int] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _lowerCAmelCase : Any = {"unk_token": "<unk>"} _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, "bart_tokenizer") os.makedirs(__a, exist_ok=__a) _lowerCAmelCase : str = os.path.join(__a, BART_VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Tuple = os.path.join(__a, BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) def snake_case__ ( self): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer")) def snake_case__ ( self): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer")) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) @require_tokenizers def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = os.path.join(self.tmpdirname, "rag_tokenizer") _lowerCAmelCase : str = RagConfig(question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict()) _lowerCAmelCase : Dict = RagTokenizer(question_encoder=self.get_dpr_tokenizer(), generator=self.get_bart_tokenizer()) rag_config.save_pretrained(__a) rag_tokenizer.save_pretrained(__a) _lowerCAmelCase : Optional[int] = RagTokenizer.from_pretrained(__a, config=__a) self.assertIsInstance(new_rag_tokenizer.question_encoder, __a) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(), rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator, __a) self.assertEqual(new_rag_tokenizer.generator.get_vocab(), rag_tokenizer.generator.get_vocab()) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = RagTokenizer.from_pretrained("facebook/rag-token-nq") _lowerCAmelCase : int = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] _lowerCAmelCase : Tuple = tokenizer(__a) self.assertIsNotNone(__a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") _lowerCAmelCase : Optional[Any] = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] _lowerCAmelCase : Dict = tokenizer(__a) self.assertIsNotNone(__a)
36
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
37
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : List[Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
import os def __A ( __lowerCAmelCase = "input.txt" )-> int: """simple docstring""" with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file: _UpperCAmelCase = [ [int(__lowerCAmelCase ) for element in line.split(',' )] for line in input_file.readlines() ] _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = len(matrix[0] ) _UpperCAmelCase = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): _UpperCAmelCase = matrix[i][0] for j in range(1 , __lowerCAmelCase ): for i in range(__lowerCAmelCase ): _UpperCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCAmelCase ): _UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
39
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : str = """roberta""" def __init__( self : Tuple , __UpperCAmelCase : Tuple=50265 , __UpperCAmelCase : Dict=768 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : List[str]=1e-12 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Optional[int]="absolute" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : str , ): super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : int = vocab_size a : Optional[Any] = hidden_size a : Any = num_hidden_layers a : Dict = num_attention_heads a : Dict = hidden_act a : int = intermediate_size a : str = hidden_dropout_prob a : List[Any] = attention_probs_dropout_prob a : Any = max_position_embeddings a : str = type_vocab_size a : Optional[int] = initializer_range a : Optional[Any] = layer_norm_eps a : Optional[Any] = position_embedding_type a : Any = use_cache a : List[str] = classifier_dropout class _A ( _a ): """simple docstring""" @property def __snake_case ( self : int): if self.task == "multiple-choice": a : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
40
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A : List[Any] =logging.get_logger(__name__) _A : Optional[int] =torch.device('''cpu''') def SCREAMING_SNAKE_CASE_ () -> int: lowerCamelCase__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ : str = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Optional[int]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Any: lowerCamelCase__ : List[str] = dct.pop(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = val def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Any = [] for k in state_dict.keys(): lowerCamelCase__ : List[Any] = k if ".pwconv" in k: lowerCamelCase__ : List[str] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: lowerCamelCase__ : str = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: lowerCamelCase__ : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: lowerCamelCase__ : Any = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: lowerCamelCase__ : Union[str, Any] = k_new.split(""".""" ) if ls[2].isdigit(): lowerCamelCase__ : Optional[Any] = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowerCamelCase__ : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : str = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCamelCase__ : Optional[int] = 1000 lowerCamelCase__ : int = """huggingface/label-files""" lowerCamelCase__ : Any = """imagenet-1k-id2label.json""" lowerCamelCase__ : Optional[Any] = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Optional[Any] = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[Any] = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCamelCase__ : str = [3, 3, 6, 4] lowerCamelCase__ : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowerCamelCase__ : List[Any] = [3, 3, 9, 6] lowerCamelCase__ : Optional[int] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowerCamelCase__ : int = [4, 3, 10, 5] lowerCamelCase__ : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowerCamelCase__ : Optional[int] = [4, 4, 12, 6] lowerCamelCase__ : str = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): lowerCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase ) else: lowerCamelCase__ : List[str] = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : str = checkpoint lowerCamelCase__ : List[str] = create_rename_keys(UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # load HuggingFace model lowerCamelCase__ : List[str] = SwiftFormerForImageClassification(UpperCamelCase ).eval() hf_model.load_state_dict(UpperCamelCase ) # prepare test inputs lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Optional[int] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) lowerCamelCase__ : Union[str, Any] = processor(images=UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models lowerCamelCase__ : Tuple = get_expected_output(UpperCamelCase ) lowerCamelCase__ : str = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCamelCase , atol=1E-3 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _A : int =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
41
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
'''simple docstring''' import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=36 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = embedding_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_hidden_groups _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertForPreTraining(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , sentence_order_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = AlbertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = AlbertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = AlbertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_choices _snake_case = AlbertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowercase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowercase = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowercase = True def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCamelCase ( self ): """simple docstring""" _snake_case = AlbertModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = AlbertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = AlbertModel.from_pretrained('albert-base-v2' ) _snake_case = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _snake_case = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _snake_case = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4 ) )
42
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __lowercase = '''CompVis/stable-diffusion-v1-1''' __lowercase = '''CompVis/stable-diffusion-v1-2''' __lowercase = '''CompVis/stable-diffusion-v1-3''' __lowercase = '''CompVis/stable-diffusion-v1-4''' class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ) -> Union[str, Any]: super()._init_() __UpperCamelCase :Dict = StableDiffusionPipeline.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = StableDiffusionPipeline.from_pretrained(__lowercase) __UpperCamelCase :Optional[int] = StableDiffusionPipeline.from_pretrained(__lowercase) __UpperCamelCase :Tuple = StableDiffusionPipeline( vae=__lowercase , text_encoder=__lowercase , tokenizer=__lowercase , unet=__lowercase , scheduler=__lowercase , safety_checker=__lowercase , feature_extractor=__lowercase , requires_safety_checker=__lowercase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea) @property def UpperCamelCase__ ( self) -> Dict[str, Any]: return {k: getattr(self , __lowercase) for k in self.config.keys() if not k.startswith('''_''')} def UpperCamelCase__ ( self , __lowercase = "auto") -> str: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __UpperCamelCase :Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowercase) def UpperCamelCase__ ( self) -> str: self.enable_attention_slicing(__lowercase) @torch.no_grad() def UpperCamelCase__ ( self , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 50 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , **__lowercase , ) -> Union[str, Any]: return self.pipea( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) @torch.no_grad() def UpperCamelCase__ ( self , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 50 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , **__lowercase , ) -> int: return self.pipea( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) @torch.no_grad() def UpperCamelCase__ ( self , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 50 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , **__lowercase , ) -> str: return self.pipea( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) @torch.no_grad() def UpperCamelCase__ ( self , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 50 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , **__lowercase , ) -> str: return self.pipea( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) @torch.no_grad() def UpperCamelCase__ ( self , __lowercase , __lowercase = 512 , __lowercase = 512 , __lowercase = 50 , __lowercase = 7.5 , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = None , __lowercase = None , __lowercase = "pil" , __lowercase = True , __lowercase = None , __lowercase = 1 , **__lowercase , ) -> Optional[int]: __UpperCamelCase :Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' self.to(__lowercase) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""") # Get first result from Stable Diffusion Checkpoint v1.1 __UpperCamelCase :Tuple = self.textaimg_sda_a( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) # Get first result from Stable Diffusion Checkpoint v1.2 __UpperCamelCase :Any = self.textaimg_sda_a( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) # Get first result from Stable Diffusion Checkpoint v1.3 __UpperCamelCase :Dict = self.textaimg_sda_a( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) # Get first result from Stable Diffusion Checkpoint v1.4 __UpperCamelCase :Optional[Any] = self.textaimg_sda_a( prompt=__lowercase , height=__lowercase , width=__lowercase , num_inference_steps=__lowercase , guidance_scale=__lowercase , negative_prompt=__lowercase , num_images_per_prompt=__lowercase , eta=__lowercase , generator=__lowercase , latents=__lowercase , output_type=__lowercase , return_dict=__lowercase , callback=__lowercase , callback_steps=__lowercase , **__lowercase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]])
43
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _a : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _a : Union[str, Any] = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } _a : Optional[Any] = { 'google/electra-small-generator': 512, 'google/electra-base-generator': 512, 'google/electra-large-generator': 512, 'google/electra-small-discriminator': 512, 'google/electra-base-discriminator': 512, 'google/electra-large-discriminator': 512, } _a : Any = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ElectraTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) _lowerCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , a__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , a__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , a__ ) != tokenize_chinese_chars ): _lowerCAmelCase : Dict = getattr(a__ , normalizer_state.pop("""type""" ) ) _lowerCAmelCase : int = do_lower_case _lowerCAmelCase : str = strip_accents _lowerCAmelCase : Dict = tokenize_chinese_chars _lowerCAmelCase : str = normalizer_class(**a__ ) _lowerCAmelCase : List[str] = do_lower_case def __A ( self , a__ , a__=None ): _lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , a__ , a__ = None ): _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
44
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self , _a ): if isinstance(_a , _a ): __a = [label.strip() for label in labels.split(''',''' ) if label.strip()] return labels def __call__( self , _a , _a , _a ): if len(_a ) == 0 or len(_a ) == 0: raise ValueError('''You must include at least one label and at least one sequence.''' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( '''The provided hypothesis_template "{}" was not able to be formatted with the target labels. ''' '''Make sure the passed template includes formatting syntax such as {{}} where the label should go.''' ).format(_a ) ) if isinstance(_a , _a ): __a = [sequences] __a = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a=ZeroShotClassificationArgumentHandler() , *_a , **_a ): __a = args_parser super().__init__(*_a , **_a ) if self.entailment_id == -1: logger.warning( '''Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ''' '''-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.''' ) @property def __UpperCAmelCase ( self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('''entail''' ): return ind return -1 def __UpperCAmelCase ( self , _a , _a=True , _a=True , _a=TruncationStrategy.ONLY_FIRST , **_a ): __a = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( '''Tokenizer was not supporting padding necessary for zero-shot, attempting to use ''' ''' `pad_token=eos_token`''' ) __a = self.tokenizer.eos_token try: __a = self.tokenizer( _a , add_special_tokens=_a , return_tensors=_a , padding=_a , truncation=_a , ) except Exception as e: if "too short" in str(_a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __a = self.tokenizer( _a , add_special_tokens=_a , return_tensors=_a , padding=_a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def __UpperCAmelCase ( self , **_a ): if kwargs.get('''multi_class''' , _a ) is not None: __a = kwargs['''multi_class'''] logger.warning( '''The `multi_class` argument has been deprecated and renamed to `multi_label`. ''' '''`multi_class` will be removed in a future version of Transformers.''' ) __a = {} if "candidate_labels" in kwargs: __a = self._args_parser._parse_labels(kwargs['''candidate_labels'''] ) if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] __a = {} if "multi_label" in kwargs: __a = kwargs['''multi_label'''] return preprocess_params, {}, postprocess_params def __call__( self , _a , *_a , **_a , ): if len(_a ) == 0: pass elif len(_a ) == 1 and "candidate_labels" not in kwargs: __a = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , _a , _a=None , _a="This example is {}." ): __a , __a = self._args_parser(_a , _a , _a ) for i, (candidate_label, sequence_pair) in enumerate(zip(_a , _a ) ): __a = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_a ) - 1, **model_input, } def __UpperCAmelCase ( self , _a ): __a = inputs['''candidate_label'''] __a = inputs['''sequence'''] __a = {k: inputs[k] for k in self.tokenizer.model_input_names} __a = self.model(**_a ) __a = { '''candidate_label''': candidate_label, '''sequence''': sequence, '''is_last''': inputs['''is_last'''], **outputs, } return model_outputs def __UpperCAmelCase ( self , _a , _a=False ): __a = [outputs['''candidate_label'''] for outputs in model_outputs] __a = [outputs['''sequence'''] for outputs in model_outputs] __a = np.concatenate([output['''logits'''].numpy() for output in model_outputs] ) __a = logits.shape[0] __a = len(_a ) __a = N // n __a = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __a = self.entailment_id __a = -1 if entailment_id == 0 else 0 __a = reshaped_outputs[..., [contradiction_id, entailment_id]] __a = np.exp(_a ) / np.exp(_a ).sum(-1 , keepdims=_a ) __a = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __a = reshaped_outputs[..., self.entailment_id] __a = np.exp(_a ) / np.exp(_a ).sum(-1 , keepdims=_a ) __a = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
45
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=None , ) -> Any: lowerCAmelCase = size if size is not None else {"""shortest_edge""": 20} lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size def _snake_case ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = MobileNetVaImageProcessor if is_vision_available() else None def _snake_case ( self ) -> List[str]: lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def _snake_case ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> Dict: lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , """do_resize""" ) ) self.assertTrue(hasattr(lowercase , """size""" ) ) self.assertTrue(hasattr(lowercase , """do_center_crop""" ) ) self.assertTrue(hasattr(lowercase , """crop_size""" ) ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> Optional[int]: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self ) -> Any: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _snake_case ( self ) -> Tuple: # Initialize image_processing lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched lowerCAmelCase = image_processing(lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
46
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCamelCase : List[Any] = logging.getLogger() def _lowerCAmelCase ( _UpperCamelCase : Path , _UpperCamelCase : list ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE ='\n'.join(_UpperCamelCase ) Path(_UpperCamelCase ).open('w' ).writelines(_UpperCamelCase ) lowerCamelCase : Tuple = "patrickvonplaten/t5-tiny-random" lowerCamelCase : Tuple = "sshleifer/bart-tiny-random" lowerCamelCase : List[Any] = "sshleifer/tiny-mbart" lowerCamelCase : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class A__ ( A__ ): def A ( self : Any , _a : Dict ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _SCREAMING_SNAKE_CASE =input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _SCREAMING_SNAKE_CASE =[' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_a , _a ) _SCREAMING_SNAKE_CASE =str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _SCREAMING_SNAKE_CASE ='translation_en_to_de' if model == T5_TINY else 'summarization' _SCREAMING_SNAKE_CASE =f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(_a , 'argv' , _a ): run_generate() assert Path(_a ).exists() # os.remove(Path(output_file_name)) def A ( self : List[str] ) -> str: '''simple docstring''' self.run_eval_tester(_a ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A ( self : Optional[Any] , _a : Tuple ) -> List[str]: '''simple docstring''' self.run_eval_tester(_a ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A ( self : Dict , _a : Dict ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _SCREAMING_SNAKE_CASE =input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _SCREAMING_SNAKE_CASE ={ 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _SCREAMING_SNAKE_CASE =Path(self.get_auto_remove_tmp_dir() ) _SCREAMING_SNAKE_CASE =str(tmp_dir / 'scores.json' ) _SCREAMING_SNAKE_CASE =str(tmp_dir / 'val.target' ) _dump_articles(_a , text['en'] ) _dump_articles(_a , text['de'] ) _SCREAMING_SNAKE_CASE ='translation_en_to_de' if model == T5_TINY else 'summarization' _SCREAMING_SNAKE_CASE =f"\n run_eval_search.py\n {model}\n {str(_a )}\n {str(_a )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_a , 'argv' , _a ): with CaptureStdout() as cs: run_search() _SCREAMING_SNAKE_CASE =[' num_beams | length_penalty', model, 'Best score args'] _SCREAMING_SNAKE_CASE =['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_a ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_a ).exists() os.remove(Path(_a ) )
47
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : int = """openai-gpt""" lowerCamelCase_ : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase__=4_0478 , UpperCamelCase__=512 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__="cls_index" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=0.1 , **UpperCamelCase__ , ) -> Optional[int]: lowerCamelCase : str = vocab_size lowerCamelCase : str = n_positions lowerCamelCase : List[Any] = n_embd lowerCamelCase : int = n_layer lowerCamelCase : int = n_head lowerCamelCase : Tuple = afn lowerCamelCase : List[str] = resid_pdrop lowerCamelCase : Any = embd_pdrop lowerCamelCase : Union[str, Any] = attn_pdrop lowerCamelCase : Union[str, Any] = layer_norm_epsilon lowerCamelCase : Any = initializer_range lowerCamelCase : Any = summary_type lowerCamelCase : int = summary_use_proj lowerCamelCase : Union[str, Any] = summary_activation lowerCamelCase : Union[str, Any] = summary_first_dropout lowerCamelCase : Union[str, Any] = summary_proj_to_labels super().__init__(**UpperCamelCase__ )
48
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _A ( unittest.TestCase ): def __init__( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str=100 , __SCREAMING_SNAKE_CASE : int=13 , __SCREAMING_SNAKE_CASE : Dict=30 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : List[str]=37 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=3 , ): '''simple docstring''' __a = parent __a = vocab_size __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __a = (image_size // patch_size) ** 2 __a = num_patches + 1 def _lowerCamelCase ( self : Any): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size) __a = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = FlaxBeitModel(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = FlaxBeitForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size)) def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int]): '''simple docstring''' __a = self.type_sequence_label_size __a = FlaxBeitForImageClassification(config=__SCREAMING_SNAKE_CASE) __a = model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __a = 1 __a = FlaxBeitForImageClassification(__SCREAMING_SNAKE_CASE) __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __a = model(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _A ( __UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ : Dict = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = FlaxBeitModelTester(self) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__SCREAMING_SNAKE_CASE) __a = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): __a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = model_class(__SCREAMING_SNAKE_CASE) @jax.jit def model_jitted(__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Optional[int]): return model(pixel_values=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) with self.subTest('''JIT Enabled'''): __a = model_jitted(**__SCREAMING_SNAKE_CASE).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): __a = model_jitted(**__SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE) , len(__SCREAMING_SNAKE_CASE)) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertEqual(jitted_output.shape , output.shape) def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Any): '''simple docstring''' for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''') __a = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def __snake_case ( ): __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class _A ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Tuple): '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''') if is_vision_available() else None @slow def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''').pixel_values # prepare bool_masked_pos __a = np.ones((1, 196) , dtype=__SCREAMING_SNAKE_CASE) # forward pass __a = model(pixel_values=__SCREAMING_SNAKE_CASE , bool_masked_pos=__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = (1, 196, 8_192) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]]) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-2)) @slow def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''') # forward pass __a = model(**__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = (1, 1_000) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = np.array([-1.23_85, -1.09_87, -1.01_08]) self.assertTrue(np.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) __a = 281 self.assertEqual(logits.argmax(-1).item() , __SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''') __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''') # forward pass __a = model(**__SCREAMING_SNAKE_CASE) __a = outputs.logits # verify the logits __a = (1, 21_841) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE) __a = np.array([1.68_81, -0.27_87, 0.59_01]) self.assertTrue(np.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4)) __a = 2_396 self.assertEqual(logits.argmax(-1).item() , __SCREAMING_SNAKE_CASE)
49
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ) -> int: print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowerCamelCase__ : Union[str, Any] = timm.create_model('levit_128s' , pretrained=_UpperCAmelCase ) else: lowerCamelCase__ : int = timm.create_model('levit_128' , pretrained=_UpperCAmelCase ) if hidden_sizes == 192: lowerCamelCase__ : List[str] = timm.create_model('levit_192' , pretrained=_UpperCAmelCase ) if hidden_sizes == 256: lowerCamelCase__ : List[Any] = timm.create_model('levit_256' , pretrained=_UpperCAmelCase ) if hidden_sizes == 384: lowerCamelCase__ : int = timm.create_model('levit_384' , pretrained=_UpperCAmelCase ) from_model.eval() lowerCamelCase__ : Optional[Any] = LevitForImageClassificationWithTeacher(_UpperCAmelCase ).eval() lowerCamelCase__ : List[str] = OrderedDict() lowerCamelCase__ : str = from_model.state_dict() lowerCamelCase__ : Optional[Any] = list(from_model.state_dict().keys() ) lowerCamelCase__ : str = list(our_model.state_dict().keys() ) print(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : List[Any] = weights[og_keys[i]] our_model.load_state_dict(_UpperCAmelCase ) lowerCamelCase__ : int = torch.randn((2, 3, 224, 224) ) lowerCamelCase__ : Optional[int] = from_model(_UpperCAmelCase ) lowerCamelCase__ : Any = our_model(_UpperCAmelCase ).logits assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ), "The model logits don't match the original one." lowerCamelCase__ : Optional[Any] = name print(_UpperCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowerCamelCase__ : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ) -> List[str]: lowerCamelCase__ : Optional[int] = 'imagenet-1k-id2label.json' lowerCamelCase__ : Tuple = 1000 lowerCamelCase__ : Union[str, Any] = (1, num_labels) lowerCamelCase__ : List[str] = 'huggingface/label-files' lowerCamelCase__ : int = num_labels lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase__ : List[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[Any] = idalabel lowerCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) lowerCamelCase__ : int = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } lowerCamelCase__ : int = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) _UpperCAmelCase : Optional[Any] = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
50
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
def A (__A : str ) -> int: """simple docstring""" UpperCAmelCase_ = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) UpperCAmelCase_ = hex_num[0] == '''-''' if is_negative: UpperCAmelCase_ = hex_num[1:] try: UpperCAmelCase_ = int(__A , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) UpperCAmelCase_ = '''''' while int_num > 0: UpperCAmelCase_ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
51
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A_ ( _lowerCAmelCase ) -> int: # picklable for multiprocessing return x.sum() def A_ ( _lowerCAmelCase ) -> str: # picklable for multiprocessing return i + 1 @dataclass class A__ : _UpperCAmelCase :int _UpperCAmelCase :str class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = {} UpperCamelCase : Any = [] UpperCamelCase : Dict = 1 UpperCamelCase : Optional[int] = [1, 2] UpperCamelCase : Union[str, Any] = {"a": 1, "b": 2} UpperCamelCase : Optional[Any] = {"a": [1, 2], "b": [3, 4]} UpperCamelCase : Optional[Any] = {"a": {"1": 1}, "b": 2} UpperCamelCase : Optional[int] = {"a": 1, "b": 2, "c": 3, "d": 4} UpperCamelCase : Dict = {} UpperCamelCase : List[str] = [] UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : str = [2, 3] UpperCamelCase : str = {"a": 2, "b": 3} UpperCamelCase : Optional[Any] = {"a": [2, 3], "b": [4, 5]} UpperCamelCase : List[str] = {"a": {"1": 2}, "b": 3} UpperCamelCase : Dict = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) UpperCamelCase : Any = 2 self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) UpperCamelCase : Optional[int] = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} UpperCamelCase : Optional[Any] = {"a": 2, "b": 0, "c": 2} UpperCamelCase : Optional[Any] = { "a": np.eye(2 ).astype(A_ ), "b": np.zeros(3 ).astype(A_ ), "c": np.ones(2 ).astype(A_ ), } self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(A_ ): # can't pickle a local lambda map_nested(lambda A_ : x + 1 , A_ , num_proc=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = {"a": 1, "b": 2} UpperCamelCase : Union[str, Any] = {"a": 3, "b": 4} UpperCamelCase : Optional[int] = {"a": 5, "b": 6} UpperCamelCase : Tuple = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(A_ , A_ , A_ ) ) , A_ ) def __UpperCamelCase( self ): '''simple docstring''' class A__ : _UpperCAmelCase :int = 'bar' UpperCamelCase : Dict = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(A_ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: UpperCamelCase : int = {F"""{i}""": i for i in range(_lowerCAmelCase )} UpperCamelCase : Optional[int] = map_nested(lambda _lowerCAmelCase : x + 10 , _lowerCAmelCase , num_proc=_lowerCAmelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class A__ ( __snake_case ): @require_tf def __UpperCamelCase( self ): '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers UpperCamelCase : Dict = layers.Dense(2 ) def gen_random_output(): UpperCamelCase : Optional[int] = tf.random.uniform((1, 3) ) return model(A_ ).numpy() with temp_seed(42 , set_tensorflow=A_ ): UpperCamelCase : Optional[Any] = gen_random_output() with temp_seed(42 , set_tensorflow=A_ ): UpperCamelCase : List[str] = gen_random_output() UpperCamelCase : Optional[int] = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' import torch def gen_random_output(): UpperCamelCase : Any = torch.nn.Linear(3 , 2 ) UpperCamelCase : Union[str, Any] = torch.rand(1 , 3 ) return model(A_ ).detach().numpy() with temp_seed(42 , set_pytorch=A_ ): UpperCamelCase : List[str] = gen_random_output() with temp_seed(42 , set_pytorch=A_ ): UpperCamelCase : Dict = gen_random_output() UpperCamelCase : str = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __UpperCamelCase( self ): '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase : Tuple = gen_random_output() with temp_seed(42 ): UpperCamelCase : int = gen_random_output() UpperCamelCase : Any = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : Union[str, Any] = NestedDataStructure(_lowerCAmelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: UpperCamelCase : Union[str, Any] = NestedDataStructure(_lowerCAmelCase ).flatten() assert output == expected_output def A_ ( ) -> List[Any]: UpperCamelCase : Dict = A(x=1 , y="foobar" ) UpperCamelCase : Optional[Any] = {"x": 1, "y": "foobar"} assert asdict(_lowerCAmelCase ) == expected_output UpperCamelCase : Tuple = {"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} UpperCamelCase : str = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(_lowerCAmelCase ) == expected_output with pytest.raises(_lowerCAmelCase ): asdict([1, A(x=10 , y="foo" )] ) def A_ ( _lowerCAmelCase ) -> Any: return text.split() def A_ ( _lowerCAmelCase ) -> Optional[int]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A_ ( ) -> int: with Pool(2 ) as pool: UpperCamelCase : Optional[Any] = list(iflatmap_unordered(_lowerCAmelCase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_lowerCAmelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase : Tuple = list(iflatmap_unordered(_lowerCAmelCase , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(_lowerCAmelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase : List[str] = [] for yield_time, content in iflatmap_unordered( _lowerCAmelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_lowerCAmelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(_lowerCAmelCase ) == 4
52
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase = tokenizer('Hello there' , return_tensors='tf' ).input_ids __UpperCamelCase = tokenizer('Hi I am' , return_tensors='tf' ).input_ids __UpperCamelCase = model(__A , labels=__A ).loss __UpperCamelCase = -tf.math.reduce_mean(__A ).numpy() __UpperCamelCase = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
53
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a__ : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "The column name of the images in the files."}) snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "A folder containing the training data."}) snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "A folder containing the validation data."}) snake_case__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."}) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = {} if self.train_dir is not None: __SCREAMING_SNAKE_CASE = self.train_dir if self.validation_dir is not None: __SCREAMING_SNAKE_CASE = self.validation_dir __SCREAMING_SNAKE_CASE = data_files if data_files else None @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : str = field( default=UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}) snake_case__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ : str = field(default=UpperCamelCase , metadata={"help": "Name or path of preprocessor config."}) snake_case__ : bool = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case__ : float = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."}) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "Whether or not to train with normalized pixel values as target."}) @dataclass class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : float = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."}) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __SCREAMING_SNAKE_CASE = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: __SCREAMING_SNAKE_CASE = ds["train"].train_test_split(data_args.train_val_split ) __SCREAMING_SNAKE_CASE = split["train"] __SCREAMING_SNAKE_CASE = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: __SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: __SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: __SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = ViTImageProcessor() # create model if model_args.model_name_or_path: __SCREAMING_SNAKE_CASE = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) __SCREAMING_SNAKE_CASE = ViTMAEForPreTraining(lowerCAmelCase_ ) if training_args.do_train: __SCREAMING_SNAKE_CASE = ds["train"].column_names else: __SCREAMING_SNAKE_CASE = ds["validation"].column_names if data_args.image_column_name is not None: __SCREAMING_SNAKE_CASE = data_args.image_column_name elif "image" in column_names: __SCREAMING_SNAKE_CASE = "image" elif "img" in column_names: __SCREAMING_SNAKE_CASE = "img" else: __SCREAMING_SNAKE_CASE = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __SCREAMING_SNAKE_CASE = image_processor.size["shortest_edge"] else: __SCREAMING_SNAKE_CASE = (image_processor.size["height"], image_processor.size["width"]) __SCREAMING_SNAKE_CASE = Compose( [ Lambda(lambda lowerCAmelCase_ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCAmelCase_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [transforms(lowerCAmelCase_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCAmelCase_ ) # Compute absolute learning rate __SCREAMING_SNAKE_CASE = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __SCREAMING_SNAKE_CASE = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __SCREAMING_SNAKE_CASE = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics("eval" , lowerCAmelCase_ ) trainer.save_metrics("eval" , lowerCAmelCase_ ) # Write model card and (optionally) push to hub __SCREAMING_SNAKE_CASE = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
54
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() a_ : Tuple = logging.get_logger(__name__) set_seed(770) a_ : List[str] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } a_ : int = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } a_ : Optional[Any] = os.path.dirname(os.path.abspath(__file__)) a_ : Optional[int] = os.path.join(os.path.expanduser("""~"""), """.cache""") a_ : Optional[Any] = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=False ): lowerCamelCase_ = model_type if use_small: key += "_small" return os.path.join(UpperCAmelCase_ , REMOTE_MODEL_PATHS[key]["file_name"] ) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ): os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) hf_hub_download(repo_id=UpperCAmelCase_ , filename=UpperCAmelCase_ , local_dir=UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict="text" ): if model_type == "text": lowerCamelCase_ = BarkSemanticModel lowerCamelCase_ = BarkSemanticConfig lowerCamelCase_ = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCamelCase_ = BarkCoarseModel lowerCamelCase_ = BarkCoarseConfig lowerCamelCase_ = BarkCoarseGenerationConfig elif model_type == "fine": lowerCamelCase_ = BarkFineModel lowerCamelCase_ = BarkFineConfig lowerCamelCase_ = BarkFineGenerationConfig else: raise NotImplementedError() lowerCamelCase_ = F'''{model_type}_small''' if use_small else model_type lowerCamelCase_ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCAmelCase_ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["repo_id"] , model_info["file_name"] ) lowerCamelCase_ = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) # this is a hack lowerCamelCase_ = checkpoint["model_args"] if "input_vocab_size" not in model_args: lowerCamelCase_ = model_args["vocab_size"] lowerCamelCase_ = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCamelCase_ = model_args.pop("n_head" ) lowerCamelCase_ = model_args.pop("n_embd" ) lowerCamelCase_ = model_args.pop("n_layer" ) lowerCamelCase_ = ConfigClass(**checkpoint["model_args"] ) lowerCamelCase_ = ModelClass(config=UpperCAmelCase_ ) lowerCamelCase_ = GenerationConfigClass() lowerCamelCase_ = model_generation_config lowerCamelCase_ = checkpoint["model"] # fixup checkpoint lowerCamelCase_ = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(UpperCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation lowerCamelCase_ = k[len(UpperCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: lowerCamelCase_ = new_k.replace(UpperCAmelCase_ , new_layer_name_dict[old_layer_name] ) lowerCamelCase_ = state_dict.pop(UpperCAmelCase_ ) lowerCamelCase_ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCamelCase_ = {k for k in extra_keys if not k.endswith(".attn.bias" )} lowerCamelCase_ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCamelCase_ = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(UpperCAmelCase_ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(UpperCAmelCase_ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) lowerCamelCase_ = model.num_parameters(exclude_embeddings=UpperCAmelCase_ ) lowerCamelCase_ = checkpoint["best_val_loss"].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(UpperCAmelCase_ , 3 )} loss''' ) model.eval() model.to(UpperCAmelCase_ ) del checkpoint, state_dict return model def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCamelCase_ = "cpu" # do conversion on cpu lowerCamelCase_ = _get_ckpt_path(UpperCAmelCase_ , use_small=UpperCAmelCase_ ) lowerCamelCase_ = _load_model(UpperCAmelCase_ , UpperCAmelCase_ , model_type=UpperCAmelCase_ , use_small=UpperCAmelCase_ ) # load bark initial model lowerCamelCase_ = _bark_load_model(UpperCAmelCase_ , "cpu" , model_type=UpperCAmelCase_ , use_small=UpperCAmelCase_ ) if model_type == "text": lowerCamelCase_ = bark_model["model"] if model.num_parameters(exclude_embeddings=UpperCAmelCase_ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model lowerCamelCase_ = 5 lowerCamelCase_ = 10 if model_type in ["text", "coarse"]: lowerCamelCase_ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCamelCase_ = bark_model(UpperCAmelCase_ )[0] lowerCamelCase_ = model(UpperCAmelCase_ ) # take last logits lowerCamelCase_ = output_new_model_total.logits[:, [-1], :] else: lowerCamelCase_ = 3 lowerCamelCase_ = 8 lowerCamelCase_ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCamelCase_ = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = bark_model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , ): lowerCamelCase_ = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = BarkSemanticConfig.from_pretrained(os.path.join(UpperCAmelCase_ , "config.json" ) ) lowerCamelCase_ = BarkCoarseConfig.from_pretrained(os.path.join(UpperCAmelCase_ , "config.json" ) ) lowerCamelCase_ = BarkFineConfig.from_pretrained(os.path.join(UpperCAmelCase_ , "config.json" ) ) lowerCamelCase_ = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) lowerCamelCase_ = BarkSemanticModel.from_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = BarkCoarseModel.from_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = BarkFineModel.from_pretrained(UpperCAmelCase_ ) lowerCamelCase_ = EncodecModel.from_pretrained("facebook/encodec_24khz" ) lowerCamelCase_ = BarkConfig.from_sub_model_configs( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCamelCase_ = BarkModel(UpperCAmelCase_ ) lowerCamelCase_ = semantic lowerCamelCase_ = coarseAcoustic lowerCamelCase_ = fineAcoustic lowerCamelCase_ = codec lowerCamelCase_ = bark_generation_config Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) bark.save_pretrained(UpperCAmelCase_ , repo_id=UpperCAmelCase_ , push_to_hub=UpperCAmelCase_ ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") a_ : Optional[int] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
55
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class a ( _lowerCamelCase ): def A_ ( self : Any , lowercase_ : Optional[Any]=None , lowercase_ : Any=None , lowercase_ : List[Any]=None , **lowercase_ : Optional[Any] ): if tokenize_kwargs is None: snake_case_ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) snake_case_ = truncation snake_case_ = tokenize_kwargs snake_case_ = {} if return_tensors is not None: snake_case_ = return_tensors return preprocess_params, {}, postprocess_params def A_ ( self : List[str] , lowercase_ : List[str] , **lowercase_ : Tuple ): snake_case_ = self.framework snake_case_ = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) return model_inputs def A_ ( self : Union[str, Any] , lowercase_ : Optional[Any] ): snake_case_ = self.model(**lowercase_ ) return model_outputs def A_ ( self : Any , lowercase_ : Tuple , lowercase_ : Optional[int]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Any , *lowercase_ : List[Any] , **lowercase_ : Union[str, Any] ): return super().__call__(*lowercase_ , **lowercase_ )
56
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
"""simple docstring""" import re def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = split_input(_UpperCamelCase ) if upper: __lowerCAmelCase = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowerCAmelCase = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return to_simple_case(_UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' try: __lowerCAmelCase = to_simple_case(_UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , "_" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , "-" ) if __name__ == "__main__": __import__("doctest").testmod()
57
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' from math import pi def lowerCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int ) ->float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
58
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCamelCase ( ): snake_case , snake_case : Union[str, Any] = 9, 14 # noqa: F841 snake_case : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case : int = defaultdict(__lowerCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case : Any = mst(__lowerCamelCase ) snake_case : Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case : Union[str, Any] = tuple(answer[:2] ) snake_case : Tuple = tuple(edge[::-1] ) assert edge in result or reverse in result
59
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
60
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
"""simple docstring""" import os from collections.abc import Iterator def __a ( __lowerCamelCase = "." ): for dir_path, dir_names, filenames in os.walk(__lowerCamelCase ): UpperCAmelCase_ : Tuple = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCamelCase, __lowerCamelCase ).lstrip("./" ) def __a ( __lowerCamelCase ): return f"""{i * " "}*""" if i else "\n##" def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCamelCase ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(__lowerCamelCase )} {new_part.replace("_", " " ).title()}""" ) return new_path def __a ( __lowerCamelCase = "." ): UpperCAmelCase_ : Dict = "" for filepath in sorted(good_file_paths(__lowerCamelCase ) ): UpperCAmelCase_ , UpperCAmelCase_ : str = os.path.split(__lowerCamelCase ) if filepath != old_path: UpperCAmelCase_ : Any = print_path(__lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : List[str] = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase_ : Dict = f"""{filepath}/{filename}""".replace(" ", "%20" ) UpperCAmelCase_ : int = os.path.splitext(filename.replace("_", " " ).title() )[0] print(f"""{md_prefix(__lowerCamelCase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
61
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _A = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ , A_ , A_ = None , A_ = None ) -> Optional[Any]: __UpperCamelCase =None __UpperCamelCase =os.path.abspath(os.path.join('examples' , 'by_feature' ) ) __UpperCamelCase =os.path.abspath('examples' ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase =os.path.join(A_ , A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_ , feature_script=A_ , tested_section='main()' if parser_only else 'training_function()' , ): __UpperCamelCase =compare_against_test( os.path.join(A_ , A_ ) , A_ , A_ , A_ ) __UpperCamelCase ='\n'.join(A_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase =diff.replace(A_ , '' ) self.assertEqual(A_ , '' ) def _a ( self ) -> Dict: self.one_complete_example('complete_nlp_example.py' , A_ ) self.one_complete_example('complete_nlp_example.py' , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) __UpperCamelCase =[ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , A_ , A_ , A_ ) self.one_complete_example('complete_cv_example.py' , A_ , A_ , A_ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = False @classmethod def _a ( cls ) -> Union[str, Any]: super().setUpClass() __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase =['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def _a ( cls ) -> Union[str, Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _a ( self ) -> List[Any]: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def _a ( self ) -> Tuple: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) self.assertNotIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) def _a ( self ) -> int: __UpperCamelCase =f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) if torch.cuda.is_available(): __UpperCamelCase =torch.cuda.device_count() else: __UpperCamelCase =1 if num_processes > 1: self.assertNotIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) else: self.assertIn('epoch 0:' , A_ ) self.assertIn('epoch 1:' , A_ ) @slow def _a ( self ) -> Optional[Any]: __UpperCamelCase ='\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): __UpperCamelCase =run_command(self._launch_args + testargs , return_stdout=A_ ) __UpperCamelCase =re.findall('({.+})' , A_ ) __UpperCamelCase =[r for r in results if 'accuracy' in r][-1] __UpperCamelCase =ast.literal_eval(A_ ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def _a ( self ) -> str: __UpperCamelCase =['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def _a ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase =f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_ , 'tracking' ) ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def _a ( self ) -> List[Any]: __UpperCamelCase =['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
62
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : dict , lowercase : str ) -> set[str]: _a , _a = set(lowercase ), [start] while stack: _a = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored lowerCAmelCase_ : Dict = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
63
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = ComputeEnvironment.AMAZON_SAGEMAKER lowercase__ = True lowercase__ = "ml.p3.2xlarge" lowercase__ = "accelerate_sagemaker_execution_role" lowercase__ = "hf-sm" lowercase__ = "us-east-1" lowercase__ = 1 lowercase__ = "accelerate-sagemaker-1" lowercase__ = "1.6" lowercase__ = "4.4" lowercase__ = "train.py" lowercase__ = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowercase__ = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Optional[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""], a_ ) assert isinstance(converted_args["""do_train"""], a_ ) assert isinstance(converted_args["""epochs"""], a_ ) assert isinstance(converted_args["""learning_rate"""], a_ ) assert isinstance(converted_args["""max_steps"""], a_ ) with pytest.raises(a_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
64
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' return EnvironmentCommand() def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class A ( UpperCAmelCase_ ): @staticmethod def lowercase_ (__UpperCAmelCase : ArgumentParser ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parser.add_parser("env" ) download_parser.set_defaults(func=__UpperCAmelCase ) download_parser.add_argument( "--accelerate-config_file" , default=__UpperCAmelCase , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=__UpperCAmelCase ) def __init__(self : Optional[int] , __UpperCAmelCase : str , *__UpperCAmelCase : Tuple ) -> None: """simple docstring""" UpperCAmelCase__ = accelerate_config_file def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "not installed" if is_safetensors_available(): import safetensors UpperCAmelCase__ = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors UpperCAmelCase__ = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" UpperCAmelCase__ = "not installed" UpperCAmelCase__ = UpperCAmelCase__ = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCAmelCase ): UpperCAmelCase__ = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase__ = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else f"""\t{accelerate_config}""" ) UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "NA" if is_torch_available(): import torch UpperCAmelCase__ = torch.__version__ UpperCAmelCase__ = torch.cuda.is_available() UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "NA" if is_tf_available(): import tensorflow as tf UpperCAmelCase__ = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase__ = bool(tf.config.list_physical_devices("GPU" ) ) UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "NA" if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase__ = flax.__version__ UpperCAmelCase__ = jax.__version__ UpperCAmelCase__ = jaxlib.__version__ UpperCAmelCase__ = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase__ = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f"""{safetensors_version}""", "Accelerate version": f"""{accelerate_version}""", "Accelerate config": f"""{accelerate_config_str}""", "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": f"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": f"""{flax_version} ({jax_backend})""", "Jax version": f"""{jax_version}""", "JaxLib version": f"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def lowercase_ (__UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
65
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: str = "▁" , snake_case: bool = True , snake_case: Union[str, AddedToken] = "<unk>" , snake_case: Union[str, AddedToken] = "</s>" , snake_case: Union[str, AddedToken] = "<pad>" , ) -> Any: snake_case_ :Any = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case_ :Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ :Tuple = token_dict["""token"""] snake_case_ :Union[str, Any] = Tokenizer(Unigram() ) snake_case_ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case_ :str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=snake_case , add_prefix_space=snake_case ), pre_tokenizers.Digits(individual_digits=snake_case ), pre_tokenizers.Punctuation(), ] ) snake_case_ :Dict = decoders.Metaspace(replacement=snake_case , add_prefix_space=snake_case ) snake_case_ :str = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case_ :Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(snake_case , snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: Union[str, List[str]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> int: snake_case_ :List[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) if isinstance(snake_case , snake_case ): snake_case_ :int = [files] self._tokenizer.train(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: Dict , snake_case: Union[Iterator[str], Iterator[Iterator[str]]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> List[str]: snake_case_ :Optional[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) self._tokenizer.train_from_iterator(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: List[Any] ) -> Tuple: snake_case_ :Dict = json.loads(self._tokenizer.to_str() ) snake_case_ :Optional[int] = self.special_tokens["""unk"""]["""id"""] snake_case_ :Optional[int] = Tokenizer.from_str(json.dumps(snake_case ) )
66
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"vocab_file": "vocab.json"} __UpperCAmelCase ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } __UpperCAmelCase ={"mgp-str": 2_7} class a__ ( UpperCAmelCase__ ): lowerCamelCase : List[Any] =VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , a : str , a : Optional[int]="[GO]" , a : int="[GO]" , a : Union[str, Any]="[s]" , a : Union[str, Any]="[GO]" , **a : Optional[int] ): """simple docstring""" super().__init__( unk_token=a , bos_token=a , eos_token=a , pad_token=a , **a , ) with open(a , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(a ) __lowerCamelCase = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return len(self.vocab ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : str ): """simple docstring""" __lowerCamelCase = [] for s in text: char_tokens.extend(a ) return char_tokens def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : List[Any] ): """simple docstring""" return self.vocab.get(a , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : int , a : Any ): """simple docstring""" return self.decoder.get(a ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error('''Vocabulary path ({}) should be a directory'''.format(a ) ) return __lowerCamelCase = os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=a , ensure_ascii=a ) + '''\n''' ) return (vocab_file,)
67
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
from __future__ import annotations lowerCAmelCase__ = list[list[int]] # assigning initial values to the grid lowerCAmelCase__ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowerCAmelCase__ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Matrix , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int ) -> bool: '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Matrix ) -> tuple[int, int] | None: '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Matrix ) -> Matrix | None: '''simple docstring''' if location := find_empty_location(SCREAMING_SNAKE_CASE_ ): A__ , A__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = digit if sudoku(SCREAMING_SNAKE_CASE_ ) is not None: return grid A__ = 0 return None def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Matrix ) -> None: '''simple docstring''' for row in grid: for cell in row: print(SCREAMING_SNAKE_CASE_ , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") lowerCAmelCase__ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
68
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCamelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''RUCAIBox/mvp''': 1024, } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = MvpTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="replace", lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=False, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> List[str]: super().__init__( lowerCAmelCase__, lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, errors=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, add_prefix_space=lowerCAmelCase__, trim_offsets=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = getattr(lowerCAmelCase__, pre_tok_state.pop('type')) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**lowerCAmelCase__) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = 'post_processor' snake_case_ = getattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state['sep']) if "cls" in state: snake_case_ = tuple(state['cls']) snake_case_ = False if state.get('add_prefix_space', lowerCAmelCase__) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get('trim_offsets', lowerCAmelCase__) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(lowerCAmelCase__, state.pop('type')) snake_case_ = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer, lowerCAmelCase__, lowerCAmelCase__) @property def a_ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def a_ ( self, lowerCAmelCase__) -> str: snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else value snake_case_ = value def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, *lowerCAmelCase__, **lowerCAmelCase__) -> BatchEncoding: snake_case_ = kwargs.get('is_split_into_words', lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCAmelCase__, name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=None) -> Tuple: snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
69
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A__ : Optional[Any] =logging.getLogger(__name__) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=lowerCAmelCase , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=lowerCAmelCase , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=lowerCAmelCase , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=lowerCAmelCase , default="""data/dump""" , help="""The dump file prefix.""" ) _lowerCAmelCase = parser.parse_args() logger.info(f"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": _lowerCAmelCase = BertTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` _lowerCAmelCase = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": _lowerCAmelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase = tokenizer.special_tokens_map["""cls_token"""] # `<s>` _lowerCAmelCase = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": _lowerCAmelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) _lowerCAmelCase = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` _lowerCAmelCase = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f"Loading text from {args.file_path}" ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: _lowerCAmelCase = fp.readlines() logger.info("""Start encoding""" ) logger.info(f"{len(lowerCAmelCase )} examples to process." ) _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = 1_00_00 _lowerCAmelCase = time.time() for text in data: _lowerCAmelCase = f"{bos} {text.strip()} {sep}" _lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) rslt.append(lowerCAmelCase ) iter += 1 if iter % interval == 0: _lowerCAmelCase = time.time() logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) _lowerCAmelCase = time.time() logger.info("""Finished binarization""" ) logger.info(f"{len(lowerCAmelCase )} examples processed." ) _lowerCAmelCase = f"{args.dump_file}.{args.tokenizer_name}.pickle" _lowerCAmelCase = tokenizer.vocab_size if vocab_size < (1 << 16): _lowerCAmelCase = [np.uintaa(lowerCAmelCase ) for d in rslt] else: _lowerCAmelCase = [np.intaa(lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"Dump to {dp_file}" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(rslt_ , lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
70
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =tempfile.mkdtemp() __UpperCamelCase : int =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __UpperCamelCase : Any ={ 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } __UpperCamelCase : Optional[int] =os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self , **lowerCamelCase__ ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase : str =[Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.get_tokenizer() __UpperCamelCase : List[Any] =self.get_rust_tokenizer() __UpperCamelCase : Optional[Any] =self.get_image_processor() __UpperCamelCase : Any =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase : Any =AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase : List[Any] =AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase : int =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase : Optional[int] =self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) __UpperCamelCase : List[Any] =AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.get_image_processor() __UpperCamelCase : int =self.get_tokenizer() __UpperCamelCase : List[Any] =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =self.prepare_image_inputs() __UpperCamelCase : Union[str, Any] =image_processor(lowerCamelCase__ , return_tensors='np' ) __UpperCamelCase : Union[str, Any] =processor(images=lowerCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.get_image_processor() __UpperCamelCase : Dict =self.get_tokenizer() __UpperCamelCase : List[Any] =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] ='lower newer' __UpperCamelCase : Union[str, Any] =processor(text=lowerCamelCase__ ) __UpperCamelCase : List[str] =tokenizer(lowerCamelCase__ , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.get_image_processor() __UpperCamelCase : Tuple =self.get_tokenizer() __UpperCamelCase : Optional[int] =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ='lower newer' __UpperCamelCase : str =self.prepare_image_inputs() __UpperCamelCase : Optional[Any] =processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.get_image_processor() __UpperCamelCase : Dict =self.get_tokenizer() __UpperCamelCase : int =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __UpperCamelCase : int =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase : int =processor.batch_decode(lowerCamelCase__ ) __UpperCamelCase : Dict =tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.get_image_processor() __UpperCamelCase : Tuple =self.get_tokenizer() __UpperCamelCase : List[str] =AlignProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) __UpperCamelCase : Tuple ='lower newer' __UpperCamelCase : List[Any] =self.prepare_image_inputs() __UpperCamelCase : List[Any] =processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
71
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCAmelCase__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCAmelCase__ = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() lowerCAmelCase__ = '''|'''.join(sys.argv[1:]) lowerCAmelCase__ = re.compile(RF"""^({joined_dirs}).*?\.py$""") lowerCAmelCase__ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
72
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__="" ) -> str: __lowerCamelCase : str = tempfile.mkdtemp() return os.path.join(lowerCamelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : int = torch.rand(1_2 ,dtype=torch.floataa) - 0.5 __lowerCamelCase : Dict = AgentAudio(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ ,agent_type.to_raw() ,atol=1E-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE__)) # Ensure that the file contains the same value as the original tensor __lowerCamelCase , __lowerCamelCase : Optional[Any] = sf.read(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ ,torch.tensor(SCREAMING_SNAKE_CASE__) ,atol=1E-4)) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = torch.rand(1_2 ,dtype=torch.floataa) - 0.5 __lowerCamelCase : Optional[Any] = get_new_path(suffix='.wav') sf.write(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1_6_0_0_0) __lowerCamelCase : Optional[Any] = AgentAudio(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ ,agent_type.to_raw() ,atol=1E-4)) self.assertEqual(agent_type.to_string() ,SCREAMING_SNAKE_CASE__) @require_vision @require_torch class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Union[str, Any] = torch.randint(0 ,2_5_6 ,(6_4, 6_4, 3)) __lowerCamelCase : Any = AgentImage(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ ,agent_type._tensor ,atol=1E-4)) self.assertIsInstance(agent_type.to_raw() ,Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Any): __lowerCamelCase : Dict = Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png' __lowerCamelCase : Optional[Any] = Image.open(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = AgentImage(SCREAMING_SNAKE_CASE__) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Any): __lowerCamelCase : int = Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png' __lowerCamelCase : List[Any] = Image.open(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = AgentImage(SCREAMING_SNAKE_CASE__) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE__)) class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : str): __lowerCamelCase : Any = 'Hey!' __lowerCamelCase : List[str] = AgentText(SCREAMING_SNAKE_CASE__) self.assertEqual(SCREAMING_SNAKE_CASE__ ,agent_type.to_string()) self.assertEqual(SCREAMING_SNAKE_CASE__ ,agent_type.to_raw()) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
73
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _lowercase = logging.getLogger(__name__) torch.set_grad_enabled(False) _lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _snake_case ( snake_case__ : str , snake_case__ : Dict=100 , snake_case__ : int=" " ): A = text.split(snake_case__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(snake_case__ ) , snake_case__ )] def _snake_case ( snake_case__ : dict ): A , A = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(snake_case__ ): titles.append(title if title is not None else '' ) texts.append(snake_case__ ) return {"title": titles, "text": texts} def _snake_case ( snake_case__ : dict , snake_case__ : DPRContextEncoder , snake_case__ : DPRContextEncoderTokenizerFast ): A = ctx_tokenizer( documents['title'] , documents['text'] , truncation=snake_case__ , padding='longest' , return_tensors='pt' )['input_ids'] A = ctx_encoder(input_ids.to(device=snake_case__ ) , return_dict=snake_case__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _snake_case ( snake_case__ : "RagExampleArguments" , snake_case__ : "ProcessingArguments" , snake_case__ : "IndexHnswArguments" , ): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way A = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words A = dataset.map(snake_case__ , batched=snake_case__ , num_proc=processing_args.num_proc ) # And compute the embeddings A = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=snake_case__ ) A = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) A = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space A = dataset.map( partial(snake_case__ , ctx_encoder=snake_case__ , ctx_tokenizer=snake_case__ ) , batched=snake_case__ , batch_size=processing_args.batch_size , features=snake_case__ , ) # And finally save your dataset A = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(snake_case__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search A = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=snake_case__ ) # And save the index A = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(snake_case__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str = field( default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _lowerCamelCase: Optional[str] = field( default=_lowercase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _lowerCamelCase: str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _lowerCamelCase: str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _lowerCamelCase: Optional[str] = field( default=str(Path(_lowercase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Optional[int] = field( default=_lowercase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _lowerCamelCase: int = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: int = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _lowerCamelCase: int = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _lowercase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _lowercase , _lowercase , _lowercase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _lowercase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
74
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a_ ( __snake_case : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =[2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowerCamelCase_ =True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ =True if '''large''' in model_name or '''huge''' in model_name else False lowerCamelCase_ =True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCamelCase_ =[3, 3, 3, 3] lowerCamelCase_ =[5, 5, 5, 5] elif "fl4" in model_name: lowerCamelCase_ =[4, 4, 4, 4] lowerCamelCase_ =[3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCamelCase_ =[3, 3, 3, 3] if "lrf" in model_name: lowerCamelCase_ =[3, 3, 3, 3] else: lowerCamelCase_ =[2, 2, 2, 2] if "tiny" in model_name: lowerCamelCase_ =96 elif "small" in model_name: lowerCamelCase_ =96 elif "base" in model_name: lowerCamelCase_ =128 elif "large" in model_name: lowerCamelCase_ =192 elif "xlarge" in model_name: lowerCamelCase_ =256 elif "huge" in model_name: lowerCamelCase_ =352 # set label information lowerCamelCase_ ='''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowerCamelCase_ ='''imagenet-22k-id2label.json''' else: lowerCamelCase_ ='''imagenet-1k-id2label.json''' lowerCamelCase_ =json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ ={int(__snake_case ): v for k, v in idalabel.items()} lowerCamelCase_ ={v: k for k, v in idalabel.items()} lowerCamelCase_ =FocalNetConfig( embed_dim=__snake_case , depths=__snake_case , focal_levels=__snake_case , focal_windows=__snake_case , use_conv_embed=__snake_case , idalabel=__snake_case , labelaid=__snake_case , use_post_layernorm=__snake_case , use_layerscale=__snake_case , ) return config def a_ ( __snake_case : Any ) -> int: """simple docstring""" if "patch_embed.proj" in name: lowerCamelCase_ =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase_ =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowerCamelCase_ ='''encoder.''' + name if "encoder.layers" in name: lowerCamelCase_ =name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowerCamelCase_ =name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowerCamelCase_ =name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCamelCase_ =name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCamelCase_ =name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCamelCase_ =name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowerCamelCase_ ='''layernorm.weight''' if name == "norm.bias": lowerCamelCase_ ='''layernorm.bias''' if "head" in name: lowerCamelCase_ =name.replace('''head''' , '''classifier''' ) else: lowerCamelCase_ ='''focalnet.''' + name return name def a_ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : int=False ) -> Optional[int]: """simple docstring""" # fmt: off lowerCamelCase_ ={ '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowerCamelCase_ =model_name_to_url[model_name] print('''Checkpoint URL: ''' , __snake_case ) lowerCamelCase_ =torch.hub.load_state_dict_from_url(__snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowerCamelCase_ =state_dict.pop(__snake_case ) lowerCamelCase_ =val lowerCamelCase_ =get_focalnet_config(__snake_case ) lowerCamelCase_ =FocalNetForImageClassification(__snake_case ) model.eval() # load state dict model.load_state_dict(__snake_case ) # verify conversion lowerCamelCase_ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ =BitImageProcessor( do_resize=__snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__snake_case , crop_size=224 , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , ) lowerCamelCase_ =Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) lowerCamelCase_ =processor(images=__snake_case , return_tensors='''pt''' ) lowerCamelCase_ =transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowerCamelCase_ =image_transforms(__snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __snake_case , atol=1e-4 ) lowerCamelCase_ =model(**__snake_case ) lowerCamelCase_ =outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCamelCase_ =torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowerCamelCase_ =torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowerCamelCase_ =torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowerCamelCase_ =torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowerCamelCase_ =torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowerCamelCase_ =torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) a_ : int = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
75
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[Any] = BlipImageProcessor() SCREAMING_SNAKE_CASE : Optional[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) SCREAMING_SNAKE_CASE : List[str] = BlipProcessor(a , a ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Any , **a : Tuple ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).tokenizer def __UpperCamelCase ( self : int , **a : List[Any] ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : Optional[Any] = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor(do_normalize=a , padding_value=1.0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : str = BlipProcessor(tokenizer=a , image_processor=a ) SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Tuple = image_processor(a , return_tensors="np" ) SCREAMING_SNAKE_CASE : Dict = processor(images=a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE : int = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = BlipProcessor(tokenizer=a , image_processor=a ) SCREAMING_SNAKE_CASE : List[str] = "lower newer" SCREAMING_SNAKE_CASE : Tuple = processor(text=a ) SCREAMING_SNAKE_CASE : str = tokenizer(a , return_token_type_ids=a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BlipProcessor(tokenizer=a , image_processor=a ) SCREAMING_SNAKE_CASE : Any = "lower newer" SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Any = processor(text=a , images=a ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(a ): processor() def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.get_image_processor() SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BlipProcessor(tokenizer=a , image_processor=a ) SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : Union[str, Any] = processor.batch_decode(a ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(a ) self.assertListEqual(a , a ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.get_image_processor() SCREAMING_SNAKE_CASE : str = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BlipProcessor(tokenizer=a , image_processor=a ) SCREAMING_SNAKE_CASE : Optional[int] = "lower newer" SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=a , images=a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
76
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Tuple = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): lowerCamelCase__ : int = "data2vec-vision" def __init__( self , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.0 , a=0.0 , a=0.02 , a=1e-12 , a=2_2_4 , a=1_6 , a=3 , a=False , a=False , a=False , a=False , a=0.1 , a=0.1 , a=True , a=[3, 5, 7, 1_1] , a=[1, 2, 3, 6] , a=True , a=0.4 , a=2_5_6 , a=1 , a=False , a=2_5_5 , **a , ) -> Optional[int]: super().__init__(**a ) lowercase__ : Any = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : List[str] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Tuple = initializer_range lowercase__ : Tuple = layer_norm_eps lowercase__ : Union[str, Any] = image_size lowercase__ : str = patch_size lowercase__ : Optional[int] = num_channels lowercase__ : Dict = use_mask_token lowercase__ : List[str] = use_absolute_position_embeddings lowercase__ : List[Any] = use_relative_position_bias lowercase__ : List[str] = use_shared_relative_position_bias lowercase__ : Tuple = layer_scale_init_value lowercase__ : int = drop_path_rate lowercase__ : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ : Tuple = out_indices lowercase__ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ : Optional[int] = use_auxiliary_head lowercase__ : int = auxiliary_loss_weight lowercase__ : List[str] = auxiliary_channels lowercase__ : str = auxiliary_num_convs lowercase__ : int = auxiliary_concat_input lowercase__ : Dict = semantic_loss_ignore_index class UpperCAmelCase_ ( _a): lowerCamelCase__ : Union[str, Any] = version.parse("1.11") @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4
77
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
"""simple docstring""" from ... import PretrainedConfig snake_case_ = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCamelCase = """nezha""" def __init__( self :List[Any] , lowercase_ :Optional[Any]=2_11_28 , lowercase_ :List[str]=7_68 , lowercase_ :List[str]=12 , lowercase_ :Dict=12 , lowercase_ :Tuple=30_72 , lowercase_ :Optional[int]="gelu" , lowercase_ :Optional[Any]=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=5_12 , lowercase_ :Tuple=64 , lowercase_ :str=2 , lowercase_ :Optional[Any]=0.02 , lowercase_ :int=1E-12 , lowercase_ :Any=0.1 , lowercase_ :Optional[int]=0 , lowercase_ :Any=2 , lowercase_ :Dict=3 , lowercase_ :Any=True , **lowercase_ :Tuple , ) -> List[Any]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = max_relative_position UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = classifier_dropout UpperCAmelCase = use_cache
78
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase_ = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' _A = mock.Mock() _A = 500 _A = {} _A = HTTPError _A = {} # Download this model to make sure it's in the cache. _A = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCAmelCase ) as mock_head: _A = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : int ): '''simple docstring''' _A = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls : str ): '''simple docstring''' _A = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def lowerCAmelCase ( cls : Any ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def lowerCAmelCase ( self : int ): '''simple docstring''' _A = WavaVecaFeatureExtractor.from_pretrained(__UpperCAmelCase ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) _A = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCAmelCase , repo_id="test-feature-extractor" , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) _A = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = WavaVecaFeatureExtractor.from_pretrained(__UpperCAmelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) _A = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCAmelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) _A = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() _A = CustomFeatureExtractor.from_pretrained(__UpperCAmelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) _A = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
79
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
'''simple docstring''' a__ : List[Any] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
80
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
"""simple docstring""" def _A ( lowercase ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") lowerCamelCase_ : str = int(input("""Enter number: """).strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
81
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = AudioLDMPipeline __lowerCamelCase = TEXT_TO_AUDIO_PARAMS __lowerCamelCase = TEXT_TO_AUDIO_BATCH_PARAMS __lowerCamelCase = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_snake_case , ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _lowerCAmelCase = ClapTextModelWithProjection(_snake_case ) _lowerCAmelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _lowerCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_snake_case , ) _lowerCAmelCase = SpeechTaHifiGan(_snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) _lowerCAmelCase = prompt_embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * ["""this is a negative prompt"""] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["""prompt"""]] # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = 3 * [inputs.pop("""prompt""" )] _lowerCAmelCase = [] for p in [prompt, negative_prompt]: _lowerCAmelCase = audioldm_pipe.tokenizer( _snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_snake_case , return_tensors="""pt""" , ) _lowerCAmelCase = text_inputs["""input_ids"""].to(_snake_case ) _lowerCAmelCase = audioldm_pipe.text_encoder( _snake_case , ) _lowerCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _lowerCAmelCase = F.normalize(_snake_case , dim=-1 ) embeds.append(_snake_case ) _lowerCAmelCase , _lowerCAmelCase = embeds # forward _lowerCAmelCase = audioldm_pipe(**_snake_case ) _lowerCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = """egg cracking""" _lowerCAmelCase = audioldm_pipe(**_snake_case , negative_prompt=_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 256 _lowerCAmelCase = audio[:10] _lowerCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = PNDMScheduler(skip_prk_steps=_snake_case ) _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _lowerCAmelCase = 2 _lowerCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = audioldm_pipe.vocoder.config.sampling_rate _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.016 _lowerCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **_snake_case ) _lowerCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(_snake_case ) / vocoder_sampling_rate == 0.032 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = AudioLDMPipeline(**_snake_case ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = ["""hey"""] _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape assert audio_shape == (1, 256) _lowerCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _lowerCAmelCase = SpeechTaHifiGan(_snake_case ).to(_snake_case ) _lowerCAmelCase = audioldm_pipe(_snake_case , num_inference_steps=1 ) _lowerCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def snake_case ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_snake_case ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ) @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , _snake_case , _snake_case="cpu" , _snake_case=torch.floataa , _snake_case=0 ): """simple docstring""" _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = np.random.RandomState(_snake_case ).standard_normal((1, 8, 128, 16) ) _lowerCAmelCase = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _lowerCAmelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = 25 _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[77230:77240] _lowerCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _lowerCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _lowerCAmelCase = audioldm_pipe.to(_snake_case ) audioldm_pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_inputs(_snake_case ) _lowerCAmelCase = audioldm_pipe(**_snake_case ).audios[0] assert audio.ndim == 1 assert len(_snake_case ) == 81920 _lowerCAmelCase = audio[27780:27790] _lowerCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _lowerCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
82
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
'''simple docstring''' import os def A__ ( ): _UpperCamelCase : List[str] = os.path.join(os.path.dirname(UpperCAmelCase_ ) , 'num.txt' ) with open(UpperCAmelCase_ ) as file_hand: return str(sum(int(UpperCAmelCase_ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
83
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
84
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : List[str] = TypeVar("T") class _snake_case ( Generic[T] ): def __init__( self , a__ = True ) -> None: '''simple docstring''' snake_case_ = {} # dictionary of lists snake_case_ = directed def lowerCAmelCase__ ( self , a__ , a__ ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) self.adj_list[destination_vertex].append(a__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) snake_case_ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(a__ ) snake_case_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case_ = [destination_vertex] snake_case_ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) snake_case_ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case_ = [destination_vertex] snake_case_ = [] return self def __repr__( self ) -> str: '''simple docstring''' return pformat(self.adj_list )
85
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = """Hello world! cécé herlolip""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = FairseqRobertaModel.from_pretrained(_UpperCamelCase ) roberta.eval() # disable dropout __lowerCAmelCase : Any = roberta.model.encoder.sentence_encoder __lowerCAmelCase : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __lowerCAmelCase : Optional[Any] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , _UpperCamelCase ) __lowerCAmelCase : Tuple = XLMRobertaXLForSequenceClassification(_UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCAmelCase : Optional[Any] = roberta_sent_encoder.embed_tokens.weight __lowerCAmelCase : str = roberta_sent_encoder.embed_positions.weight __lowerCAmelCase : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCAmelCase : int = roberta_sent_encoder.layer_norm.weight __lowerCAmelCase : Optional[int] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCAmelCase : BertLayer = model.roberta.encoder.layer[i] __lowerCAmelCase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] __lowerCAmelCase : RobertaAttention = layer.attention __lowerCAmelCase : int = roberta_layer.self_attn_layer_norm.weight __lowerCAmelCase : Optional[Any] = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCAmelCase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCAmelCase : Optional[Any] = roberta_layer.self_attn.q_proj.weight __lowerCAmelCase : Dict = roberta_layer.self_attn.q_proj.bias __lowerCAmelCase : int = roberta_layer.self_attn.k_proj.weight __lowerCAmelCase : Any = roberta_layer.self_attn.k_proj.bias __lowerCAmelCase : Optional[int] = roberta_layer.self_attn.v_proj.weight __lowerCAmelCase : Optional[Any] = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCAmelCase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.out_proj.weight __lowerCAmelCase : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCAmelCase : str = roberta_layer.final_layer_norm.weight __lowerCAmelCase : str = roberta_layer.final_layer_norm.bias # intermediate __lowerCAmelCase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCAmelCase : str = roberta_layer.fca.weight __lowerCAmelCase : Optional[int] = roberta_layer.fca.bias # output __lowerCAmelCase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCAmelCase : Tuple = roberta_layer.fca.weight __lowerCAmelCase : Union[str, Any] = roberta_layer.fca.bias # end of layer if classification_head: __lowerCAmelCase : List[str] = roberta.model.classification_heads['mnli'].dense.weight __lowerCAmelCase : Tuple = roberta.model.classification_heads['mnli'].dense.bias __lowerCAmelCase : List[Any] = roberta.model.classification_heads['mnli'].out_proj.weight __lowerCAmelCase : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowerCAmelCase : int = roberta.model.encoder.lm_head.dense.weight __lowerCAmelCase : int = roberta.model.encoder.lm_head.dense.bias __lowerCAmelCase : Optional[int] = roberta.model.encoder.lm_head.layer_norm.weight __lowerCAmelCase : List[Any] = roberta.model.encoder.lm_head.layer_norm.bias __lowerCAmelCase : Any = roberta.model.encoder.lm_head.weight __lowerCAmelCase : List[str] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCAmelCase : torch.Tensor = roberta.encode(_UpperCamelCase ).unsqueeze(0 ) # batch of size 1 __lowerCAmelCase : Any = model(_UpperCamelCase )[0] if classification_head: __lowerCAmelCase : Optional[Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(_UpperCamelCase ) ) else: __lowerCAmelCase : List[Any] = roberta.model(_UpperCamelCase )[0] print(our_output.shape , their_output.shape ) __lowerCAmelCase : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __lowerCAmelCase : Optional[Any] = torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_UpperCamelCase ).mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCamelCase__ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
86
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( __A ): __A : Any = ["pixel_values"] def __init__( self : str , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , **lowercase_ : Dict , ) -> None: super().__init__(**lowercase_ ) lowercase__ : List[str] = size if size is not None else {"shortest_edge": 2_24} lowercase__ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : Optional[Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} lowercase__ : str = get_size_dict(lowercase_ , param_name="crop_size" ) lowercase__ : Tuple = do_resize lowercase__ : int = size lowercase__ : str = resample lowercase__ : Optional[Any] = do_rescale lowercase__ : Tuple = rescale_factor lowercase__ : List[str] = do_center_crop lowercase__ : List[str] = crop_size lowercase__ : Dict = do_flip_channel_order def __UpperCamelCase ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PIL.Image.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: lowercase__ : List[str] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ : Optional[int] = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> np.ndarray: lowercase__ : Any = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ) -> Optional[Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : np.ndarray , lowercase_ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(lowercase_ , data_format=lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Tuple , ) -> PIL.Image.Image: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = resample if resample is not None else self.resample lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase__ : Dict = size if size is not None else self.size lowercase__ : int = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : str = crop_size if crop_size is not None else self.crop_size lowercase__ : str = get_size_dict(lowercase_ , param_name="crop_size" ) lowercase__ : Optional[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase__ : List[Any] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase__ : Any = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase__ : str = [self.flip_channel_order(image=lowercase_ ) for image in images] lowercase__ : str = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : List[Tuple] = None ) -> List[Any]: lowercase__ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase_ ): lowercase__ : Any = target_sizes.numpy() lowercase__ : Optional[Any] = [] for idx in range(len(lowercase_ ) ): lowercase__ : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase_ ) lowercase__ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowercase__ : Optional[int] = logits.argmax(dim=1 ) lowercase__ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
87
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
from __future__ import annotations import math def a__ ( A_ ): '''simple docstring''' if num <= 0: __magic_name__ = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(A_ ) __magic_name__ = [True] * (num + 1) __magic_name__ = [] __magic_name__ = 2 __magic_name__ = int(math.sqrt(A_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(A_ ) # Set multiples of start be False for i in range(start * start, num + 1, A_ ): if sieve[i] is True: __magic_name__ = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(A_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
88
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __magic_name__ : pass
89
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''LayoutLMv2ImageProcessor''' snake_case_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCamelCase__ , ) __lowerCamelCase = kwargs.pop('feature_extractor' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = True , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchEncoding: '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCamelCase = features['words'] __lowerCamelCase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel values __lowerCamelCase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCamelCase = self.get_overflowing_images(lowerCamelCase__ , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCamelCase = images return encoded_inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}""" ) return images_with_overflow def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def lowercase_ ( self ) -> int: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def lowercase_ ( self ) -> List[str]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCamelCase__ , ) return self.image_processor_class @property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCamelCase__ , ) return self.image_processor
90
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
"""simple docstring""" def _A (__a ) -> int: """simple docstring""" if not isinstance(__a , __a ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
91
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : list[float] ): if len(SCREAMING_SNAKE_CASE_ ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
92
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 1000 ): """simple docstring""" return sum(e for e in range(3 , __SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
93
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Tuple = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'biogpt' def __init__( self , _lowerCamelCase=4_2384 , _lowerCamelCase=1024 , _lowerCamelCase=24 , _lowerCamelCase=16 , _lowerCamelCase=4096 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1024 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ): a :str = vocab_size a :List[str] = max_position_embeddings a :str = hidden_size a :List[str] = num_hidden_layers a :Optional[Any] = num_attention_heads a :Any = intermediate_size a :Union[str, Any] = hidden_act a :Optional[Any] = hidden_dropout_prob a :Optional[int] = attention_probs_dropout_prob a :Tuple = initializer_range a :Dict = layer_norm_eps a :List[str] = scale_embedding a :Any = use_cache a :Union[str, Any] = layerdrop a :str = activation_dropout super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
94
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=True , lowerCAmelCase__=1 / 2_5_5 , lowerCAmelCase__=True , ) -> str: '''simple docstring''' a__ : str =size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} a__ : Tuple =parent a__ : Any =batch_size a__ : int =num_channels a__ : List[str] =min_resolution a__ : Tuple =max_resolution a__ : Tuple =do_resize a__ : Dict =size a__ : List[str] =do_normalize a__ : Optional[Any] =image_mean a__ : Tuple =image_std a__ : Dict =do_rescale a__ : List[Any] =rescale_factor a__ : Optional[Any] =do_pad def _lowercase ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Any: '''simple docstring''' if not batched: a__ : Tuple =image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): a__ , a__ : Union[str, Any] =image.size else: a__ , a__ : Optional[int] =image.shape[1], image.shape[2] if w < h: a__ : Optional[int] =int(self.size["shortest_edge"] * h / w ) a__ : List[Any] =self.size["shortest_edge"] elif w > h: a__ : Dict =self.size["shortest_edge"] a__ : List[Any] =int(self.size["shortest_edge"] * w / h ) else: a__ : List[Any] =self.size["shortest_edge"] a__ : int =self.size["shortest_edge"] else: a__ : List[Any] =[] for image in image_inputs: a__ , a__ : Optional[int] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a__ : Any =max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] a__ : Union[str, Any] =max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Tuple = DeformableDetrImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =DeformableDetrImageProcessingTester(self ) @property def _lowercase ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_rescale" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_pad" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) a__ : List[str] =self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ : List[Any] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ : List[str] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) a__ : Optional[int] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ : Dict =self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values a__ , a__ : List[str] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : int =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values a__ , a__ : List[Any] =self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values a__ , a__ : Tuple =self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : int =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: a__ : Optional[int] =json.loads(f.read() ) a__ : Any ={"image_id": 3_9_7_6_9, "annotations": target} # encode them a__ : Union[str, Any] =DeformableDetrImageProcessor() a__ : Tuple =image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors="pt" ) # verify pixel values a__ : Tuple =torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ ) a__ : Any =torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area a__ : List[Any] =torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) ) # verify boxes a__ : Any =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ ) a__ : Optional[Any] =torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id a__ : int =torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) ) # verify is_crowd a__ : str =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) ) # verify class_labels a__ : List[str] =torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) ) # verify orig_size a__ : Optional[int] =torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) ) # verify size a__ : int =torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) ) @slow def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[str] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: a__ : int =json.loads(f.read() ) a__ : List[str] ={"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} a__ : List[Any] =pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them a__ : Any =DeformableDetrImageProcessor(format="coco_panoptic" ) a__ : Optional[Any] =image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors="pt" ) # verify pixel values a__ : Union[str, Any] =torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , lowerCAmelCase__ ) a__ : Union[str, Any] =torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify area a__ : Dict =torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCAmelCase__ ) ) # verify boxes a__ : Optional[int] =torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCAmelCase__ ) a__ : Any =torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCAmelCase__ , atol=1E-3 ) ) # verify image_id a__ : int =torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCAmelCase__ ) ) # verify is_crowd a__ : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCAmelCase__ ) ) # verify class_labels a__ : Optional[Any] =torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCAmelCase__ ) ) # verify masks a__ : int =8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCAmelCase__ ) # verify orig_size a__ : List[str] =torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCAmelCase__ ) ) # verify size a__ : int =torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCAmelCase__ ) )
95
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
"""simple docstring""" import socket def _snake_case ( ): _lowerCamelCase : List[Any] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) _lowerCamelCase : Union[str, Any] = socket.gethostname() _lowerCamelCase : List[Any] = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _lowerCamelCase : int = sock.recv(1024 ) if not data: break out_file.write(lowercase__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
'''simple docstring''' from __future__ import annotations def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = 2 UpperCamelCase__ :Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__a ) if n > 1: factors.append(__a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
97
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
"""simple docstring""" from functools import lru_cache @lru_cache def a_ ( lowerCamelCase ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
98
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ ) -> int: def get_masked_lm_array(A__ ): a__ : Dict = F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : List[str] = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : str = array.transpose() return torch.from_numpy(A__ ) def get_encoder_array(A__ ): a__ : Dict = F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : str = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : Tuple = array.transpose() return torch.from_numpy(A__ ) def get_encoder_layer_array(A__ , A__ ): a__ : str = F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : List[str] = tf.train.load_variable(A__ , A__ ) if "kernel" in name: a__ : str = array.transpose() return torch.from_numpy(A__ ) def get_encoder_attention_layer_array(A__ , A__ , A__ ): a__ : Tuple = F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' a__ : Dict = tf.train.load_variable(A__ , A__ ) a__ : List[Any] = array.reshape(A__ ) if "kernel" in name: a__ : Tuple = array.transpose() return torch.from_numpy(A__ ) print(F'Loading model based on config from {config_path}...' ) a__ : List[str] = BertConfig.from_json_file(A__ ) a__ : str = BertForMaskedLM(A__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): a__ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention a__ : BertSelfAttention = layer.attention.self a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) a__ : Optional[Any] = get_encoder_attention_layer_array( A__ , '_query_dense/bias' , self_attn.query.bias.data.shape ) a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) a__ : Union[str, Any] = get_encoder_attention_layer_array( A__ , '_key_dense/bias' , self_attn.key.bias.data.shape ) a__ : Dict = get_encoder_attention_layer_array( A__ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) a__ : List[Any] = get_encoder_attention_layer_array( A__ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output a__ : BertSelfOutput = layer.attention.output a__ : Optional[Any] = get_encoder_attention_layer_array( A__ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) a__ : Any = get_encoder_attention_layer_array( A__ , '_output_dense/bias' , self_output.dense.bias.data.shape ) a__ : str = get_encoder_layer_array(A__ , '_attention_layer_norm/gamma' ) a__ : Optional[Any] = get_encoder_layer_array(A__ , '_attention_layer_norm/beta' ) # Intermediate a__ : BertIntermediate = layer.intermediate a__ : Tuple = get_encoder_layer_array(A__ , '_intermediate_dense/kernel' ) a__ : Tuple = get_encoder_layer_array(A__ , '_intermediate_dense/bias' ) # Output a__ : BertOutput = layer.output a__ : Optional[Any] = get_encoder_layer_array(A__ , '_output_dense/kernel' ) a__ : List[str] = get_encoder_layer_array(A__ , '_output_dense/bias' ) a__ : Optional[int] = get_encoder_layer_array(A__ , '_output_layer_norm/gamma' ) a__ : Optional[int] = get_encoder_layer_array(A__ , '_output_layer_norm/beta' ) # Embeddings a__ : List[str] = get_encoder_array('_position_embedding_layer/embeddings' ) a__ : Dict = get_encoder_array('_type_embedding_layer/embeddings' ) a__ : Dict = get_encoder_array('_embedding_norm_layer/gamma' ) a__ : List[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head a__ : Tuple = model.cls.predictions.transform a__ : List[Any] = get_masked_lm_array('dense/kernel' ) a__ : Tuple = get_masked_lm_array('dense/bias' ) a__ : List[str] = get_masked_lm_array('layer_norm/gamma' ) a__ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) a__ : Union[str, Any] = get_masked_lm_array('embedding_table' ) # Pooling a__ : Any = BertPooler(config=A__ ) a__ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) a__ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(A__ ) # Integration test - should load without any errors ;) a__ : Any = BertForMaskedLM.from_pretrained(A__ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
99
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"vocab_file": "vocab.txt"} _lowerCamelCase ={ "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _lowerCamelCase ={ "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" with open(lowerCAmelCase_, 'r' ) as f: SCREAMING_SNAKE_CASE =f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self : int ,snake_case : Dict ,snake_case : Dict="<unk>" ,snake_case : Optional[int]="<cls>" ,snake_case : Optional[int]="<pad>" ,snake_case : int="<mask>" ,snake_case : Optional[int]="<eos>" ,**snake_case : List[str] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =load_vocab_file(snake_case ) SCREAMING_SNAKE_CASE =dict(enumerate(self.all_tokens ) ) SCREAMING_SNAKE_CASE ={tok: ind for ind, tok in enumerate(self.all_tokens )} SCREAMING_SNAKE_CASE =unk_token SCREAMING_SNAKE_CASE =cls_token SCREAMING_SNAKE_CASE =pad_token SCREAMING_SNAKE_CASE =mask_token SCREAMING_SNAKE_CASE =eos_token SCREAMING_SNAKE_CASE =self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : Dict ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,**snake_case : Any ): return text.split() def _lowerCAmelCase ( self : Optional[int] ,snake_case : str=False ): return len(self._id_to_token ) def _lowerCAmelCase ( self : List[str] ): return {token: i for i, token in enumerate(self.all_tokens )} def _lowerCAmelCase ( self : List[Any] ,snake_case : str ): return self._token_to_id.get(snake_case ,self._token_to_id.get(self.unk_token ) ) def _lowerCAmelCase ( self : Any ,snake_case : int ): return self._id_to_token.get(snake_case ,self.unk_token ) def _lowerCAmelCase ( self : List[str] ,snake_case : List[int] ,snake_case : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE =[self.cls_token_id] SCREAMING_SNAKE_CASE =[self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowerCAmelCase ( self : Optional[int] ,snake_case : List ,snake_case : Optional[List] = None ,snake_case : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] SCREAMING_SNAKE_CASE =[1] + ([0] * len(snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(snake_case ) + [1] return mask def _lowerCAmelCase ( self : Optional[int] ,snake_case : Dict ,snake_case : Any ): SCREAMING_SNAKE_CASE =os.path.join(snake_case ,(filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(snake_case ,'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _lowerCAmelCase ( self : int ): return self.get_vocab_size(with_added_tokens=snake_case ) def _lowerCAmelCase ( self : str ,snake_case : Union[List[str], List[AddedToken]] ,snake_case : bool = False ): return super()._add_tokens(snake_case ,special_tokens=snake_case )
334
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowercase : Dict = BlenderbotConfig __lowercase : Optional[int] = {} __lowercase : Dict = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) return config, inputs_dict def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFBlenderbotModel(config=lowerCAmelCase__).get_decoder() __SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["""head_mask"""] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size) __SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and __SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1) __SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice __SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1])) __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , ): if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowercase : int = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowercase : List[str] = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowercase : Tuple = True __lowercase : Optional[int] = False __lowercase : List[Any] = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFBlenderbotModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" __lowercase : Dict = ['''My friends are cool but they eat too many carbs.'''] __lowercase : int = '''facebook/blenderbot-400M-distill''' @cached_property def snake_case_ ( self): return BlenderbotTokenizer.from_pretrained(self.model_name) @cached_property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , return_tensors="""tf""") __SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , ) __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__)[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
100
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : Any ,snake_case : Any ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : int ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Tuple ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 0 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def __call__( self : int ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE =timm.create_model(lowerCAmelCase_, pretrained=lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ResNetForImageClassification(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) assert torch.allclose(from_model(lowerCAmelCase_ ), our_model(lowerCAmelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE =F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCAmelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {checkpoint_name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase_ : str =1 @register_to_config def __init__( self ,A__=2_0_0_0 ,A__=0.1 ,A__=2_0 ,A__=1E-3): lowercase = None lowercase = None lowercase = None def A__ ( self ,A__ ,A__ = None): lowercase = torch.linspace(1 ,self.config.sampling_eps ,A__ ,device=A__) def A__ ( self ,A__ ,A__ ,A__ ,A__=None): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''') # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowercase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowercase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) lowercase = std.flatten() while len(std.shape) < len(score.shape): lowercase = std.unsqueeze(-1) lowercase = -score / std # compute lowercase = -1.0 / len(self.timesteps) lowercase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowercase = beta_t.flatten() while len(beta_t.shape) < len(x.shape): lowercase = beta_t.unsqueeze(-1) lowercase = -0.5 * beta_t * x lowercase = torch.sqrt(A__) lowercase = drift - diffusion**2 * score lowercase = x + drift * dt # add noise lowercase = randn_tensor(x.shape ,layout=x.layout ,generator=A__ ,device=x.device ,dtype=x.dtype) lowercase = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__( self): return self.config.num_train_timesteps
101
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_=7 ): """simple docstring""" SCREAMING_SNAKE_CASE =None if token is not None: SCREAMING_SNAKE_CASE ={'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE ='636036' SCREAMING_SNAKE_CASE =F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE =requests.get(lowerCAmelCase_, headers=lowerCAmelCase_ ).json() return result["workflow_runs"] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_daily_ci_runs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE =workflow_run['id'] break return workflow_run_id def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =get_last_daily_ci_runs(lowerCAmelCase_ ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE =get_artifacts_links(worflow_run_id=lowerCAmelCase_, token=lowerCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase_, artifact_url=lowerCAmelCase_, output_dir=lowerCAmelCase_, token=lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" get_last_daily_ci_artifacts(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, F'{artifact_name}.zip' ) if os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE ={} with zipfile.ZipFile(lowerCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase_ ): # read the file with z.open(lowerCAmelCase_ ) as f: SCREAMING_SNAKE_CASE =f.read().decode('UTF-8' ) return results
334
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase ( _snake_case : str = "" ) ->dict[str, float]: """simple docstring""" __snake_case : List[Any] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' __snake_case : Dict = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) __snake_case : Union[str, Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) __snake_case : int = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_snake_case , _snake_case ) } def lowercase ( _snake_case : str = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" __snake_case : List[Any] = get_imdb_top_aaa_movies() with open(_snake_case , '''w''' , newline='''''' ) as out_file: __snake_case : Dict = csv.writer(_snake_case ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
102
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple ,snake_case : Optional[int] ,snake_case : Dict=13 ,snake_case : str=7 ,snake_case : Dict=True ,snake_case : List[Any]=True ,snake_case : Dict=False ,snake_case : int=True ,snake_case : Dict=99 ,snake_case : int=32 ,snake_case : List[str]=5 ,snake_case : Optional[Any]=4 ,snake_case : Tuple=64 ,snake_case : List[Any]="gelu" ,snake_case : str=0.1 ,snake_case : str=0.1 ,snake_case : List[str]=512 ,snake_case : List[str]=16 ,snake_case : str=2 ,snake_case : Dict=0.02 ,snake_case : Optional[int]=3 ,snake_case : int=4 ,snake_case : Any=None ,snake_case : Union[str, Any]=2 ,snake_case : List[Any]=2 ,snake_case : Optional[int]=2 ,snake_case : Dict=2 ,snake_case : List[str]=4 ,snake_case : int=1 ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =q_groups SCREAMING_SNAKE_CASE =k_groups SCREAMING_SNAKE_CASE =v_groups SCREAMING_SNAKE_CASE =post_attention_groups SCREAMING_SNAKE_CASE =intermediate_groups SCREAMING_SNAKE_CASE =output_groups def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size ,vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,attention_probs_dropout_prob=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,q_groups=self.q_groups ,k_groups=self.k_groups ,v_groups=self.v_groups ,post_attention_groups=self.post_attention_groups ,intermediate_groups=self.intermediate_groups ,output_groups=self.output_groups ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Optional[Any] ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : str ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =SqueezeBertModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : int ,snake_case : Any ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =SqueezeBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : List[str] ,snake_case : List[Any] ,snake_case : Dict ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =SqueezeBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,start_positions=snake_case ,end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Tuple ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Any ,snake_case : Tuple ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : List[str] ,snake_case : List[str] ,snake_case : Tuple ,snake_case : Dict ,snake_case : str ,snake_case : Tuple ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =SqueezeBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Dict ,snake_case : str ,snake_case : Union[str, Any] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.num_choices SCREAMING_SNAKE_CASE =SqueezeBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE =model( snake_case ,attention_mask=snake_case ,labels=snake_case ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = False def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,dim=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*snake_case ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*snake_case ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =SqueezeBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) SCREAMING_SNAKE_CASE =torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =torch.Size((1, 3) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(snake_case ,snake_case ,atol=1e-4 ) )
334
0
def UpperCamelCase( __UpperCamelCase : int = 200 ): lowerCAmelCase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowerCAmelCase_ : Union[str, Any] = [0] * (pence + 1) lowerCAmelCase_ : int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__UpperCamelCase ,pence + 1 ,1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
103
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None @property def _lowerCAmelCase ( self : List[Any] ): return self.feat_extract_tester.prepare_feat_extract_dict() def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case ,'feature_size' ) ) self.assertTrue(hasattr(snake_case ,'sampling_rate' ) ) self.assertTrue(hasattr(snake_case ,'padding_value' ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case ) == len(snake_case ) for x, y in zip(snake_case ,processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='np' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='pt' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case ) SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ,tensor_type='tf' ) SCREAMING_SNAKE_CASE =processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE =batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Optional[Any]=False ): def _inputs_have_equal_length(snake_case : Dict ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : str ,snake_case : Dict ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE =self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE =self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE =self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,pad_to_multiple_of=10 ,max_length=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(all(len(snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) SCREAMING_SNAKE_CASE =pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] ,(batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE =(np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int]=False ): def _inputs_have_equal_length(snake_case : str ): SCREAMING_SNAKE_CASE =len(input[0] ) for input_slice in input[1:]: if len(snake_case ) != length: return False return True def _inputs_are_equal(snake_case : Tuple ,snake_case : Optional[Any] ): if len(snake_case ) != len(snake_case ): return False for input_slice_a, input_slice_a in zip(snake_case ,snake_case ): if not np.allclose(np.asarray(snake_case ) ,np.asarray(snake_case ) ,atol=1e-3 ): return False return True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case ) SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) # truncate to middle SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ,return_tensors='np' ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,truncation=snake_case ) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[1] ) ,return_tensors='np' ) SCREAMING_SNAKE_CASE =input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertTrue(_inputs_are_equal(snake_case ,snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='longest' ,truncation=snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case ): feat_extract.pad(snake_case ,padding='max_length' ,truncation=snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE =12 SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,truncation=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=len(speech_inputs[0] ) ,pad_to_multiple_of=snake_case ,) SCREAMING_SNAKE_CASE =input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE =len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE =((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case ) ) self.assertFalse(_inputs_have_equal_length(snake_case ) ) def _lowerCAmelCase ( self : Optional[int] ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : Tuple ): self._check_padding(numpify=snake_case ) def _lowerCAmelCase ( self : List[str] ): self._check_truncation(numpify=snake_case ) def _lowerCAmelCase ( self : int ): self._check_truncation(numpify=snake_case ) @require_torch def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =feat_extract.pad(snake_case ,padding='longest' ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.feat_extract_dict SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =self.feature_extraction_class(**snake_case ) SCREAMING_SNAKE_CASE =self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE =[len(snake_case ) for x in speech_inputs] SCREAMING_SNAKE_CASE =feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE =BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE =min(snake_case ) SCREAMING_SNAKE_CASE =feat_extract.pad( snake_case ,padding='max_length' ,max_length=snake_case ,truncation=snake_case ,return_tensors='np' ) self.assertIn('attention_mask' ,snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] )
334
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = x __lowercase = y for step in range(A__ ): # noqa: B007 __lowercase = a * a - b * b + x __lowercase = 2 * a * b + y __lowercase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _A ( A__ ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _A ( A__ ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(A__ , 1 , 1 ) ) def _A ( A__ = 800 , A__ = 600 , A__ = -0.6 , A__ = 0 , A__ = 3.2 , A__ = 50 , A__ = True , ): """simple docstring""" __lowercase = Image.new('''RGB''' , (image_width, image_height) ) __lowercase = img.load() # loop through the image-coordinates for image_x in range(A__ ): for image_y in range(A__ ): # determine the figure-coordinates based on the image-coordinates __lowercase = figure_width / image_width * image_height __lowercase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowercase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowercase = get_distance(A__ , A__ , A__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowercase = get_color_coded_rgb(A__ ) else: __lowercase = get_black_and_white_rgb(A__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
104
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCamelCase =2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCamelCase =50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCamelCase =0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =len([g for position, g in enumerate(lowerCAmelCase_ ) if g == main_target[position]] ) return (item, float(lowerCAmelCase_ )) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =random.randint(0, len(lowerCAmelCase_ ) - 1 ) SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =list(lowerCAmelCase_ ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE =random.choice(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ): """simple docstring""" SCREAMING_SNAKE_CASE =[] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE =int(parent_a[1] * 100 ) + 1 SCREAMING_SNAKE_CASE =10 if child_n >= 10 else child_n for _ in range(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =population_score[random.randint(0, lowerCAmelCase_ )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =crossover(parent_a[0], lowerCAmelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) pop.append(mutate(lowerCAmelCase_, lowerCAmelCase_ ) ) return pop def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE =F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCAmelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE =sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE =F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCAmelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE =[] for _ in range(lowerCAmelCase_ ): population.append(''.join([random.choice(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCAmelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE =[evaluate(lowerCAmelCase_, lowerCAmelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE =sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[1], reverse=lowerCAmelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE =population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCAmelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE =[ (item, score / len(lowerCAmelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCAmelCase_ ): population.extend(select(population_score[int(lowerCAmelCase_ )], lowerCAmelCase_, lowerCAmelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCAmelCase_ ) > N_POPULATION: break if __name__ == "__main__": _lowerCamelCase =( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _lowerCamelCase =list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase =basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowerCAmelCase ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE =mock.Mock() SCREAMING_SNAKE_CASE =500 SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE =HTTPError SCREAMING_SNAKE_CASE ={} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=snake_case ) as mock_head: SCREAMING_SNAKE_CASE =GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE =tempfile.mktemp() with open(snake_case ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,snake_case ) SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained(snake_case ) finally: os.remove(snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,snake_case ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _lowerCAmelCase ( self : int ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE =AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _lowerCAmelCase ( cls : List[Any] ): SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(snake_case ) @classmethod def _lowerCAmelCase ( cls : Tuple ): try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _lowerCAmelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case ,repo_id='test-tokenizer' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def _lowerCAmelCase ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizer(snake_case ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=snake_case ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def _lowerCAmelCase ( self : str ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =CustomTokenizer(snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE =os.path.join(snake_case ,'vocab.txt' ) with open(snake_case ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE =BertTokenizerFast.from_pretrained(snake_case ) bert_tokenizer.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE =CustomTokenizerFast.from_pretrained(snake_case ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=snake_case ,trust_remote_code=snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class a_ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def _lowerCAmelCase ( self : Optional[Any] ): # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE =Trie() SCREAMING_SNAKE_CASE =trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case ,['AB', 'C'] )
334
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : List[str] = old_name if "patch_embed" in old_name: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = old_name.split('''.''' ) if layer == "0": lowerCAmelCase__ : str = old_name.replace('''0''' , '''convolution1''' ) elif layer == "1": lowerCAmelCase__ : List[Any] = old_name.replace('''1''' , '''batchnorm_before''' ) elif layer == "3": lowerCAmelCase__ : Optional[Any] = old_name.replace('''3''' , '''convolution2''' ) else: lowerCAmelCase__ : Optional[int] = old_name.replace('''4''' , '''batchnorm_after''' ) if "network" in old_name and re.search(r'''\d\.\d''' , A_ ): lowerCAmelCase__ : int = r'''\b\d{2}\b''' if bool(re.search(A_ , A_ ) ): lowerCAmelCase__ : Union[str, Any] = re.search(r'''\d\.\d\d.''' , A_ ).group() else: lowerCAmelCase__ : Tuple = re.search(r'''\d\.\d.''' , A_ ).group() if int(match[0] ) < 6: lowerCAmelCase__ : Tuple = old_name.replace(A_ , '''''' ) lowerCAmelCase__ : int = trimmed_name.replace('''network''' , match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) lowerCAmelCase__ : str = '''intermediate_stages.''' + trimmed_name else: lowerCAmelCase__ : Dict = old_name.replace(A_ , '''''' ) if int(match[2] ) < num_meta4D_last_stage: lowerCAmelCase__ : str = trimmed_name.replace('''network''' , '''meta4D_layers.blocks.''' + match[2] ) else: lowerCAmelCase__ : List[Any] = str(int(match[2] ) - num_meta4D_last_stage ) lowerCAmelCase__ : Tuple = trimmed_name.replace('''network''' , '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: lowerCAmelCase__ : Any = trimmed_name.replace('''norm1''' , '''layernorm1''' ) elif "norm2" in old_name: lowerCAmelCase__ : str = trimmed_name.replace('''norm2''' , '''layernorm2''' ) elif "fc1" in old_name: lowerCAmelCase__ : int = trimmed_name.replace('''fc1''' , '''linear_in''' ) elif "fc2" in old_name: lowerCAmelCase__ : int = trimmed_name.replace('''fc2''' , '''linear_out''' ) lowerCAmelCase__ : Any = '''last_stage.''' + trimmed_name elif "network" in old_name and re.search(r'''.\d.''' , A_ ): lowerCAmelCase__ : Tuple = old_name.replace('''network''' , '''intermediate_stages''' ) if "fc" in new_name: lowerCAmelCase__ : Union[str, Any] = new_name.replace('''fc''' , '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCAmelCase__ : int = new_name.replace('''norm1''' , '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCAmelCase__ : str = new_name.replace('''norm2''' , '''batchnorm_after''' ) if "proj" in new_name: lowerCAmelCase__ : Tuple = new_name.replace('''proj''' , '''projection''' ) if "dist_head" in new_name: lowerCAmelCase__ : Any = new_name.replace('''dist_head''' , '''distillation_classifier''' ) elif "head" in new_name: lowerCAmelCase__ : Tuple = new_name.replace('''head''' , '''classifier''' ) elif "patch_embed" in new_name: lowerCAmelCase__ : Optional[int] = '''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCAmelCase__ : Optional[int] = new_name.replace('''norm''' , '''layernorm''' ) lowerCAmelCase__ : Tuple = '''efficientformer.''' + new_name else: lowerCAmelCase__ : Dict = '''efficientformer.encoder.''' + new_name return new_name def __SCREAMING_SNAKE_CASE ( A_ , A_ ): for key in checkpoint.copy().keys(): lowerCAmelCase__ : List[Any] = checkpoint.pop(A_ ) lowerCAmelCase__ : List[str] = val return checkpoint def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Union[str, Any] = Image.open(requests.get(A_ , stream=A_ ).raw ) return image def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): lowerCAmelCase__ : Tuple = torch.load(A_ , map_location='''cpu''' )['''model'''] lowerCAmelCase__ : int = EfficientFormerConfig.from_json_file(A_ ) lowerCAmelCase__ : Tuple = EfficientFormerForImageClassificationWithTeacher(A_ ) lowerCAmelCase__ : Dict = '''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) lowerCAmelCase__ : Dict = config.depths[-1] - config.num_metaad_blocks + 1 lowerCAmelCase__ : Any = convert_torch_checkpoint(A_ , A_ ) model.load_state_dict(A_ ) model.eval() lowerCAmelCase__ : List[str] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : Union[str, Any] = 2_56 lowerCAmelCase__ : List[str] = 2_24 lowerCAmelCase__ : int = EfficientFormerImageProcessor( size={'''shortest_edge''': image_size} , crop_size={'''height''': crop_size, '''width''': crop_size} , resample=pillow_resamplings['''bicubic'''] , ) lowerCAmelCase__ : Optional[int] = processor(images=A_ , return_tensors='''pt''' ).pixel_values # original processing pipeline lowerCAmelCase__ : Optional[int] = Compose( [ Resize(A_ , interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(A_ ), ToTensor(), Normalize(A_ , A_ ), ] ) lowerCAmelCase__ : List[str] = image_transforms(A_ ).unsqueeze(0 ) assert torch.allclose(A_ , A_ ) lowerCAmelCase__ : Dict = model(A_ ) lowerCAmelCase__ : int = outputs.logits lowerCAmelCase__ : Tuple = (1, 10_00) if "l1" in model_name: lowerCAmelCase__ : Optional[Any] = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , A_ , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCAmelCase__ : Optional[Any] = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , A_ , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCAmelCase__ : Dict = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(A_ ) print(f'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='''Add model''' , use_temp_dir=A_ , ) processor.push_to_hub( repo_id=f'Bearnardd/{pytorch_dump_path}' , commit_message='''Add image processor''' , use_temp_dir=A_ , ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) __UpperCamelCase : str = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
106
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase =[ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCamelCase =[ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_, map_location='cpu' ) return sd def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE =OrderedDict() SCREAMING_SNAKE_CASE =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE =key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE =new_key.replace(name_pair[0], name_pair[1] ) SCREAMING_SNAKE_CASE =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE ='pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 512} SCREAMING_SNAKE_CASE ='multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048} SCREAMING_SNAKE_CASE ='vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE ={'visual_embedding_dim': 2048, 'num_labels': 3129} SCREAMING_SNAKE_CASE ='vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } SCREAMING_SNAKE_CASE ='nlvr' SCREAMING_SNAKE_CASE =VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE =load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE =VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE =VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE =VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE =VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCamelCase =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
334
0
from __future__ import annotations import os from typing import Any import requests __lowerCAmelCase : Optional[int] = 'https://api.github.com' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user __lowerCAmelCase : List[Any] = BASE_URL + '/user' # https://github.com/settings/tokens __lowerCAmelCase : Optional[Any] = os.environ.get('USER_TOKEN', '') def __magic_name__ ( A : str ): '''simple docstring''' a = { "Authorization": F"""token {auth_token}""", "Accept": "application/vnd.github.v3+json", } return requests.get(A, headers=A ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
107
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'nllb-moe' __UpperCAmelCase = ['past_key_values'] __UpperCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : str ,snake_case : Optional[int]=128112 ,snake_case : Any=1024 ,snake_case : List[str]=12 ,snake_case : Optional[int]=4096 ,snake_case : List[str]=16 ,snake_case : Optional[Any]=12 ,snake_case : Optional[Any]=4096 ,snake_case : List[Any]=16 ,snake_case : Optional[Any]=0.05 ,snake_case : str=0.05 ,snake_case : Optional[int]=True ,snake_case : Tuple=True ,snake_case : Optional[Any]="relu" ,snake_case : Any=1024 ,snake_case : List[Any]=0.1 ,snake_case : List[Any]=0.1 ,snake_case : Optional[Any]=0.0 ,snake_case : List[Any]=0.02 ,snake_case : Any=2 ,snake_case : Dict=True ,snake_case : Tuple=False ,snake_case : Any="float32" ,snake_case : Tuple=False ,snake_case : List[Any]=128 ,snake_case : Tuple=64 ,snake_case : List[Any]=4 ,snake_case : List[Any]=4 ,snake_case : List[Any]=0.001 ,snake_case : int=0.001 ,snake_case : Tuple="all" ,snake_case : Union[str, Any]=False ,snake_case : Union[str, Any]=False ,snake_case : Optional[int]=1.0 ,snake_case : Optional[Any]=0.2 ,snake_case : Optional[int]=1 ,snake_case : Union[str, Any]=0 ,snake_case : Tuple=2 ,snake_case : List[Any]=False ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =encoder_ffn_dim SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =encoder_attention_heads SCREAMING_SNAKE_CASE =decoder_ffn_dim SCREAMING_SNAKE_CASE =decoder_layers SCREAMING_SNAKE_CASE =decoder_attention_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =activation_dropout SCREAMING_SNAKE_CASE =activation_function SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =encoder_layerdrop SCREAMING_SNAKE_CASE =decoder_layerdrop SCREAMING_SNAKE_CASE =use_cache SCREAMING_SNAKE_CASE =encoder_layers SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE =router_z_loss_coef SCREAMING_SNAKE_CASE =router_aux_loss_coef SCREAMING_SNAKE_CASE =decoder_sparse_step SCREAMING_SNAKE_CASE =encoder_sparse_step SCREAMING_SNAKE_CASE =num_experts SCREAMING_SNAKE_CASE =expert_capacity SCREAMING_SNAKE_CASE =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) SCREAMING_SNAKE_CASE =router_dtype SCREAMING_SNAKE_CASE =router_ignore_padding_tokens SCREAMING_SNAKE_CASE =batch_prioritized_routing SCREAMING_SNAKE_CASE =second_expert_policy SCREAMING_SNAKE_CASE =normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE =moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE =moe_token_dropout SCREAMING_SNAKE_CASE =output_router_logits super().__init__( pad_token_id=snake_case ,bos_token_id=snake_case ,eos_token_id=snake_case ,is_encoder_decoder=snake_case ,decoder_start_token_id=snake_case ,**snake_case ,)
334
0
"""simple docstring""" import re import string import numpy as np import datasets lowerCAmelCase__ = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCAmelCase__ = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCAmelCase__ = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=False , ): """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase : Optional[int] = np.array([re.sub(snake_case__ , "" , snake_case__ ) for x in predictions] ) lowerCAmelCase : Dict = np.array([re.sub(snake_case__ , "" , snake_case__ ) for x in references] ) else: lowerCAmelCase : Optional[int] = np.asarray(snake_case__ ) lowerCAmelCase : List[Any] = np.asarray(snake_case__ ) if ignore_case: lowerCAmelCase : List[Any] = np.char.lower(snake_case__ ) lowerCAmelCase : int = np.char.lower(snake_case__ ) if ignore_punctuation: lowerCAmelCase : Any = string.punctuation.maketrans("" , "" , string.punctuation ) lowerCAmelCase : Any = np.char.translate(snake_case__ , table=snake_case__ ) lowerCAmelCase : List[str] = np.char.translate(snake_case__ , table=snake_case__ ) if ignore_numbers: lowerCAmelCase : Optional[int] = string.digits.maketrans("" , "" , string.digits ) lowerCAmelCase : List[str] = np.char.translate(snake_case__ , table=snake_case__ ) lowerCAmelCase : List[Any] = np.char.translate(snake_case__ , table=snake_case__ ) lowerCAmelCase : str = predictions == references return {"exact_match": np.mean(snake_case__ ) * 100}
108
from __future__ import annotations def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =divmod(len(lowerCAmelCase_ ), 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =[float(x) for x in input("Enter the elements of first array: ").split()] _lowerCamelCase =[float(x) for x in input("Enter the elements of second array: ").split()] print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
334
0
"""simple docstring""" A: Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def _snake_case ( UpperCamelCase : float ): assert type(UpperCamelCase ) in (int, float) and decimal == int(UpperCamelCase ) UpperCAmelCase : str = int(UpperCamelCase ) UpperCAmelCase : Optional[int] = """""" UpperCAmelCase : List[str] = False if decimal < 0: UpperCAmelCase : Any = True decimal *= -1 while decimal > 0: UpperCAmelCase , UpperCAmelCase : Dict = divmod(UpperCamelCase , 16 ) UpperCAmelCase : Union[str, Any] = values[remainder] + hexadecimal UpperCAmelCase : int = """0x""" + hexadecimal if negative: UpperCAmelCase : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(A_ ,variant=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: A = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(A_ ,variant=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> str: # pass variant but use the non-variant filenames A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(A_ ,variant=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertFalse(is_safetensors_compatible(A_ ,variant=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: A = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(A_ ,variant=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: # pass variant but use the non-variant filenames A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(A_ ,variant=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertFalse(is_safetensors_compatible(A_ ,variant=A_ ) )
74
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class a_ : """simple docstring""" def __init__( self : Optional[int] ,snake_case : Any ,snake_case : Dict=100 ,snake_case : List[Any]=13 ,snake_case : str=30 ,snake_case : List[str]=2 ,snake_case : List[Any]=3 ,snake_case : Tuple=True ,snake_case : Optional[Any]=True ,snake_case : int=32 ,snake_case : Tuple=4 ,snake_case : List[Any]=4 ,snake_case : Optional[Any]=37 ,snake_case : Optional[Any]="gelu" ,snake_case : Tuple=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : List[Any]=10 ,snake_case : Tuple=0.02 ,snake_case : List[str]=3 ,snake_case : Any=None ,snake_case : int=[0, 1, 2, 3] ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =100 SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =out_indices SCREAMING_SNAKE_CASE =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE =num_patches + 1 def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCAmelCase ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=snake_case ,initializer_range=self.initializer_range ,out_indices=self.out_indices ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Tuple ,snake_case : Optional[Any] ,snake_case : Union[str, Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =BeitModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : Dict ,snake_case : Any ,snake_case : List[str] ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Any ,snake_case : str ,snake_case : Any ,snake_case : str ): SCREAMING_SNAKE_CASE =self.type_sequence_label_size SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE =1 SCREAMING_SNAKE_CASE =BeitForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : Tuple ,snake_case : str ,snake_case : Optional[int] ,snake_case : int ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE =model(snake_case ,labels=snake_case ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =BeitModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,has_text_modality=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _lowerCAmelCase ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case ,nn.Linear ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] ,snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) def _lowerCAmelCase ( self : Any ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE =False SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE =model_class(snake_case ) model.gradient_checkpointing_enable() model.to(snake_case ) model.train() SCREAMING_SNAKE_CASE =self._prepare_for_class(snake_case ,snake_case ,return_labels=snake_case ) SCREAMING_SNAKE_CASE =model(**snake_case ).loss loss.backward() def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =_config_zero_init(snake_case ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(config=snake_case ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @slow def _lowerCAmelCase ( self : List[str] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =BeitModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : Tuple ): return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).pixel_values.to(snake_case ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE =torch.ones((1, 196) ,dtype=torch.bool ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(pixel_values=snake_case ,bool_masked_pos=snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(snake_case ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] ,snake_case ,atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =281 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 21841) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(snake_case ) self.assertTrue(torch.allclose(logits[0, :3] ,snake_case ,atol=1e-4 ) ) SCREAMING_SNAKE_CASE =2396 self.assertEqual(logits.argmax(-1 ).item() ,snake_case ) @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits # verify the logits SCREAMING_SNAKE_CASE =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape ,snake_case ) SCREAMING_SNAKE_CASE =version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] ,device=snake_case ,) else: SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] ,device=snake_case ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) SCREAMING_SNAKE_CASE =model.to(snake_case ) SCREAMING_SNAKE_CASE =BeitImageProcessor(do_resize=snake_case ,size=640 ,do_center_crop=snake_case ) SCREAMING_SNAKE_CASE =load_dataset('hf-internal-testing/fixtures_ade20k' ,split='test' ) SCREAMING_SNAKE_CASE =Image.open(ds[0]['file'] ) SCREAMING_SNAKE_CASE =image_processor(images=snake_case ,return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**snake_case ) SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ,target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape ,snake_case ) SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape ,snake_case )
334
0
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'{price_plus_tax(100, 0.25) = }') print(F'{price_plus_tax(125.50, 0.05) = }')
254
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger() @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : Tensor ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =len(list(m.modules() ) ) == 1 or isinstance(snake_case ,nn.Convad ) or isinstance(snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self : List[str] ,snake_case : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class a_ : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 1 __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = field(default_factory=lowerCamelCase_ ) __UpperCAmelCase = True def __call__( self : str ,snake_case : Tensor ): SCREAMING_SNAKE_CASE =Tracker(self.dest )(snake_case ).parametrized SCREAMING_SNAKE_CASE =Tracker(self.src )(snake_case ).parametrized SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.src_skip ,snake_case ) ) SCREAMING_SNAKE_CASE =list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip ,snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case )} operations while' f' destination module has {len(snake_case )}.' ) for dest_m, src_m in zip(snake_case ,snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class a_ ( nn.Module ): """simple docstring""" def __init__( self : Any ,snake_case : nn.Module ): super().__init__() SCREAMING_SNAKE_CASE =[] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' SCREAMING_SNAKE_CASE =len(snake_case ) + 1 feature_blocks.append((f'res{block_index}', v) ) SCREAMING_SNAKE_CASE =nn.ModuleDict(snake_case ) def _lowerCAmelCase ( self : Dict ,snake_case : Tensor ): return get_trunk_forward_outputs( snake_case ,out_feat_keys=snake_case ,feature_blocks=self._feature_blocks ,) class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ,snake_case : str ): SCREAMING_SNAKE_CASE =x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] ,snake_case : str ): # default to timm! if x not in self: SCREAMING_SNAKE_CASE =self.convert_name_to_timm(snake_case ) SCREAMING_SNAKE_CASE =partial(lambda: (timm.create_model(snake_case ,pretrained=snake_case ).eval(), None) ) else: SCREAMING_SNAKE_CASE =super().__getitem__(snake_case ) return val class a_ ( lowerCamelCase_ ): """simple docstring""" def __getitem__( self : int ,snake_case : str ): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE =RegNetModel else: SCREAMING_SNAKE_CASE =RegNetForImageClassification return val def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" for from_key, to_key in keys: SCREAMING_SNAKE_CASE =from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = True, ): """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =from_model_func() SCREAMING_SNAKE_CASE =our_model_func(lowerCAmelCase_ ).eval() SCREAMING_SNAKE_CASE =ModuleTransfer(src=lowerCAmelCase_, dest=lowerCAmelCase_, raise_if_mismatch=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase_ ) if from_state_dict is not None: SCREAMING_SNAKE_CASE =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =[('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE =manually_copy_vissl_head(lowerCAmelCase_, our_model.state_dict(), lowerCAmelCase_ ) our_model.load_state_dict(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =our_model(lowerCAmelCase_, output_hidden_states=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =( our_outputs.logits if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE =from_model(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =from_output[-1] if type(lowerCAmelCase_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE =our_outputs.hidden_states[-1] assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add model', use_temp_dir=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k', size=lowerCAmelCase_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message='Add image processor', use_temp_dir=lowerCAmelCase_, ) print(F'Pushed {name}' ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = None, lowerCAmelCase_ = True ): """simple docstring""" SCREAMING_SNAKE_CASE ='imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE =1000 SCREAMING_SNAKE_CASE =(1, num_labels) SCREAMING_SNAKE_CASE ='huggingface/label-files' SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =json.load(open(cached_download(hf_hub_url(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ) ), 'r' ) ) SCREAMING_SNAKE_CASE ={int(lowerCAmelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =idalabel SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE =partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE ={ 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } SCREAMING_SNAKE_CASE =NameToOurModelFuncMap() SCREAMING_SNAKE_CASE =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCAmelCase_, lowerCAmelCase_ ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE =torch.hub.load_state_dict_from_url(lowerCAmelCase_, model_dir=str(lowerCAmelCase_ ), map_location='cpu' ) SCREAMING_SNAKE_CASE =model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE =files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE =model_state_dict['trunk'] model.load_state_dict(lowerCAmelCase_ ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch', lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) SCREAMING_SNAKE_CASE =partial( lowerCAmelCase_, 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch', lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_a=1744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCAmelCase_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) return config, expected_shape if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCamelCase =parser.parse_args() _lowerCamelCase =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
334
0
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A : Optional[Any] = object() # For specifying empty leaf dict `{}` A : Any = object() def lowercase_ ( _A : List[str] , _A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(lowerCAmelCase_ ) - len(lowerCAmelCase_ ) + 1 ): lowerCamelCase__ : List[Any] = [x.match(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , ks[i:] )] if matches and all(lowerCAmelCase_ ): return True return False def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" def replace(_A : Tuple , _A : Union[str, Any] ): for rule, replacement in rules: if _match(lowerCAmelCase_ , lowerCAmelCase_ ): return replacement return val return replace def lowercase_ ( ): """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , lowerCAmelCase_ )), (("transformer", "wte", "embedding"), P("mp" , lowerCAmelCase_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowerCAmelCase_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , lowerCAmelCase_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowerCAmelCase_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , lowerCAmelCase_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowercase_ ( _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Tuple = _get_partition_rules() lowerCamelCase__ : List[Any] = _replacement_rules(lowerCAmelCase_ ) lowerCamelCase__ : str = {k: _unmatched for k in flatten_dict(lowerCAmelCase_ )} lowerCamelCase__ : Optional[int] = {k: replace(lowerCAmelCase_ , lowerCAmelCase_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowerCAmelCase_ ) )
184
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase =16 _lowerCamelCase =32 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE =load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE =datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE =16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE =8 else: SCREAMING_SNAKE_CASE =None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase =mocked_dataloaders # noqa: F811 def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": SCREAMING_SNAKE_CASE =2 # Initialize accelerator SCREAMING_SNAKE_CASE =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE =config['lr'] SCREAMING_SNAKE_CASE =int(config['num_epochs'] ) SCREAMING_SNAKE_CASE =int(config['seed'] ) SCREAMING_SNAKE_CASE =int(config['batch_size'] ) SCREAMING_SNAKE_CASE =evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE =model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE =AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE =get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE =model(**lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) SCREAMING_SNAKE_CASE =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:', lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE ={'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
334
0
'''simple docstring''' a__ : List[str] =256 # Modulus to hash a string a__ : List[str] =1_000_003 def lowercase__ ( __lowercase : Dict , __lowercase : Union[str, Any] ) -> Any: """simple docstring""" __UpperCamelCase = len(lowerCAmelCase_ ) __UpperCamelCase = len(lowerCAmelCase_ ) if p_len > t_len: return False __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase_ ): __UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ) -> Optional[int]: """simple docstring""" __UpperCamelCase = 'abc1abc12' __UpperCamelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __UpperCamelCase = 'alskfjaldsk23adsfabcabc' assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) and not rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 2) __UpperCamelCase = 'ABABX' __UpperCamelCase = 'ABABZABABYABABX' assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 3) __UpperCamelCase = 'AAAB' __UpperCamelCase = 'ABAAAAAB' assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 4) __UpperCamelCase = 'abcdabcy' __UpperCamelCase = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) # Test 5) __UpperCamelCase = 'Lü' __UpperCamelCase = 'Lüsai' assert rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) __UpperCamelCase = 'Lue' assert not rabin_karp(lowerCAmelCase_ , lowerCAmelCase_ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
53
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: UpperCamelCase : Tuple = RobertaPreLayerNormConfig.from_pretrained( lowerCAmelCase_ , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict UpperCamelCase : Optional[Any] = torch.load(hf_hub_download(repo_id=lowerCAmelCase_ , filename="pytorch_model.bin" ) ) UpperCamelCase : Optional[int] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): UpperCamelCase : List[Any] = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue UpperCamelCase : List[str] = tensor_value UpperCamelCase : Optional[int] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCAmelCase_ , config=lowerCAmelCase_ , state_dict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) # convert tokenizer UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
52
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _lowerCamelCase ="sshleifer/mar_enro_6_3_student" class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE =cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' ,extract_compressed_file=snake_case ,) SCREAMING_SNAKE_CASE =f'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ): MarianMTModel.from_pretrained(snake_case ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE ={ '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script SCREAMING_SNAKE_CASE =(self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") SCREAMING_SNAKE_CASE =f'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future SCREAMING_SNAKE_CASE =['finetune.py'] + bash_script.split() + args with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() SCREAMING_SNAKE_CASE =main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] self.assertEqual(len(metrics['val'] ) ,(args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) self.assertGreater(last_step_stats['val_avg_gen_time'] ,0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] ,1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] ,2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] ,17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) ,1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class a_ ( lowerCamelCase_ ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =f'{self.test_file_dir_str}/test_data/wmt_en_ro' SCREAMING_SNAKE_CASE ={ '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script SCREAMING_SNAKE_CASE =( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) SCREAMING_SNAKE_CASE =bash_script.replace('\\\n' ,'' ).strip().replace('"$@"' ,'' ) SCREAMING_SNAKE_CASE =bash_script.replace('--fp16 ' ,' ' ) for k, v in env_vars_to_replace.items(): SCREAMING_SNAKE_CASE =bash_script.replace(snake_case ,str(snake_case ) ) SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE =bash_script.replace('--fp16' ,'' ) SCREAMING_SNAKE_CASE =6 SCREAMING_SNAKE_CASE =( ['distillation.py'] + bash_script.split() + [ f'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', f'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(snake_case ,'argv' ,snake_case ): SCREAMING_SNAKE_CASE =argparse.ArgumentParser() SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(snake_case ) SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(snake_case ,os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu SCREAMING_SNAKE_CASE =distill_main(snake_case ) # Check metrics SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) SCREAMING_SNAKE_CASE =metrics['val'][0] SCREAMING_SNAKE_CASE =metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'val_avg_{model.val_metric}'] ,snake_case ) # check lightning ckpt can be loaded and has a reasonable statedict SCREAMING_SNAKE_CASE =os.listdir(snake_case ) SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('.ckpt' )][0] SCREAMING_SNAKE_CASE =os.path.join(args.output_dir ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ,map_location='cpu' ) SCREAMING_SNAKE_CASE ='model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: SCREAMING_SNAKE_CASE ={os.path.basename(snake_case ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
334
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Optional[Any] = logging.get_logger(__name__) __a: Optional[Any] = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "pegasus" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __lowerCAmelCase=50265 , __lowerCAmelCase=1024 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=12 , __lowerCAmelCase=4096 , __lowerCAmelCase=16 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="gelu" , __lowerCAmelCase=1024 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=0 , __lowerCAmelCase=False , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , **__lowerCAmelCase , ) -> List[str]: lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : str = d_model lowercase__ : List[Any] = encoder_ffn_dim lowercase__ : str = encoder_layers lowercase__ : int = encoder_attention_heads lowercase__ : List[str] = decoder_ffn_dim lowercase__ : Optional[int] = decoder_layers lowercase__ : Tuple = decoder_attention_heads lowercase__ : str = dropout lowercase__ : List[str] = attention_dropout lowercase__ : Tuple = activation_dropout lowercase__ : Optional[int] = activation_function lowercase__ : List[str] = init_std lowercase__ : int = encoder_layerdrop lowercase__ : Union[str, Any] = decoder_layerdrop lowercase__ : int = use_cache lowercase__ : str = encoder_layers lowercase__ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , forced_eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) @property def _lowerCAmelCase( self ) -> Tuple: return self.encoder_attention_heads @property def _lowerCAmelCase( self ) -> Any: return self.d_model
198
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_vision_model' def __init__( self : List[Any] ,snake_case : List[Any]=1408 ,snake_case : Optional[Any]=6144 ,snake_case : Optional[int]=39 ,snake_case : Optional[int]=16 ,snake_case : Optional[Any]=224 ,snake_case : Tuple=14 ,snake_case : Optional[Any]="gelu" ,snake_case : Union[str, Any]=0.00_001 ,snake_case : Dict=0.0 ,snake_case : Union[str, Any]=1e-10 ,snake_case : int=True ,**snake_case : str ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =qkv_bias @classmethod def _lowerCAmelCase ( cls : Dict ,snake_case : Union[str, os.PathLike] ,**snake_case : str ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip_2_qformer' def __init__( self : Any ,snake_case : Dict=30522 ,snake_case : int=768 ,snake_case : List[Any]=12 ,snake_case : List[str]=12 ,snake_case : Optional[Any]=3072 ,snake_case : str="gelu" ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.1 ,snake_case : Optional[Any]=512 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=1e-12 ,snake_case : Tuple=0 ,snake_case : Union[str, Any]="absolute" ,snake_case : List[Any]=2 ,snake_case : List[str]=1408 ,**snake_case : Optional[Any] ,): super().__init__(pad_token_id=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =position_embedding_type SCREAMING_SNAKE_CASE =cross_attention_frequency SCREAMING_SNAKE_CASE =encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : List[Any] ,snake_case : Union[str, os.PathLike] ,**snake_case : Dict ): cls._set_token_in_kwargs(snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =cls.get_config_dict(snake_case ,**snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": SCREAMING_SNAKE_CASE =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls ,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'blip-2' __UpperCAmelCase = True def __init__( self : int ,snake_case : Dict=None ,snake_case : Tuple=None ,snake_case : str=None ,snake_case : Union[str, Any]=32 ,**snake_case : int ): super().__init__(**snake_case ) if vision_config is None: SCREAMING_SNAKE_CASE ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: SCREAMING_SNAKE_CASE ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: SCREAMING_SNAKE_CASE ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) SCREAMING_SNAKE_CASE =BlipaVisionConfig(**snake_case ) SCREAMING_SNAKE_CASE =BlipaQFormerConfig(**snake_case ) SCREAMING_SNAKE_CASE =text_config['model_type'] if 'model_type' in text_config else 'opt' SCREAMING_SNAKE_CASE =CONFIG_MAPPING[text_model_type](**snake_case ) SCREAMING_SNAKE_CASE =self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE =self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE =num_query_tokens SCREAMING_SNAKE_CASE =self.vision_config.hidden_size SCREAMING_SNAKE_CASE =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE =1.0 SCREAMING_SNAKE_CASE =0.02 @classmethod def _lowerCAmelCase ( cls : Union[str, Any] ,snake_case : BlipaVisionConfig ,snake_case : BlipaQFormerConfig ,snake_case : PretrainedConfig ,**snake_case : Any ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**snake_case ,) def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.vision_config.to_dict() SCREAMING_SNAKE_CASE =self.qformer_config.to_dict() SCREAMING_SNAKE_CASE =self.text_config.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
334
0
def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
29
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase ="\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase ="\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase ="\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Optional[int] ,snake_case : str ,snake_case : List[str]=None ,snake_case : str=None ,snake_case : int=None ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]="auto" ,snake_case : List[str]=-1 ,snake_case : Union[str, Any]=0.9 ,snake_case : Tuple=5 ,snake_case : Union[str, Any]=500 ,snake_case : Union[str, Any]="gpt2-large" ,snake_case : Union[str, Any]=-1 ,snake_case : Optional[Any]=1024 ,snake_case : Optional[Any]=25 ,snake_case : List[str]=5 ,snake_case : List[str]=True ,snake_case : Optional[Any]=25 ,): SCREAMING_SNAKE_CASE =compute_mauve( p_text=snake_case ,q_text=snake_case ,p_features=snake_case ,q_features=snake_case ,p_tokens=snake_case ,q_tokens=snake_case ,num_buckets=snake_case ,pca_max_data=snake_case ,kmeans_explained_var=snake_case ,kmeans_num_redo=snake_case ,kmeans_max_iter=snake_case ,featurize_model_name=snake_case ,device_id=snake_case ,max_text_length=snake_case ,divergence_curve_discretization_size=snake_case ,mauve_scaling_factor=snake_case ,verbose=snake_case ,seed=snake_case ,) return out
334
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __snake_case ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase__ = """""" lowerCAmelCase__ = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self : Tuple , A : Optional[DatasetInfo] = None , A : Optional[str] = None , **A : Tuple , ): super().__init__(self , **A ) __snake_case: int = repo_info __snake_case: Optional[Any] = token __snake_case: str = None def UpperCAmelCase__ ( self : List[Any] ): if self.dir_cache is None: __snake_case: Optional[int] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __snake_case: List[Any] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A ): {"""name""": str(A ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCAmelCase__ ( self : Optional[Any] , A : str , A : str = "rb" , **A : Dict , ): if not isinstance(self.repo_info , A ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) __snake_case: str = hf_hub_url(self.repo_info.id , A , revision=self.repo_info.sha ) return fsspec.open( A , mode=A , headers=get_authentication_headers_for_url(A , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCAmelCase__ ( self : Dict , A : Optional[int] , **A : Optional[Any] ): self._get_dirs() __snake_case: str = self._strip_protocol(A ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A ) def UpperCAmelCase__ ( self : str , A : Any , A : Union[str, Any]=False , **A : str ): self._get_dirs() __snake_case: Union[str, Any] = PurePosixPath(path.strip("""/""" ) ) __snake_case: int = {} for p, f in self.dir_cache.items(): __snake_case: int = PurePosixPath(p.strip("""/""" ) ) __snake_case: Optional[int] = p.parent if root == path: __snake_case: Tuple = f __snake_case: Union[str, Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
111
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'vit_mae' def __init__( self : Union[str, Any] ,snake_case : Any=768 ,snake_case : List[str]=12 ,snake_case : Optional[int]=12 ,snake_case : int=3072 ,snake_case : List[Any]="gelu" ,snake_case : str=0.0 ,snake_case : str=0.0 ,snake_case : Optional[Any]=0.02 ,snake_case : Dict=1e-12 ,snake_case : List[str]=224 ,snake_case : Any=16 ,snake_case : Any=3 ,snake_case : Tuple=True ,snake_case : List[Any]=16 ,snake_case : List[str]=512 ,snake_case : List[Any]=8 ,snake_case : Dict=2048 ,snake_case : Union[str, Any]=0.75 ,snake_case : Union[str, Any]=False ,**snake_case : Optional[int] ,): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =patch_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =qkv_bias SCREAMING_SNAKE_CASE =decoder_num_attention_heads SCREAMING_SNAKE_CASE =decoder_hidden_size SCREAMING_SNAKE_CASE =decoder_num_hidden_layers SCREAMING_SNAKE_CASE =decoder_intermediate_size SCREAMING_SNAKE_CASE =mask_ratio SCREAMING_SNAKE_CASE =norm_pix_loss
334
0
'''simple docstring''' import re import string import numpy as np import datasets _lowerCAmelCase = '''\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n''' _lowerCAmelCase = '''\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It\'s like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It\'s like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n''' _lowerCAmelCase = '''\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,reference_urls=[] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,) -> Optional[int]: if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase__ : List[Any] = np.array([re.sub(__UpperCAmelCase ,"""""" ,__UpperCAmelCase ) for x in predictions] ) lowerCAmelCase__ : str = np.array([re.sub(__UpperCAmelCase ,"""""" ,__UpperCAmelCase ) for x in references] ) else: lowerCAmelCase__ : Union[str, Any] = np.asarray(__UpperCAmelCase ) lowerCAmelCase__ : Any = np.asarray(__UpperCAmelCase ) if ignore_case: lowerCAmelCase__ : Optional[Any] = np.char.lower(__UpperCAmelCase ) lowerCAmelCase__ : Any = np.char.lower(__UpperCAmelCase ) if ignore_punctuation: lowerCAmelCase__ : Optional[int] = string.punctuation.maketrans("""""" ,"""""" ,string.punctuation ) lowerCAmelCase__ : List[Any] = np.char.translate(__UpperCAmelCase ,table=__UpperCAmelCase ) lowerCAmelCase__ : Any = np.char.translate(__UpperCAmelCase ,table=__UpperCAmelCase ) if ignore_numbers: lowerCAmelCase__ : Any = string.digits.maketrans("""""" ,"""""" ,string.digits ) lowerCAmelCase__ : str = np.char.translate(__UpperCAmelCase ,table=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = np.char.translate(__UpperCAmelCase ,table=__UpperCAmelCase ) lowerCAmelCase__ : str = predictions == references return {"exact_match": np.mean(__UpperCAmelCase ) * 100}
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCamelCase ={ "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _snake_case : Optional[Any] = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' _snake_case : Optional[int] = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n' _snake_case : str = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' _snake_case : Optional[int] = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n' _snake_case : Optional[Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase ( self : Tuple ) -> Optional[int]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def lowercase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=[1, 1_0, 1_0_0] , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Tuple=3.0 ) -> int: if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCAmelCase_ ) as executor: __lowerCAmelCase = [] __lowerCAmelCase = Counter() __lowerCAmelCase = 0 __lowerCAmelCase = defaultdict(lowerCAmelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ): for candidate in candidates: __lowerCAmelCase = candidate + '\n' + test_case __lowerCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) __lowerCAmelCase = executor.submit(lowerCAmelCase_ , *lowerCAmelCase_ ) futures.append(lowerCAmelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCAmelCase_ ): __lowerCAmelCase = future.result() results[result["task_id"]].append((result['completion_id'], result) ) __lowerCAmelCase , __lowerCAmelCase = [], [] for result in results.values(): result.sort() __lowerCAmelCase = [r[1]['passed'] for r in result] total.append(len(lowerCAmelCase_ ) ) correct.append(sum(lowerCAmelCase_ ) ) __lowerCAmelCase = np.array(lowerCAmelCase_ ) __lowerCAmelCase = np.array(lowerCAmelCase_ ) __lowerCAmelCase = k __lowerCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : str, lowerCAmelCase_ : Tuple ): def estimator(lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Any ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = itertools.repeat(lowerCAmelCase_, len(lowerCAmelCase_ ) ) else: assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = iter(lowerCAmelCase_ ) return np.array([estimator(int(lowerCAmelCase_ ), int(lowerCAmelCase_ ), lowerCAmelCase_ ) for n, c in zip(lowerCAmelCase_, lowerCAmelCase_ )] )
284
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : Any ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ) ,type=pa.intaa() ) def _lowerCAmelCase ( self : Union[str, Any] ): with self.assertRaises(snake_case ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('bool' ) ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : int ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=Value('int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([1, 2, 3] ,try_type=Value('int32' ) ) ) self.assertEqual(arr.type ,pa.intaa() ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=Value('int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : Dict ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,type=ArrayaD((1, 3) ,'int64' ) ) ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence([[[1, 2, 3]]] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,ArrayaDExtensionType((1, 3) ,'int64' ) ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =pa.array(TypedSequence(['foo', 'bar'] ,try_type=ArrayaD((1, 3) ,'int64' ) ) ) self.assertEqual(arr.type ,pa.string() ) @require_pil def _lowerCAmelCase ( self : int ): import PIL.Image SCREAMING_SNAKE_CASE =PIL.Image.fromarray(np.arange(10 ,dtype=np.uinta ).reshape(2 ,5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' ,side_effect=snake_case ) as mock_cast_to_python_objects: SCREAMING_SNAKE_CASE =pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] ,type=Image() ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' ,snake_case ) self.assertFalse(kwargs['optimize_list_casting'] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferReader(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, pa.Buffer ) else pa.memory_map(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=lowerCAmelCase_, features=lowerCAmelCase_ ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pa.ipc.open_stream(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =f.read_all() SCREAMING_SNAKE_CASE =pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowerCAmelCase_ ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=[1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: with pytest.raises(lowerCAmelCase_ ): writer.write({'col_1': 'foo', 'col_2': 1}, key=10 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=10 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() @pytest.mark.parametrize('writer_batch_size', [None, 2, 10] ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter( stream=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_, hash_salt='split_name', check_duplicates=lowerCAmelCase_, ) as writer: writer.write({'col_1': 'foo', 'col_2': 1}, key=1 ) writer.write({'col_1': 'bar', 'col_2': 2}, key=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size', [None, 1, 10] ) @pytest.mark.parametrize( 'fields', [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() SCREAMING_SNAKE_CASE =pa.schema(lowerCAmelCase_ ) if fields else None with ArrowWriter(stream=lowerCAmelCase_, schema=lowerCAmelCase_, writer_batch_size=lowerCAmelCase_ ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(output.getvalue(), expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case__ ( ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE ={'col_1': pa.string(), 'col_2': pa.intaa()} SCREAMING_SNAKE_CASE =os.path.join(lowerCAmelCase_, 'test.arrow' ) with ArrowWriter(path=lowerCAmelCase_, schema=pa.schema(lowerCAmelCase_ ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowerCAmelCase_, metadata=writer._schema.metadata ) _check_output(lowerCAmelCase_, 1 ) def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" if pa.types.is_list(lowerCAmelCase_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if isinstance(lst[0], lowerCAmelCase_ ): change_first_primitive_element_in_list(lst[0], lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE =value @pytest.mark.parametrize('optimized_int_type, expected_dtype', [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(TypedSequence(lowerCAmelCase_, optimized_int_type=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype', [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ], ) @pytest.mark.parametrize('sequence', [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications SCREAMING_SNAKE_CASE =copy.deepcopy(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowerCAmelCase_, lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa.array(OptimizedTypedSequence(lowerCAmelCase_, col=lowerCAmelCase_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=lowerCAmelCase_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE ='mock://dataset-train.arrow' with ArrowWriter(path=lowerCAmelCase_, storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs, type(lowerCAmelCase_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowerCAmelCase_ ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter(stream=lowerCAmelCase_ ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =writer.finalize() assert num_examples == 2 assert num_bytes > 0 SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files', [False, True] ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" import PIL.Image SCREAMING_SNAKE_CASE =str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5), dtype=np.uinta ) ).save(lowerCAmelCase_, format='png' ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ParquetWriter( stream=lowerCAmelCase_, features=Features({'image': Image()} ), embed_local_files=lowerCAmelCase_ ) as writer: writer.write({'image': image_path} ) writer.finalize() SCREAMING_SNAKE_CASE =pa.BufferReader(output.getvalue() ) SCREAMING_SNAKE_CASE =pq.read_table(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'], lowerCAmelCase_ ) with open(lowerCAmelCase_, 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =pa.schema([pa.field('col_1', pa.string(), nullable=lowerCAmelCase_ )] ) SCREAMING_SNAKE_CASE =pa.BufferOutputStream() with ArrowWriter(stream=lowerCAmelCase_ ) as writer: writer._build_writer(inferred_schema=lowerCAmelCase_ ) assert writer._schema == pa.schema([pa.field('col_1', pa.string() )] )
334
0
A__ = 8.314462 # Unit - J mol-1 K-1 def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
230
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def snake_case__ ( ): """simple docstring""" assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
334
0