code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations class A_ : '''simple docstring''' def __init__( self , lowercase_ = 0 ): """simple docstring""" UpperCAmelCase_ : List[str] = key def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowercase_ ) ^ key ) for ch in content] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 0 ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ : int = "" for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 0 ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCAmelCase_ : List[Any] = "" for ch in content: ans += chr(ord(lowercase_ ) ^ key ) return ans def UpperCamelCase__ ( self , lowercase_ , lowercase_ = 0 ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) try: with open(lowercase_ ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowercase_ , lowercase_ ) ) except OSError: return False return True def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" assert isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ ) try: with open(lowercase_ ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowercase_ , lowercase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
61
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
import string def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase ='' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase =string.ascii_uppercase.find(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =num - key if num < 0: __UpperCamelCase =num + len(string.ascii_uppercase ) __UpperCamelCase =translated + string.ascii_uppercase[num] else: __UpperCamelCase =translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _UpperCAmelCase ( ): __UpperCamelCase =input('Encrypted message: ' ) __UpperCamelCase =message.upper() decrypt(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
62
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') lowerCAmelCase_ : List[Any] = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: lowerCAmelCase_ : Dict = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCAmelCase_ : Optional[Any] = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
63
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowercase( __a ): '''simple docstring''' lowercase__ = "biogpt" def __init__( self: Dict, a_: List[Any]=42_384, a_: int=1_024, a_: Optional[int]=24, a_: List[str]=16, a_: Optional[Any]=4_096, a_: int="gelu", a_: int=0.1, a_: List[Any]=0.1, a_: Any=1_024, a_: Optional[Any]=0.02, a_: Dict=1E-12, a_: Tuple=True, a_: Any=True, a_: Tuple=0.0, a_: str=0.0, a_: int=1, a_: Any=0, a_: List[str]=2, **a_: Optional[int], ): '''simple docstring''' _snake_case : Dict = vocab_size _snake_case : int = max_position_embeddings _snake_case : Optional[int] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Dict = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : Optional[Any] = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : List[str] = scale_embedding _snake_case : Dict = use_cache _snake_case : Optional[int] = layerdrop _snake_case : Any = activation_dropout super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
64
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path", type=__A, default="data/dump.txt", help="The path to the data." ) parser.add_argument("--tokenizer_type", type=__A, default="bert", choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name", type=__A, default="bert-base-uncased", help="The tokenizer to use." ) parser.add_argument("--dump_file", type=__A, default="data/dump", help="The dump file prefix." ) UpperCAmelCase__ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": UpperCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, "r", encoding="utf8" ) as fp: UpperCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(f"""{len(__A )} examples to process.""" ) UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = 10_000 UpperCAmelCase__ = time.time() for text in data: UpperCAmelCase__ = f"""{bos} {text.strip()} {sep}""" UpperCAmelCase__ = tokenizer.encode(__A, add_special_tokens=__A ) rslt.append(__A ) iter += 1 if iter % interval == 0: UpperCAmelCase__ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) UpperCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(f"""{len(__A )} examples processed.""" ) UpperCAmelCase__ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" UpperCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ = [np.uintaa(__A ) for d in rslt] else: UpperCAmelCase__ = [np.intaa(__A ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(__A, "wb" ) as handle: pickle.dump(rslt_, __A, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
65
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def A_ ( _lowercase ): '''simple docstring''' return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Union[str, Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue snake_case_ :Union[str, Any] = key.replace("""heads.cmd.mim_head.cls.predictions""", """mmm_image_head""" ) snake_case_ :str = key.replace("""heads.cmd.mlm_head.cls.predictions""", """mmm_text_head""" ) snake_case_ :Optional[Any] = key.replace("""heads.cmd.itm_head.cls""", """itm_head""" ) snake_case_ :Tuple = key.replace("""heads.cmd.itm_head.pooler""", """itm_head.pooler""" ) snake_case_ :int = key.replace("""heads.cmd.clip_head.logit_scale""", """flava.logit_scale""" ) snake_case_ :str = key.replace("""heads.fairseq_mlm.cls.predictions""", """mlm_head""" ) snake_case_ :Tuple = key.replace("""heads.imagenet.mim_head.cls.predictions""", """mim_head""" ) snake_case_ :Optional[int] = key.replace("""mm_text_projection""", """flava.text_to_mm_projection""" ) snake_case_ :List[str] = key.replace("""mm_image_projection""", """flava.image_to_mm_projection""" ) snake_case_ :str = key.replace("""image_encoder.module""", """flava.image_model""" ) snake_case_ :List[Any] = key.replace("""text_encoder.module""", """flava.text_model""" ) snake_case_ :str = key.replace("""mm_encoder.module.encoder.cls_token""", """flava.multimodal_model.cls_token""" ) snake_case_ :Any = key.replace("""mm_encoder.module""", """flava.multimodal_model""" ) snake_case_ :List[str] = key.replace("""text_projection""", """flava.text_projection""" ) snake_case_ :List[str] = key.replace("""image_projection""", """flava.image_projection""" ) snake_case_ :str = value.float() for key, value in codebook_state_dict.items(): snake_case_ :Optional[int] = value return upgrade @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase, _lowercase=None ): '''simple docstring''' if config_path is not None: snake_case_ :int = FlavaConfig.from_pretrained(_lowercase ) else: snake_case_ :int = FlavaConfig() snake_case_ :Optional[Any] = FlavaForPreTraining(_lowercase ).eval() snake_case_ :Any = convert_dalle_checkpoint(_lowercase, _lowercase, save_checkpoint=_lowercase ) if os.path.exists(_lowercase ): snake_case_ :List[str] = torch.load(_lowercase, map_location="""cpu""" ) else: snake_case_ :Optional[int] = torch.hub.load_state_dict_from_url(_lowercase, map_location="""cpu""" ) snake_case_ :List[Any] = upgrade_state_dict(_lowercase, _lowercase ) hf_model.load_state_dict(_lowercase ) snake_case_ :Optional[int] = hf_model.state_dict() snake_case_ :int = count_parameters(_lowercase ) snake_case_ :Optional[Any] = count_parameters(_lowercase ) + count_parameters(_lowercase ) assert torch.allclose(_lowercase, _lowercase, atol=1e-3 ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __a = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
66
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import itertools import math def __lowerCAmelCase ( UpperCamelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase = 2 while True: if is_prime(UpperCamelCase__ ): yield num num += 1 def __lowerCAmelCase ( UpperCamelCase__ = 1_00_01 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , UpperCamelCase__ ) ) if __name__ == "__main__": print(f'{solution() = }')
67
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = """MobileNetV1Config""" # Base docstring lowerCAmelCase__ = """google/mobilenet_v1_1.0_224""" lowerCAmelCase__ = [1, 1_0_2_4, 7, 7] # Image classification docstring lowerCAmelCase__ = """google/mobilenet_v1_1.0_224""" lowerCAmelCase__ = """tabby, tabby cat""" lowerCAmelCase__ = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Optional[Any]=None ) -> Dict: '''simple docstring''' A__ = {} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = model.mobilenet_va else: A__ = model A__ = "MobilenetV1/Conv2d_0/" A__ = backbone.conv_stem.convolution.weight A__ = backbone.conv_stem.normalization.bias A__ = backbone.conv_stem.normalization.weight A__ = backbone.conv_stem.normalization.running_mean A__ = backbone.conv_stem.normalization.running_var for i in range(1_3 ): A__ = i + 1 A__ = i * 2 A__ = backbone.layer[pt_index] A__ = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var A__ = backbone.layer[pt_index + 1] A__ = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): A__ = "MobilenetV1/Logits/Conv2d_1c_1x1/" A__ = model.classifier.weight A__ = model.classifier.bias return tf_to_pt_map def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: str ) -> Union[str, Any]: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model A__ = tf.train.list_variables(SCREAMING_SNAKE_CASE_ ) A__ = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) A__ = tf.train.load_variable(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = array # Build TF to PyTorch weights loading map A__ = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue A__ = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) A__ = np.transpose(SCREAMING_SNAKE_CASE_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer A__ = array.squeeze().transpose() else: A__ = np.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) A__ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) tf_weights.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + "/RMSProp" , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + "/RMSProp_1" , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , SCREAMING_SNAKE_CASE_ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: torch.Tensor , SCREAMING_SNAKE_CASE_: nn.Convad ) -> torch.Tensor: '''simple docstring''' A__ , A__ = features.shape[-2:] A__ , A__ = conv_layer.stride A__ , A__ = conv_layer.kernel_size if in_height % stride_height == 0: A__ = max(kernel_height - stride_height , 0 ) else: A__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: A__ = max(kernel_width - stride_width , 0 ) else: A__ = max(kernel_width - (in_width % stride_width) , 0 ) A__ = pad_along_width // 2 A__ = pad_along_width - pad_left A__ = pad_along_height // 2 A__ = pad_along_height - pad_top A__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , "constant" , 0.0 ) class a__ ( nn.Module ): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1 , lowercase = 1 , lowercase = False , lowercase = True , lowercase = True , ) -> None: '''simple docstring''' super().__init__() A__ = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' ) A__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) A__ = nn.Convad( in_channels=lowercase , out_channels=lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase , groups=lowercase , bias=lowercase , padding_mode="zeros" , ) if use_normalization: A__ = nn.BatchNormad( num_features=lowercase , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowercase , track_running_stats=lowercase , ) else: A__ = None if use_activation: if isinstance(lowercase , lowercase ): A__ = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowercase ): A__ = ACTaFN[config.hidden_act] else: A__ = config.hidden_act else: A__ = None def UpperCamelCase ( self , lowercase ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: A__ = apply_tf_padding(lowercase , self.convolution ) A__ = self.convolution(lowercase ) if self.normalization is not None: A__ = self.normalization(lowercase ) if self.activation is not None: A__ = self.activation(lowercase ) return features class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = MobileNetVaConfig __lowerCamelCase = load_tf_weights_in_mobilenet_va __lowerCamelCase = 'mobilenet_v1' __lowerCamelCase = 'pixel_values' __lowerCamelCase = False def UpperCamelCase ( self , lowercase ) -> None: '''simple docstring''' if isinstance(lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , snake_case , ) class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase , lowercase = True ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowercase ) A__ = config A__ = 32 A__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) A__ = MobileNetVaConvLayer( lowercase , in_channels=config.num_channels , out_channels=lowercase , kernel_size=3 , stride=2 , ) A__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] A__ = nn.ModuleList() for i in range(13 ): A__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 A__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowercase , in_channels=lowercase , out_channels=lowercase , kernel_size=3 , stride=strides[i] , groups=lowercase , ) ) self.layer.append( MobileNetVaConvLayer( lowercase , in_channels=lowercase , out_channels=lowercase , kernel_size=1 , ) ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self , lowercase = None , lowercase = None , lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) A__ = self.conv_stem(lowercase ) A__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): A__ = layer_module(lowercase ) if output_hidden_states: A__ = all_hidden_states + (hidden_states,) A__ = hidden_states if self.pooler is not None: A__ = torch.flatten(self.pooler(lowercase ) , start_dim=1 ) else: A__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=lowercase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case , ) class a__ ( snake_case ): """simple docstring""" def __init__( self , lowercase ) -> None: '''simple docstring''' super().__init__(lowercase ) A__ = config.num_labels A__ = MobileNetVaModel(lowercase ) A__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head A__ = nn.Dropout(config.classifier_dropout_prob , inplace=lowercase ) A__ = nn.Linear(lowercase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.mobilenet_va(lowercase , output_hidden_states=lowercase , return_dict=lowercase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(self.dropout(lowercase ) ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = "single_label_classification" else: A__ = "multi_label_classification" if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(lowercase , lowercase ) if not return_dict: A__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states , )
68
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(lowerCAmelCase__ ) class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "rag" SCREAMING_SNAKE_CASE_ = True def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=True, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=" / ", lowerCAmelCase__=" // ", lowerCAmelCase__=5, lowerCAmelCase__=300, lowerCAmelCase__=768, lowerCAmelCase__=8, lowerCAmelCase__="wiki_dpr", lowerCAmelCase__="train", lowerCAmelCase__="compressed", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=0.0, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=None, **lowerCAmelCase__, ) -> Dict: super().__init__( bos_token_id=lowerCAmelCase__, pad_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, decoder_start_token_id=lowerCAmelCase__, forced_eos_token_id=lowerCAmelCase__, is_encoder_decoder=lowerCAmelCase__, prefix=lowerCAmelCase__, vocab_size=lowerCAmelCase__, **lowerCAmelCase__, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" snake_case_ = kwargs.pop('question_encoder') snake_case_ = question_encoder_config.pop('model_type') snake_case_ = kwargs.pop('generator') snake_case_ = decoder_config.pop('model_type') from ..auto.configuration_auto import AutoConfig snake_case_ = AutoConfig.for_model(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = AutoConfig.for_model(lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = reduce_loss snake_case_ = label_smoothing snake_case_ = exclude_bos_score snake_case_ = do_marginalize snake_case_ = title_sep snake_case_ = doc_sep snake_case_ = n_docs snake_case_ = max_combined_length snake_case_ = dataset snake_case_ = dataset_split snake_case_ = index_name snake_case_ = retrieval_vector_size snake_case_ = retrieval_batch_size snake_case_ = passages_path snake_case_ = index_path snake_case_ = use_dummy_dataset snake_case_ = output_retrieved snake_case_ = do_deduplication snake_case_ = use_cache if self.forced_eos_token_id is None: snake_case_ = getattr(self.generator, 'forced_eos_token_id', lowerCAmelCase__) @classmethod def a_ ( cls, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **lowerCAmelCase__) def a_ ( self) -> int: snake_case_ = copy.deepcopy(self.__dict__) snake_case_ = self.question_encoder.to_dict() snake_case_ = self.generator.to_dict() snake_case_ = self.__class__.model_type return output
69
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : List[Any] ) -> Optional[Any]: _lowerCAmelCase = logging.get_logger() # the current default level is logging.WARNING _lowerCAmelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(__snake_case ) def lowercase__ ( self : int ) -> str: _lowerCAmelCase = logging.get_verbosity() _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(__snake_case ) as cl: logger.warning(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(__snake_case ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowercase__ ( self : Tuple ) -> Tuple: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , __snake_case ) _lowerCAmelCase = logging.log_levels[env_level_str] _lowerCAmelCase = logging.get_verbosity() self.assertEqual( __snake_case , __snake_case , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , ) # restore to the original level _lowerCAmelCase = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowercase__ ( self : Optional[int] ) -> Any: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.logging.getLogger() with CaptureLogger(__snake_case ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowercase__ ( self : Dict ) -> Any: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _lowerCAmelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) _lowerCAmelCase = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(__snake_case ) as cl: logger.warning_advice(__snake_case ) self.assertEqual(cl.out , msg + """\n""" ) def UpperCamelCase__ ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
70
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
import random from .binary_exp_mod import bin_exp_mod def A ( a_ ,a_=1_000 ) -> Optional[Any]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCamelCase : List[Any] =n - 1 __UpperCamelCase : Dict =0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCamelCase : Optional[Any] =0 while count < prec: __UpperCamelCase : Dict =random.randint(2 ,n - 1 ) __UpperCamelCase : Optional[Any] =bin_exp_mod(a_ ,a_ ,a_ ) if b != 1: __UpperCamelCase : List[str] =True for _ in range(a_ ): if b == n - 1: __UpperCamelCase : Tuple =False break __UpperCamelCase : Dict =b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": A_ :str = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
71
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
"""simple docstring""" def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(A_ ): if len(A_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A_ ) ) return data_lists def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : list[list[float]] = [] for dlist, weight in zip(A_, A_ ): _lowerCamelCase : Any = min(A_ ) _lowerCamelCase : Optional[Any] = max(A_ ) _lowerCamelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: _lowerCamelCase : str = F'''Invalid weight of {weight:f} provided''' raise ValueError(A_ ) score_lists.append(A_ ) return score_lists def snake_case_ ( A_ : list[list[float]] ): '''simple docstring''' _lowerCamelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A_ ): _lowerCamelCase : List[str] = final_scores[j] + ele return final_scores def snake_case_ ( A_ : list[list[float]], A_ : list[int] ): '''simple docstring''' _lowerCamelCase : Tuple = get_data(A_ ) _lowerCamelCase : Optional[Any] = calculate_each_score(A_, A_ ) _lowerCamelCase : str = generate_final_scores(A_ ) # append scores to source data for i, ele in enumerate(A_ ): source_data[i].append(A_ ) return source_data
72
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : torch.FloatTensor class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Dict ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : Tuple[str] = ("DownEncoderBlock2D",) ,SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpDecoderBlock2D",) ,SCREAMING_SNAKE_CASE__ : Tuple[int] = (6_4,) ,SCREAMING_SNAKE_CASE__ : int = 1 ,SCREAMING_SNAKE_CASE__ : str = "silu" ,SCREAMING_SNAKE_CASE__ : int = 3 ,SCREAMING_SNAKE_CASE__ : int = 3_2 ,SCREAMING_SNAKE_CASE__ : int = 2_5_6 ,SCREAMING_SNAKE_CASE__ : int = 3_2 ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : float = 0.18215 ,SCREAMING_SNAKE_CASE__ : str = "group" ,): super().__init__() # pass init params to Encoder __lowerCamelCase : List[Any] = Encoder( in_channels=SCREAMING_SNAKE_CASE__ ,out_channels=SCREAMING_SNAKE_CASE__ ,down_block_types=SCREAMING_SNAKE_CASE__ ,block_out_channels=SCREAMING_SNAKE_CASE__ ,layers_per_block=SCREAMING_SNAKE_CASE__ ,act_fn=SCREAMING_SNAKE_CASE__ ,norm_num_groups=SCREAMING_SNAKE_CASE__ ,double_z=SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCamelCase : Any = nn.Convad(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1) __lowerCamelCase : Optional[Any] = VectorQuantizer(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,beta=0.25 ,remap=SCREAMING_SNAKE_CASE__ ,sane_index_shape=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = nn.Convad(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,1) # pass init params to Decoder __lowerCamelCase : Dict = Decoder( in_channels=SCREAMING_SNAKE_CASE__ ,out_channels=SCREAMING_SNAKE_CASE__ ,up_block_types=SCREAMING_SNAKE_CASE__ ,block_out_channels=SCREAMING_SNAKE_CASE__ ,layers_per_block=SCREAMING_SNAKE_CASE__ ,act_fn=SCREAMING_SNAKE_CASE__ ,norm_num_groups=SCREAMING_SNAKE_CASE__ ,norm_type=SCREAMING_SNAKE_CASE__ ,) @apply_forward_hook def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : bool = True): __lowerCamelCase : int = self.encoder(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = self.quant_conv(SCREAMING_SNAKE_CASE__) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE__) @apply_forward_hook def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = True): # also go through quantization layer if not force_not_quantize: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = self.quantize(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Optional[Any] = h __lowerCamelCase : Optional[Any] = self.post_quant_conv(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.decoder(SCREAMING_SNAKE_CASE__ ,quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : torch.FloatTensor ,SCREAMING_SNAKE_CASE__ : bool = True): __lowerCamelCase : Union[str, Any] = sample __lowerCamelCase : Dict = self.encode(SCREAMING_SNAKE_CASE__).latents __lowerCamelCase : Union[str, Any] = self.decode(SCREAMING_SNAKE_CASE__).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__)
73
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = '''vivit''' def __init__( self : str ,A_ : List[str]=224 ,A_ : Union[str, Any]=32 ,A_ : List[str]=[2, 16, 16] ,A_ : Any=3 ,A_ : int=768 ,A_ : Optional[int]=12 ,A_ : int=12 ,A_ : Any=3072 ,A_ : Union[str, Any]="gelu_fast" ,A_ : Any=0.0 ,A_ : Dict=0.0 ,A_ : Optional[int]=0.02 ,A_ : Union[str, Any]=1e-06 ,A_ : Union[str, Any]=True ,**A_ : List[Any] ,) -> Dict: A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = num_frames A = tubelet_size A = num_channels A = qkv_bias super().__init__(**A_ )
74
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def a_ ( __snake_case : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( ) -> Iterator[int]: """simple docstring""" lowerCamelCase_ =2 while True: if is_prime(__snake_case ): yield num num += 1 def a_ ( __snake_case : int = 200_0000 ) -> int: """simple docstring""" return sum(takewhile(lambda __snake_case : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
75
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE : Optional[int] = DetaConfig( backbone_config=_a , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_a , with_box_refine=_a , two_stage=_a , ) # set labels SCREAMING_SNAKE_CASE : Tuple = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE : Optional[int] = 366 SCREAMING_SNAKE_CASE : Optional[Any] = "object365-id2label.json" else: SCREAMING_SNAKE_CASE : str = 91 SCREAMING_SNAKE_CASE : Tuple = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : str = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type="dataset")) , "r")) SCREAMING_SNAKE_CASE : Union[str, Any] = {int(_a): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[str] = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight")) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight")) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias")) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight")) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias")) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight")) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Tuple = dct.pop(_a) SCREAMING_SNAKE_CASE : Optional[Any] = val def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Any = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): SCREAMING_SNAKE_CASE : Optional[int] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : str = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") SCREAMING_SNAKE_CASE : Dict = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Any = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : int = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( _a , _a): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE : List[str] = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight") SCREAMING_SNAKE_CASE : str = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE : str = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE : Any = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(_a , stream=_a).raw) return im @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : int = get_deta_config(_a) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE : Any = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth") elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE : Any = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth") else: raise ValueError(f"Model name {model_name} not supported") SCREAMING_SNAKE_CASE : List[Any] = torch.load(_a , map_location="cpu")["model"] # original state dict for name, param in state_dict.items(): print(_a , param.shape) # rename keys SCREAMING_SNAKE_CASE : Optional[Any] = create_rename_keys(_a) for src, dest in rename_keys: rename_key(_a , _a , _a) read_in_swin_q_k_v(_a , config.backbone_config) read_in_decoder_q_k_v(_a , _a) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(_a) SCREAMING_SNAKE_CASE : Optional[int] = val if "input_proj" in key: SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : str = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE : Any = state_dict.pop(_a) SCREAMING_SNAKE_CASE : str = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE : str = DetaForObjectDetection(_a) model.load_state_dict(_a) model.eval() SCREAMING_SNAKE_CASE : str = "cuda" if torch.cuda.is_available() else "cpu" model.to(_a) # load image processor SCREAMING_SNAKE_CASE : int = DetaImageProcessor(format="coco_detection") # verify our conversion on image SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=_a , return_tensors="pt") SCREAMING_SNAKE_CASE : List[Any] = encoding["pixel_values"] SCREAMING_SNAKE_CASE : Dict = model(pixel_values.to(_a)) # verify logits print("Logits:" , outputs.logits[0, :3, :3]) print("Boxes:" , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]]) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]]) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_a) , atol=1E-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_a) , atol=1E-4) print("Everything ok!") if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(_a).mkdir(exist_ok=_a) model.save_pretrained(_a) processor.save_pretrained(_a) # Push to hub if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(f"jozhang97/{model_name}") processor.push_to_hub(f"jozhang97/{model_name}") if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
76
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
"""simple docstring""" from collections.abc import Callable import numpy as np def a_ ( _lowerCAmelCase : Callable , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): '''simple docstring''' lowercase__ : List[str] = int(np.ceil((x_end - xa) / step_size ) ) lowercase__ : List[Any] = np.zeros((n + 1,) ) lowercase__ : Union[str, Any] = ya lowercase__ : List[Any] = xa for k in range(_lowerCAmelCase ): lowercase__ : Any = y[k] + step_size * ode_func(_lowerCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
77
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from ... import PretrainedConfig snake_case_ = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __UpperCamelCase = """nezha""" def __init__( self :List[Any] , lowercase_ :Optional[Any]=2_11_28 , lowercase_ :List[str]=7_68 , lowercase_ :List[str]=12 , lowercase_ :Dict=12 , lowercase_ :Tuple=30_72 , lowercase_ :Optional[int]="gelu" , lowercase_ :Optional[Any]=0.1 , lowercase_ :List[Any]=0.1 , lowercase_ :List[Any]=5_12 , lowercase_ :Tuple=64 , lowercase_ :str=2 , lowercase_ :Optional[Any]=0.02 , lowercase_ :int=1E-12 , lowercase_ :Any=0.1 , lowercase_ :Optional[int]=0 , lowercase_ :Any=2 , lowercase_ :Dict=3 , lowercase_ :Any=True , **lowercase_ :Tuple , ) -> List[Any]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = max_relative_position UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = classifier_dropout UpperCAmelCase = use_cache
78
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
'''simple docstring''' import math def __lowercase ( ) -> None: '''simple docstring''' _A = input("Enter message: " ) _A = int(input(F'''Enter key [2-{len(__lowercase ) - 1}]: ''' ) ) _A = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): _A = encrypt_message(__lowercase , __lowercase ) elif mode.lower().startswith("d" ): _A = decrypt_message(__lowercase , __lowercase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + '|'}''' ) def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = [""] * key for col in range(__lowercase ): _A = col while pointer < len(__lowercase ): cipher_text[col] += message[pointer] pointer += key return "".join(__lowercase ) def __lowercase ( __lowercase , __lowercase ) -> str: '''simple docstring''' _A = math.ceil(len(__lowercase ) / key ) _A = key _A = (num_cols * num_rows) - len(__lowercase ) _A = [""] * num_cols _A = 0 _A = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _A = 0 row += 1 return "".join(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
79
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
'''simple docstring''' from math import ceil def _UpperCamelCase ( __A , __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = list(range(0 , __A ) ) UpperCamelCase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ = [] for i in device_map_blocks: if device_map_blocks.count(__A ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__A ) # Missing blocks UpperCamelCase__ = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ = [i for i in device_map_blocks if i not in blocks] if len(__A ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__A ) ) if len(__A ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__A ) ) if len(__A ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__A ) ) def _UpperCamelCase ( __A , __A ) -> int: '''simple docstring''' UpperCamelCase__ = list(range(__A ) ) UpperCamelCase__ = int(ceil(n_layers / len(__A ) ) ) UpperCamelCase__ = [layers[i : i + n_blocks] for i in range(0 , __A , __A )] return dict(zip(__A , __A ) )
80
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase_ : int = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A ) -> str: super().__init__() a =nn.ModuleList(__A ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A , __A , __A = None , __A = None , __A = None , __A = None , __A = False , __A = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(__A , __A , self.nets ) ): a , a =controlnet( __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) # merge samples if i == 0: a , a =down_samples, mid_sample else: a =[ samples_prev + samples_curr for samples_prev, samples_curr in zip(__A , __A ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def SCREAMING_SNAKE_CASE ( self , __A , __A = True , __A = None , __A = False , __A = None , ) -> List[Any]: a =0 a =save_directory for controlnet in self.nets: controlnet.save_pretrained( __A , is_main_process=__A , save_function=__A , safe_serialization=__A , variant=__A , ) idx += 1 a =model_path_to_save + f'''_{idx}''' @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , **__A ) -> int: a =0 a =[] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... a =pretrained_model_path while os.path.isdir(__A ): a =ControlNetModel.from_pretrained(__A , **__A ) controlnets.append(__A ) idx += 1 a =pretrained_model_path + f'''_{idx}''' logger.info(f'''{len(__A )} controlnets loaded from {pretrained_model_path}.''' ) if len(__A ) == 0: raise ValueError( f'''No ControlNets found under {os.path.dirname(__A )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(__A )
81
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=snake_case , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=snake_case , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=snake_case ) return parser.parse_args() def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = parse_args() # Import training_script as a module. _lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCAmelCase = script_fpath.stem _lowerCAmelCase = importlib.import_module(snake_case ) # Patch sys.argv _lowerCAmelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
82
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = XLMRobertaTokenizer lowercase__ = XLMRobertaTokenizerFast lowercase__ = True lowercase__ = True def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Tuple = XLMRobertaTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[int] = '<pad>' _UpperCamelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<s>' ) self.assertEqual(vocab_keys[1] ,'<pad>' ) self.assertEqual(vocab_keys[-1] ,'<mask>' ) self.assertEqual(len(lowerCamelCase__ ) ,1002 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1002 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : str = XLMRobertaTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) _UpperCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) _UpperCamelCase : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) _UpperCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] ,) def UpperCamelCase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase : Tuple = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Tuple = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tempfile.mkdtemp() _UpperCamelCase : str = tokenizer_r.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _UpperCamelCase : str = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase : int = tokenizer_r.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase : str = tempfile.mkdtemp() _UpperCamelCase : Any = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ ,lowerCamelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase : Tuple = tokenizer_r.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase : Tuple = tempfile.mkdtemp() _UpperCamelCase : Dict = tokenizer_r.save_pretrained(lowerCamelCase__ ,legacy_format=lowerCamelCase__ ) _UpperCamelCase : int = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Any = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ ,lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ ,f.name ) _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer(f.name ,keep_accents=lowerCamelCase__ ) _UpperCamelCase : str = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase : int = self.get_tokenizer() _UpperCamelCase : List[str] = self.get_rust_tokenizer() _UpperCamelCase : Any = 'I was born in 92000, and this is falsé.' _UpperCamelCase : str = tokenizer.tokenize(lowerCamelCase__ ) _UpperCamelCase : Any = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Tuple = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Tuple = self.get_rust_tokenizer() _UpperCamelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'Hello World!' _UpperCamelCase : str = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ ,self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _UpperCamelCase : str = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ ,self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # fmt: off _UpperCamelCase : Union[str, Any] = {'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='xlm-roberta-base' ,revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' ,)
83
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): UpperCAmelCase_ :Optional[datasets.Features] = None def _snake_case ( lowercase__ : "pyspark.sql.DataFrame" , lowercase__ : List[int] , ) -> Any: '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase_ :List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: lowerCAmelCase_ :Optional[int] = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) lowerCAmelCase_ :Optional[Any] = partition_df.collect() lowerCAmelCase_ :Dict = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ): def __init__( self , __A , __A=None , ) -> Optional[Any]: lowerCAmelCase_ :List[str] = df lowerCAmelCase_ :str = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase_ :int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Tuple: yield from self.generate_examples_fn() def __lowerCAmelCase ( self , __A ) -> "SparkExamplesIterable": lowerCAmelCase_ :List[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def __lowerCAmelCase ( self , __A , __A ) -> "SparkExamplesIterable": lowerCAmelCase_ :Optional[Any] = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def __lowerCAmelCase ( self ) -> int: return len(self.partition_order ) class _SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ): UpperCAmelCase_ :Optional[Any] = SparkConfig def __init__( self , __A , __A = None , __A = None , **__A , ) -> int: import pyspark lowerCAmelCase_ :Tuple = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase_ :Union[str, Any] = df lowerCAmelCase_ :Optional[Any] = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def __lowerCAmelCase ( self ) -> int: # Returns the path of the created file. def create_cache_and_write_probe(__A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) lowerCAmelCase_ :Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase_ :int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __lowerCAmelCase ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , __A ) -> Any: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: import pyspark def get_arrow_batch_size(__A ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) lowerCAmelCase_ :Tuple = self.df.count() lowerCAmelCase_ :Union[str, Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase_ :Tuple = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase_ :List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase_ :str = min(__A , int(approx_total_size / max_shard_size ) ) lowerCAmelCase_ :Optional[int] = self.df.repartition(__A ) def __lowerCAmelCase ( self , __A , __A , __A , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark lowerCAmelCase_ :Optional[int] = ParquetWriter if file_format == """parquet""" else ArrowWriter lowerCAmelCase_ :Dict = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath lowerCAmelCase_ :Optional[Any] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase_ :List[str] = self.config.features lowerCAmelCase_ :List[Any] = self._writer_batch_size lowerCAmelCase_ :str = self._fs.storage_options def write_arrow(__A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase_ :Dict = pyspark.TaskContext().taskAttemptId() lowerCAmelCase_ :int = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) lowerCAmelCase_ :Tuple = 0 lowerCAmelCase_ :List[str] = writer_class( features=__A , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) lowerCAmelCase_ :int = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 lowerCAmelCase_ :int = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) lowerCAmelCase_ :Any = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: lowerCAmelCase_ , lowerCAmelCase_ :Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): lowerCAmelCase_ :Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) lowerCAmelCase_ :Optional[int] = ( self.df.mapInArrow(__A , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self , __A , __A = "arrow" , __A = None , __A = None , **__A , ) -> Any: self._validate_cache_dir() lowerCAmelCase_ :Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) lowerCAmelCase_ :Optional[Any] = not is_remote_filesystem(self._fs ) lowerCAmelCase_ :Tuple = os.path.join if is_local else posixpath.join lowerCAmelCase_ :List[Any] = """-TTTTT-SSSSS-of-NNNNN""" lowerCAmelCase_ :int = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" lowerCAmelCase_ :Optional[Any] = path_join(self._output_dir , __A ) lowerCAmelCase_ :Dict = 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :List[str] = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) lowerCAmelCase_ :Optional[int] = total_num_examples lowerCAmelCase_ :Tuple = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: lowerCAmelCase_ :Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase_ :List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __A , __A , __A , ): rename( __A , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , ) lowerCAmelCase_ :Tuple = [] lowerCAmelCase_ :Tuple = 0 for i in range(len(__A ) ): lowerCAmelCase_ , lowerCAmelCase_ :Dict = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect() else: # don't use any pattern lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(__A , """""" ) , ) def __lowerCAmelCase ( self , __A , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
84
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _snake_case : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=False , a__=True , a__="None" , a__=3 , a__=4 , a__=None , ) -> int: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = relative_attention snake_case_ = position_biased_input snake_case_ = pos_att_type snake_case_ = scope def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = TFDebertaVaModel(config=a__ ) snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} snake_case_ = [input_ids, input_mask] snake_case_ = model(a__ ) snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = TFDebertaVaForMaskedLM(config=a__ ) snake_case_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Any: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = TFDebertaVaForSequenceClassification(config=a__ ) snake_case_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = TFDebertaVaForTokenClassification(config=a__ ) snake_case_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case_ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> Any: '''simple docstring''' snake_case_ = TFDebertaVaForQuestionAnswering(config=a__ ) snake_case_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } snake_case_ = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : str = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : Optional[int] = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Optional[int] = False def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = TFDebertaVaModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) @slow def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a__ ) @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @slow def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) snake_case_ = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) snake_case_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case_ = model(a__ , attention_mask=a__ )[0] snake_case_ = tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a__ , atol=1e-4 )
85
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCamelCase__ = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ lowerCamelCase__ = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ lowerCamelCase__ = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class A__ ( datasets.Metric): def __lowerCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="auto" , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=5_00 , _SCREAMING_SNAKE_CASE="gpt2-large" , _SCREAMING_SNAKE_CASE=-1 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=25 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=25 , ): __lowerCAmelCase : str = compute_mauve( p_text=_SCREAMING_SNAKE_CASE , q_text=_SCREAMING_SNAKE_CASE , p_features=_SCREAMING_SNAKE_CASE , q_features=_SCREAMING_SNAKE_CASE , p_tokens=_SCREAMING_SNAKE_CASE , q_tokens=_SCREAMING_SNAKE_CASE , num_buckets=_SCREAMING_SNAKE_CASE , pca_max_data=_SCREAMING_SNAKE_CASE , kmeans_explained_var=_SCREAMING_SNAKE_CASE , kmeans_num_redo=_SCREAMING_SNAKE_CASE , kmeans_max_iter=_SCREAMING_SNAKE_CASE , featurize_model_name=_SCREAMING_SNAKE_CASE , device_id=_SCREAMING_SNAKE_CASE , max_text_length=_SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=_SCREAMING_SNAKE_CASE , mauve_scaling_factor=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE , ) return out
86
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
from datetime import datetime as dt import os from github import Github UpperCamelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def lowercase_ ( ): lowercase__ : Dict = Github(os.environ["GITHUB_TOKEN"]) lowercase__ : Optional[int] = g.get_repo("huggingface/transformers") lowercase__ : Optional[Any] = repo.get_issues(state="open") for issue in open_issues: lowercase__ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase: i.created_at , reverse=_lowerCamelCase) lowercase__ : Dict = comments[0] if len(_lowerCamelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
87
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ): '''simple docstring''' __magic_name__ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""", type=A_, default=1, help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""", type=A_, help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ), ) # rest from the training program parser.add_argument("""training_script_args""", nargs=A_ ) return parser.parse_args() def a__ ( ): '''simple docstring''' __magic_name__ = parse_args() # Import training_script as a module. __magic_name__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __magic_name__ = script_fpath.stem __magic_name__ = importlib.import_module(A_ ) # Patch sys.argv __magic_name__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
88
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import math import sys def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : Union[str, Any] = '' try: with open(lowerCAmelCase_ , 'rb' ) as binary_file: _a : Optional[int] = binary_file.read() for dat in data: _a : str = f"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : int = {'0': '0', '1': '1'} _a , _a : Optional[Any] = '', '' _a : Tuple = len(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _a : Dict = lexicon[curr_string] result += last_match_id _a : Tuple = last_match_id + '0' if math.loga(lowerCAmelCase_ ).is_integer(): _a : Optional[Any] = {} for curr_key in list(lowerCAmelCase_ ): _a : Tuple = lexicon.pop(lowerCAmelCase_ ) _a : List[Any] = new_lex _a : Any = last_match_id + '1' index += 1 _a : Optional[Any] = '' return result def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _a : Any = 8 try: with open(lowerCAmelCase_ , 'wb' ) as opened_file: _a : int = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCAmelCase_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __lowerCamelCase ( lowerCAmelCase_ ) -> str: _a : List[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _a : Union[str, Any] = data_bits[counter:] _a : int = data_bits[counter + 1 :] return data_bits def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _a : str = read_file_binary(lowerCAmelCase_ ) _a : List[Any] = remove_prefix(lowerCAmelCase_ ) _a : str = decompress_data(lowerCAmelCase_ ) write_file_binary(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
89
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: """simple docstring""" __lowerCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCamelCase = n - k # Calculate C(n,k) for i in range(UpperCamelCase__ ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , UpperCamelCase__ ) // (node_count + 1) def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" if n < 0: raise ValueError('factorial() not defined for negative values' ) __lowerCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( UpperCamelCase__ : int ) -> int: """simple docstring""" return catalan_number(UpperCamelCase__ ) * factorial(UpperCamelCase__ ) if __name__ == "__main__": __A = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
90
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
"""simple docstring""" import pytest UpperCAmelCase_ : Union[str, Any] = """__dummy_dataset1__""" UpperCAmelCase_ : Optional[int] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def _A () -> List[Any]: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _A () -> str: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _A (__a , __a , __a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = dataset_loading_script_name SCREAMING_SNAKE_CASE_ : int = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__a ) SCREAMING_SNAKE_CASE_ : Any = script_dir / f'{script_name}.py' with open(__a , '''w''' ) as f: f.write(__a ) return str(__a )
91
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE_ : list[float] ): if len(SCREAMING_SNAKE_CASE_ ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
92
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCAmelCase__ : lowerCAmelCase_ = MBartConfig lowerCAmelCase_ = {} lowerCAmelCase_ = '''gelu''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , ): """simple docstring""" lowercase_ : List[str] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Optional[int] = seq_length lowercase_ : List[str] = is_training lowercase_ : Dict = use_labels lowercase_ : Optional[Any] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : int = max_position_embeddings lowercase_ : Union[str, Any] = eos_token_id lowercase_ : str = pad_token_id lowercase_ : Tuple = bos_token_id def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ : str = prepare_mbart_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = TFMBartModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() lowercase_ : Dict = inputs_dict['''input_ids'''] lowercase_ : Tuple = input_ids[:1, :] lowercase_ : str = inputs_dict['''attention_mask'''][:1, :] lowercase_ : Optional[int] = inputs_dict['''head_mask'''] lowercase_ : Union[str, Any] = 1 # first forward pass lowercase_ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) lowercase_ , lowercase_ : Optional[int] = outputs.to_tuple() lowercase_ : Tuple = past_key_values[1] def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[str]=None , ): """simple docstring""" if attention_mask is None: lowercase_ : Optional[int] = tf.cast(tf.math.not_equal(__SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = TFMBartModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_tf class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] lowerCAmelCase_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] lowerCAmelCase_ = '''facebook/mbart-large-en-ro''' @cached_property def _snake_case ( self ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _snake_case ( self ): """simple docstring""" lowercase_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = self.translate_src_text(**__SCREAMING_SNAKE_CASE ) self.assertListEqual(self.expected_text , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = self.tokenizer(self.src_text , **__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) lowercase_ : str = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowercase_ : List[str] = self.tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) return generated_words @slow def _snake_case ( self ): """simple docstring""" self._assert_generated_batch_equal_expected()
93
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def _A ( SCREAMING_SNAKE_CASE : Tuple ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class __lowerCAmelCase : _lowercase : int _lowercase : str class __lowerCAmelCase ( UpperCamelCase__): def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] ={} a__ : List[Any] =[] a__ : List[str] =1 a__ : int =[1, 2] a__ : Optional[Any] ={"a": 1, "b": 2} a__ : str ={"a": [1, 2], "b": [3, 4]} a__ : Union[str, Any] ={"a": {"1": 1}, "b": 2} a__ : Optional[Any] ={"a": 1, "b": 2, "c": 3, "d": 4} a__ : int ={} a__ : List[Any] =[] a__ : Dict =2 a__ : Dict =[2, 3] a__ : Union[str, Any] ={"a": 2, "b": 3} a__ : List[str] ={"a": [2, 3], "b": [4, 5]} a__ : Tuple ={"a": {"1": 2}, "b": 3} a__ : str ={"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ : str =2 self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) a__ : List[Any] ={"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} a__ : Optional[int] ={"a": 2, "b": 0, "c": 2} a__ : Any ={ "a": np.eye(2 ).astype(lowerCAmelCase__ ), "b": np.zeros(3 ).astype(lowerCAmelCase__ ), "c": np.ones(2 ).astype(lowerCAmelCase__ ), } self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCAmelCase__ , lowerCAmelCase__ , map_numpy=lowerCAmelCase__ , num_proc=lowerCAmelCase__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowerCAmelCase__ ): # can't pickle a local lambda map_nested(lambda lowerCAmelCase__ : x + 1 , lowerCAmelCase__ , num_proc=lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : int ={"a": 1, "b": 2} a__ : str ={"a": 3, "b": 4} a__ : List[str] ={"a": 5, "b": 6} a__ : Tuple =sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' class __lowerCAmelCase : _lowercase : Optional[Any] = """bar""" a__ : Any =Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(lowerCAmelCase__ , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: a__ : Any ={f'''{i}''': i for i in range(SCREAMING_SNAKE_CASE )} a__ : Union[str, Any] =map_nested(lambda SCREAMING_SNAKE_CASE : x + 10 , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowerCAmelCase ( UpperCamelCase__): @require_tf def _lowercase ( self ) -> int: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers a__ : List[str] =layers.Dense(2 ) def gen_random_output(): a__ : Dict =tf.random.uniform((1, 3) ) return model(lowerCAmelCase__ ).numpy() with temp_seed(4_2 , set_tensorflow=lowerCAmelCase__ ): a__ : str =gen_random_output() with temp_seed(4_2 , set_tensorflow=lowerCAmelCase__ ): a__ : Optional[Any] =gen_random_output() a__ : Optional[Any] =gen_random_output() np.testing.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _lowercase ( self ) -> Any: '''simple docstring''' import torch def gen_random_output(): a__ : Dict =torch.nn.Linear(3 , 2 ) a__ : str =torch.rand(1 , 3 ) return model(lowerCAmelCase__ ).detach().numpy() with temp_seed(4_2 , set_pytorch=lowerCAmelCase__ ): a__ : Optional[int] =gen_random_output() with temp_seed(4_2 , set_pytorch=lowerCAmelCase__ ): a__ : Optional[Any] =gen_random_output() a__ : Optional[Any] =gen_random_output() np.testing.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _lowercase ( self ) -> Any: '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): a__ : List[str] =gen_random_output() with temp_seed(4_2 ): a__ : Optional[int] =gen_random_output() a__ : List[str] =gen_random_output() np.testing.assert_equal(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" , [{}] ) def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" a__ : int =NestedDataStructure(SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" , [ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] , ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" a__ : Any =NestedDataStructure(SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def _A ( ): """simple docstring""" a__ : List[str] =A(x=1 , y="foobar" ) a__ : Optional[Any] ={"x": 1, "y": "foobar"} assert asdict(SCREAMING_SNAKE_CASE ) == expected_output a__ : str ={"a": {"b": A(x=10 , y="foo" )}, "c": [A(x=20 , y="bar" )]} a__ : Union[str, Any] ={"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y="foo" )] ) def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" return text.split() def _A ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def _A ( ): """simple docstring""" with Pool(2 ) as pool: a__ : Union[str, Any] =list(iflatmap_unordered(SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: a__ : Dict =list(iflatmap_unordered(SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: a__ : Dict =[] for yield_time, content in iflatmap_unordered( SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(SCREAMING_SNAKE_CASE ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(SCREAMING_SNAKE_CASE ) == 4
95
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
"""simple docstring""" import numpy as np import qiskit def _snake_case ( lowercase__ = 8 , lowercase__ = None ): _lowerCamelCase : str = np.random.default_rng(seed=lowercase__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCamelCase : List[str] = 6 * key_len # Measurement basis for Alice's qubits. _lowerCamelCase : int = rng.integers(2 , size=lowercase__ ) # The set of states Alice will prepare. _lowerCamelCase : str = rng.integers(2 , size=lowercase__ ) # Measurement basis for Bob's qubits. _lowerCamelCase : str = rng.integers(2 , size=lowercase__ ) # Quantum Circuit to simulate BB84 _lowerCamelCase : Dict = qiskit.QuantumCircuit(lowercase__ , name='BB84' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(lowercase__ ): if alice_state[index] == 1: bbaa_circ.x(lowercase__ ) if alice_basis[index] == 1: bbaa_circ.h(lowercase__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(lowercase__ ): if bob_basis[index] == 1: bbaa_circ.h(lowercase__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCamelCase : List[str] = qiskit.Aer.get_backend('aer_simulator' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCamelCase : List[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1 , seed_simulator=lowercase__ ) # Returns the result of measurement. _lowerCamelCase : Optional[Any] = job.result().get_counts(lowercase__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCamelCase : Optional[int] = ''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( lowercase__ , lowercase__ , lowercase__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCamelCase : Union[str, Any] = gen_key[:key_len] if len(lowercase__ ) >= key_len else gen_key.ljust(lowercase__ , '0' ) return key if __name__ == "__main__": print(F"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
96
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ :List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ :Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ :int = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ :Union[str, Any] = 8 else: UpperCamelCase__ :Any = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCamelCase__ :Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def a ( __a , __a ) -> Optional[int]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1": UpperCamelCase__ :Union[str, Any] = 2 # New Code # UpperCamelCase__ :Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCamelCase__ :int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__a ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Union[str, Any] = config['''lr'''] UpperCamelCase__ :Dict = int(config['''num_epochs'''] ) UpperCamelCase__ :str = int(config['''seed'''] ) UpperCamelCase__ :Optional[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :Tuple = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ :Any = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ :Union[str, Any] = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler UpperCamelCase__ :List[Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__a ): UpperCamelCase__ :Optional[Any] = model(**__a ) UpperCamelCase__ :List[Any] = output.loss accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :str = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ :List[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __a ) def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__a , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCamelCase__ :Tuple = parser.parse_args() UpperCamelCase__ :List[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
97
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
"""simple docstring""" class snake_case : """simple docstring""" def __init__( self : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : List[str]=None ): UpperCAmelCase__ = data UpperCAmelCase__ = previous UpperCAmelCase__ = next_node def __str__( self : List[Any] ): return f'''{self.data}''' def __lowerCAmelCase ( self : str ): return self.data def __lowerCAmelCase ( self : Tuple ): return self.next def __lowerCAmelCase ( self : List[Any] ): return self.previous class snake_case : """simple docstring""" def __init__( self : Any ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = head def __iter__( self : Optional[int] ): return self def __lowerCAmelCase ( self : List[Any] ): if not self.current: raise StopIteration else: UpperCAmelCase__ = self.current.get_data() UpperCAmelCase__ = self.current.get_next() return value class snake_case : """simple docstring""" def __init__( self : Dict ): UpperCAmelCase__ = None # First node in list UpperCAmelCase__ = None # Last node in list def __str__( self : Tuple ): UpperCAmelCase__ = self.head UpperCAmelCase__ = [] while current is not None: nodes.append(current.get_data() ) UpperCAmelCase__ = current.get_next() return " ".join(str(lowerCamelCase__ ) for node in nodes ) def __contains__( self : Optional[int] ,lowerCamelCase__ : int ): UpperCAmelCase__ = self.head while current: if current.get_data() == value: return True UpperCAmelCase__ = current.get_next() return False def __iter__( self : str ): return LinkedListIterator(self.head ) def __lowerCAmelCase ( self : str ): if self.head: return self.head.get_data() return None def __lowerCAmelCase ( self : Optional[Any] ): if self.tail: return self.tail.get_data() return None def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Node ): if self.head is None: UpperCAmelCase__ = node UpperCAmelCase__ = node else: self.insert_before_node(self.head ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Node ): if self.head is None: self.set_head(lowerCamelCase__ ) else: self.insert_after_node(self.tail ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : int ): UpperCAmelCase__ = Node(lowerCamelCase__ ) if self.head is None: self.set_head(lowerCamelCase__ ) else: self.set_tail(lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Node ,lowerCamelCase__ : Node ): UpperCAmelCase__ = node UpperCAmelCase__ = node.previous if node.get_previous() is None: UpperCAmelCase__ = node_to_insert else: UpperCAmelCase__ = node_to_insert UpperCAmelCase__ = node_to_insert def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Node ,lowerCamelCase__ : Node ): UpperCAmelCase__ = node UpperCAmelCase__ = node.next if node.get_next() is None: UpperCAmelCase__ = node_to_insert else: UpperCAmelCase__ = node_to_insert UpperCAmelCase__ = node_to_insert def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ): UpperCAmelCase__ = 1 UpperCAmelCase__ = Node(lowerCamelCase__ ) UpperCAmelCase__ = self.head while node: if current_position == position: self.insert_before_node(lowerCamelCase__ ,lowerCamelCase__ ) return current_position += 1 UpperCAmelCase__ = node.next self.insert_after_node(self.tail ,lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : int ): UpperCAmelCase__ = self.head while node: if node.get_data() == item: return node UpperCAmelCase__ = node.get_next() raise Exception('Node not found' ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Any ): if (node := self.get_node(lowerCamelCase__ )) is not None: if node == self.head: UpperCAmelCase__ = self.head.get_next() if node == self.tail: UpperCAmelCase__ = self.tail.get_previous() self.remove_node_pointers(lowerCamelCase__ ) @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : Node ): if node.get_next(): UpperCAmelCase__ = node.previous if node.get_previous(): UpperCAmelCase__ = node.next UpperCAmelCase__ = None UpperCAmelCase__ = None def __lowerCAmelCase ( self : Union[str, Any] ): return self.head is None def a_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
98
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowercase : List[str] = logging.getLogger(__name__) torch.set_grad_enabled(False) lowercase : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" def A_ ( A__ , A__=100 , A__=" " ) -> List[str]: a__ : List[Any] = text.split(A__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )] def A_ ( A__ ) -> dict: a__ , a__ : Tuple = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(A__ ): titles.append(title if title is not None else '' ) texts.append(A__ ) return {"title": titles, "text": texts} def A_ ( A__ , A__ , A__ ) -> dict: a__ : Optional[int] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=A__ , padding='longest' , return_tensors='pt' )['input_ids'] a__ : List[Any] = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def A_ ( A__ , A__ , A__ , ) -> Dict: ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a__ : Optional[int] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a__ : Any = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc ) # And compute the embeddings a__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ ) a__ : int = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a__ : Union[str, Any] = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space a__ : str = dataset.map( partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , ) # And finally save your dataset a__ : Any = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(A__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a__ : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=A__ ) # And save the index a__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(A__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A__ : """simple docstring""" __A : str = field( default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) __A : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) __A : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) __A : Optional[str] = field( default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class A__ : """simple docstring""" __A : Optional[int] = field( default=__UpperCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) __A : int = field( default=1_6 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class A__ : """simple docstring""" __A : int = field( default=7_6_8 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowercase : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowercase , lowercase , lowercase : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowercase : Any = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
99
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from maths.prime_check import is_prime def _lowerCAmelCase ( UpperCamelCase_ ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = f"Input value of [number={number}] must be an integer" raise TypeError(UpperCamelCase_ ) if is_prime(UpperCamelCase_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
100
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = int(lowerCAmelCase__ ) assert noofclusters < len(lowerCAmelCase__ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowerCAmelCase__ ) ) ) shuffle(lowerCAmelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowerCAmelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder('''float64''' , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowerCAmelCase__ , lowerCAmelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowerCAmelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder('''int32''' ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowerCAmelCase__ , lowerCAmelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowerCAmelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder('''float''' , [dim] ) lowercase = tf.placeholder('''float''' , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowerCAmelCase__ , lowerCAmelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder('''float''' , [noofclusters] ) lowercase = tf.argmin(lowerCAmelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowerCAmelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowerCAmelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowerCAmelCase__ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowerCAmelCase__ , feed_dict={va: vect, va: sess.run(lowerCAmelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowerCAmelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowerCAmelCase__ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowerCAmelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowerCAmelCase__ , feed_dict={mean_input: array(lowerCAmelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowerCAmelCase__ ) lowercase = sess.run(lowerCAmelCase__ ) return centroids, assignments
101
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='layoutlmv3' def __init__(self , a_=5_02_65 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-5 , a_=1 , a_=0 , a_=2 , a_=10_24 , a_=1_28 , a_=1_28 , a_=True , a_=32 , a_=1_28 , a_=64 , a_=2_56 , a_=True , a_=True , a_=True , a_=2_24 , a_=3 , a_=16 , a_=None , **a_ , ): '''simple docstring''' super().__init__( vocab_size=a_ , hidden_size=a_ , num_hidden_layers=a_ , num_attention_heads=a_ , intermediate_size=a_ , hidden_act=a_ , hidden_dropout_prob=a_ , attention_probs_dropout_prob=a_ , max_position_embeddings=a_ , type_vocab_size=a_ , initializer_range=a_ , layer_norm_eps=a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , ) __snake_case : str = max_ad_position_embeddings __snake_case : Optional[Any] = coordinate_size __snake_case : str = shape_size __snake_case : Union[str, Any] = has_relative_attention_bias __snake_case : Dict = rel_pos_bins __snake_case : Union[str, Any] = max_rel_pos __snake_case : Union[str, Any] = has_spatial_attention_bias __snake_case : List[Any] = rel_ad_pos_bins __snake_case : List[Any] = max_rel_ad_pos __snake_case : Dict = text_embed __snake_case : Optional[Any] = visual_embed __snake_case : Dict = input_size __snake_case : Union[str, Any] = num_channels __snake_case : Any = patch_size __snake_case : Union[str, Any] = classifier_dropout class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.12' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1E-5 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 12 def SCREAMING_SNAKE_CASE (self , a_ , a_ = -1 , a_ = -1 , a_ = False , a_ = None , a_ = 3 , a_ = 40 , a_ = 40 , ): '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , a_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __snake_case : List[str] = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case : Any = processor.tokenizer.num_special_tokens_to_add(a_ ) __snake_case : Tuple = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence __snake_case : Optional[int] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __snake_case : Any = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __snake_case : int = self._generate_dummy_images(a_ , a_ , a_ , a_ ) __snake_case : Tuple = dict( processor( a_ , text=a_ , boxes=a_ , return_tensors=a_ , ) ) return inputs
102
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase( ): lowerCAmelCase_ : Tuple = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ).convert('''RGB''' ) return image def UpperCamelCase( __UpperCamelCase : str ): lowerCAmelCase_ : str = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : List[str] ): lowerCAmelCase_ : int = dct.pop(__UpperCamelCase ) lowerCAmelCase_ : Dict = val def UpperCamelCase( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase_ : str = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCAmelCase_ : int = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCAmelCase_ : Dict = torch.cat((q_bias, torch.zeros_like(__UpperCamelCase ,requires_grad=__UpperCamelCase ), v_bias) ) lowerCAmelCase_ : Tuple = qkv_bias def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ): lowerCAmelCase_ : Dict = 364 if '''coco''' in model_name else 224 lowerCAmelCase_ : Any = BlipaVisionConfig(image_size=__UpperCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase_ : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' ,eos_token_id=__UpperCamelCase ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase_ : Dict = OPTConfig.from_pretrained('''facebook/opt-6.7b''' ,eos_token_id=__UpperCamelCase ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase_ : int = TaConfig.from_pretrained('''google/flan-t5-xl''' ,dense_act_fn='''gelu''' ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase_ : List[Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' ,dense_act_fn='''gelu''' ,bos_token_id=1 ).to_dict() lowerCAmelCase_ : Optional[Any] = BlipaConfig(vision_config=__UpperCamelCase ,text_config=__UpperCamelCase ) return config, image_size @torch.no_grad() def UpperCamelCase( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : Any=False ): lowerCAmelCase_ : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) lowerCAmelCase_ : Optional[int] = tokenizer('''\n''' ,add_special_tokens=__UpperCamelCase ).input_ids[0] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_blipa_config(__UpperCamelCase ,eos_token_id=__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = BlipaForConditionalGeneration(__UpperCamelCase ).eval() lowerCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } lowerCAmelCase_ , lowerCAmelCase_ : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) lowerCAmelCase_ : Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = load_model_and_preprocess( name=__UpperCamelCase ,model_type=__UpperCamelCase ,is_eval=__UpperCamelCase ,device=__UpperCamelCase ) original_model.eval() print('''Done!''' ) # update state dict keys lowerCAmelCase_ : Tuple = original_model.state_dict() lowerCAmelCase_ : int = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase_ : Optional[Any] = state_dict.pop(__UpperCamelCase ) if key.startswith('''Qformer.bert''' ): lowerCAmelCase_ : List[str] = key.replace('''Qformer.bert''' ,'''qformer''' ) if "attention.self" in key: lowerCAmelCase_ : Union[str, Any] = key.replace('''self''' ,'''attention''' ) if "opt_proj" in key: lowerCAmelCase_ : Any = key.replace('''opt_proj''' ,'''language_projection''' ) if "t5_proj" in key: lowerCAmelCase_ : List[Any] = key.replace('''t5_proj''' ,'''language_projection''' ) if key.startswith('''opt''' ): lowerCAmelCase_ : Union[str, Any] = key.replace('''opt''' ,'''language''' ) if key.startswith('''t5''' ): lowerCAmelCase_ : Optional[int] = key.replace('''t5''' ,'''language''' ) lowerCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = hf_model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert len(__UpperCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase_ : List[str] = load_demo_image() lowerCAmelCase_ : Any = vis_processors['''eval'''](__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = tokenizer(['''\n'''] ,return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) # create processor lowerCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} ,image_mean=__UpperCamelCase ,image_std=__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = BlipaProcessor(image_processor=__UpperCamelCase ,tokenizer=__UpperCamelCase ) lowerCAmelCase_ : int = processor(images=__UpperCamelCase ,return_tensors='''pt''' ).pixel_values.to(__UpperCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCamelCase ,__UpperCamelCase ) original_model.to(__UpperCamelCase ) hf_model.to(__UpperCamelCase ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase_ : List[str] = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits lowerCAmelCase_ : str = hf_model(__UpperCamelCase ,__UpperCamelCase ).logits else: lowerCAmelCase_ : str = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits lowerCAmelCase_ : Union[str, Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id ,-100 ) lowerCAmelCase_ : Tuple = hf_model(__UpperCamelCase ,__UpperCamelCase ,labels=__UpperCamelCase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' ,original_logits[0, :3, :3] ) print('''First values of HF logits:''' ,logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] ,device=__UpperCamelCase ) assert torch.allclose(logits[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase_ : List[str] = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] ,device=__UpperCamelCase ) else: # cast to same type lowerCAmelCase_ : Dict = logits.dtype assert torch.allclose(original_logits.to(__UpperCamelCase ) ,__UpperCamelCase ,atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) lowerCAmelCase_ : Union[str, Any] = '''''' lowerCAmelCase_ : List[str] = tokenizer(__UpperCamelCase ,return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) lowerCAmelCase_ : Any = original_model.generate({'''image''': original_pixel_values} ) lowerCAmelCase_ : Dict = hf_model.generate( __UpperCamelCase ,__UpperCamelCase ,do_sample=__UpperCamelCase ,num_beams=5 ,max_length=30 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.0 ,length_penalty=1.0 ,temperature=1 ,) print('''Original generation:''' ,__UpperCamelCase ) lowerCAmelCase_ : str = input_ids.shape[1] lowerCAmelCase_ : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] ,skip_special_tokens=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' ,__UpperCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() A__ : Tuple = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A__ : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
103
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowerCAmelCase__ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir ,'''models/bert/''' ) ) __lowercase = self.transformer_dir shutil.copy( os.path.join(lowercase__ ,'''src/transformers/models/bert/modeling_bert.py''' ) ,os.path.join(self.transformer_dir ,'''models/bert/modeling_bert.py''' ) ,) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Dict=None ): __lowercase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __lowercase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=1_1_9 ) __lowercase = black.format_str(lowercase__ ,mode=lowercase__ ) __lowercase = os.path.join(self.transformer_dir ,'''new_code.py''' ) with open(lowercase__ ,'''w''' ,newline='''\n''' ) as f: f.write(lowercase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=lowercase__ ) with open(lowercase__ ,'''r''' ) as f: self.assertTrue(f.read() ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' ,'''BertLMPredictionHead''' ,REFERENCE_CODE + '''\n''' ,) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' ,'''BertLMPredictionHead''' ,lowercase__ ,) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' ,'''TestModelLMPredictionHead''' ,re.sub('''Bert''' ,'''TestModel''' ,lowercase__ ) ,) # Copy consistency with a really long name __lowercase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" ,F"{long_class_name}LMPredictionHead" ,re.sub('''Bert''' ,lowercase__ ,lowercase__ ) ,) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' ,'''TestModelLMPredictionHead''' ,lowercase__ ,overwrite_result=re.sub('''Bert''' ,'''TestModel''' ,lowercase__ ) ,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] __lowercase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) __lowercase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __lowercase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) __lowercase , __lowercase = check_copies.convert_to_localized_md( lowercase__ ,lowercase__ ,localized_readme['''format_model_list'''] ) self.assertFalse(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) __lowercase , __lowercase = check_copies.convert_to_localized_md( lowercase__ ,lowercase__ ,localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase__ ) __lowercase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) __lowercase = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __lowercase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __lowercase , __lowercase = check_copies.convert_to_localized_md( lowercase__ ,lowercase__ ,localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(lowercase__ ,lowercase__ )
104
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration a : str = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->Any: '''simple docstring''' a : List[Any] = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) a : Union[str, Any] = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->int: '''simple docstring''' a : str = list(s_dict.keys() ) for key in keys: a : Any = key for k, v in WHISPER_MAPPING.items(): if k in key: a : List[Any] = new_key.replace(_lowercase , _lowercase ) print(F"""{key} -> {new_key}""" ) a : Union[str, Any] = s_dict.pop(_lowercase ) return s_dict def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->List[str]: '''simple docstring''' a, a : int = emb.weight.shape a : Optional[int] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) a : Any = emb.weight.data return lin_layer def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : str ) ->bytes: '''simple docstring''' os.makedirs(_lowercase , exist_ok=_lowercase ) a : Union[str, Any] = os.path.basename(_lowercase ) a : List[str] = url.split("/" )[-2] a : int = os.path.join(_lowercase , _lowercase ) if os.path.exists(_lowercase ) and not os.path.isfile(_lowercase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_lowercase ): a : Optional[int] = open(_lowercase , "rb" ).read() if hashlib.shaaaa(_lowercase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_lowercase ) as source, open(_lowercase , "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ) , ncols=80 , unit="iB" , unit_scale=_lowercase , unit_divisor=1024 ) as loop: while True: a : int = source.read(8192 ) if not buffer: break output.write(_lowercase ) loop.update(len(_lowercase ) ) a : Optional[Any] = open(_lowercase , "rb" ).read() if hashlib.shaaaa(_lowercase ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Union[str, Any] ) ->str: '''simple docstring''' if ".pt" not in checkpoint_path: a : List[Any] = _download(_MODELS[checkpoint_path] ) else: a : Optional[Any] = torch.load(_lowercase , map_location="cpu" ) a : Tuple = original_checkpoint["dims"] a : Dict = original_checkpoint["model_state_dict"] a : Tuple = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(_lowercase ) rename_keys(_lowercase ) a : Any = True a : Tuple = state_dict["decoder.layers.0.fc1.weight"].shape[0] a : Optional[int] = WhisperConfig( vocab_size=dimensions["n_vocab"] , encoder_ffn_dim=_lowercase , decoder_ffn_dim=_lowercase , num_mel_bins=dimensions["n_mels"] , d_model=dimensions["n_audio_state"] , max_target_positions=dimensions["n_text_ctx"] , encoder_layers=dimensions["n_audio_layer"] , encoder_attention_heads=dimensions["n_audio_head"] , decoder_layers=dimensions["n_text_layer"] , decoder_attention_heads=dimensions["n_text_state"] , max_source_positions=dimensions["n_audio_ctx"] , ) a : str = WhisperForConditionalGeneration(_lowercase ) a, a : Tuple = model.model.load_state_dict(_lowercase , strict=_lowercase ) if len(_lowercase ) > 0 and not set(_lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," F""" but all the following weights are missing {missing}""" ) if tie_embeds: a : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a : Dict = proj_out_weights model.save_pretrained(_lowercase ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') a : Any = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
105
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __UpperCamelCase : Tuple = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __UpperCamelCase : str = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : str = calculate_rouge(A_ , A_ , bootstrap_aggregation=A_ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(A_ , A_ ) lowerCAmelCase__ : Tuple = calculate_rouge(A_ , A_ , bootstrap_aggregation=A_ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[Any] = '''rougeLsum''' lowerCAmelCase__ : Any = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=[k] )[k] lowerCAmelCase__ : Union[str, Any] = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=[k] )[k] assert score > score_no_sep def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = ['''rouge1''', '''rouge2''', '''rougeL'''] lowerCAmelCase__ : Tuple = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=A_ ) lowerCAmelCase__ : Optional[int] = calculate_rouge(A_ , A_ , newline_sep=A_ , rouge_keys=A_ ) assert score_sep == score_no_sep def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] lowerCAmelCase__ : List[str] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(A_ , A_ , newline_sep=A_ ) == calculate_rouge(A_ , A_ , newline_sep=A_ ) def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[int] = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] lowerCAmelCase__ : int = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] lowerCAmelCase__ : Union[str, Any] = calculate_rouge(A_ , A_ , rouge_keys=['''rougeLsum'''] , newline_sep=A_ )['''rougeLsum'''] lowerCAmelCase__ : str = calculate_rouge(A_ , A_ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Optional[Any] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) lowerCAmelCase__ : List[Any] = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(A_ , A_ ) lowerCAmelCase__ : str = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=A_ ) assert isinstance(A_ , A_ )
106
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCAmelCase : int = logging.get_logger(__name__) # TODO: upload to AWS __lowerCAmelCase : Union[str, Any] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = """retribert""" def __init__( self : int , __lowerCamelCase : Optional[Any]=3_05_22 , __lowerCamelCase : List[Any]=7_68 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=30_72 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=1_28 , __lowerCamelCase : Tuple=0 , **__lowerCamelCase : List[Any] , ) -> Optional[int]: super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = share_encoders a = projection_dim
107
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any]=1_0 ): '''simple docstring''' lowerCAmelCase : Dict = [] for _ in range(SCREAMING_SNAKE_CASE ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=1_0 ): '''simple docstring''' lowerCAmelCase : str = [] for step in range(SCREAMING_SNAKE_CASE ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , "schedule.bin" ) torch.save(scheduler.state_dict() , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = torch.load(SCREAMING_SNAKE_CASE ) scheduler.load_state_dict(SCREAMING_SNAKE_CASE ) return lrs @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for a, b in zip(snake_case__ , snake_case__ ): self.assertAlmostEqual(snake_case__ , snake_case__ , delta=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case__ ) lowerCAmelCase : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : List[str] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): lowerCAmelCase : Dict = criterion(snake_case__ , snake_case__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case__ ) lowerCAmelCase : Optional[int] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : List[str] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case__ , weight_decay=0.0 , relative_step=snake_case__ , scale_parameter=snake_case__ , warmup_init=snake_case__ , ) for _ in range(1_000 ): lowerCAmelCase : List[str] = criterion(snake_case__ , snake_case__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : str =nn.Linear(50 , 50 ) if is_torch_available() else None a : Union[str, Any] =AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None a : List[Any] =10 def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for a, b in zip(snake_case__ , snake_case__ ): self.assertAlmostEqual(snake_case__ , snake_case__ , delta=snake_case__ , msg=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[int] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase , lowerCAmelCase : Dict = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **snake_case__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(snake_case__ , self.num_steps ) self.assertListAlmostEqual( snake_case__ , snake_case__ , tol=1e-2 , msg=f"""failed for {scheduler_func} in normal scheduler""" , ) lowerCAmelCase : Union[str, Any] = scheduler_func(self.optimizer , **snake_case__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(snake_case__ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(snake_case__ , self.num_steps ) self.assertListEqual(snake_case__ , snake_case__ , msg=f"""failed for {scheduler_func} in save and reload""" ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = fn def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.fn(*snake_case__ , **snake_case__ ) @classmethod def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
108
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets A: Dict = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" A: Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" A: List[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="binary" , _SCREAMING_SNAKE_CASE=None ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = fa_score( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , pos_label=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE , sample_weight=_SCREAMING_SNAKE_CASE ) return {"f1": float(_SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
109
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": lowerCAmelCase = 'hopper-medium-v2' lowerCAmelCase = gym.make(env_name) lowerCAmelCase = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) lowerCAmelCase = env.reset() lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 1000 lowerCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = env.step(denorm_actions) lowerCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
110
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['ViTFeatureExtractor'] UpperCamelCase_ = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Dict = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[Any] = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
102
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__(self : Dict , __a : List[Any] , __a : str=12 , __a : Optional[Any]=7 , __a : Optional[int]=True , __a : Union[str, Any]=True , __a : Optional[int]=True , __a : Dict=99 , __a : Union[str, Any]=32 , __a : Dict=32 , __a : Dict=2 , __a : Tuple=4 , __a : Optional[int]=37 , __a : Tuple=0.1 , __a : Union[str, Any]=0.1 , __a : Optional[Any]=512 , __a : Tuple=0.02 , __a : Union[str, Any]=0 , __a : Optional[int]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_input_mask UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = projection_dim UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = bos_token_id def _lowercase (self : List[Any] ): UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase_ = input_mask.numpy() UpperCAmelCase_ , UpperCAmelCase_ = input_mask.shape UpperCAmelCase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 UpperCAmelCase_ = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def _lowercase (self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _lowercase (self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Dict ): UpperCAmelCase_ = TFBlipTextModel(config=_UpperCamelCase ) UpperCAmelCase_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase , training=_UpperCamelCase ) UpperCAmelCase_ = model(_UpperCamelCase , training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase (self : str ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __A ( __A , unittest.TestCase ): a__ : List[Any] = (TFBlipTextModel,) if is_tf_available() else () a__ : Any = False a__ : Optional[Any] = False a__ : str = False def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = BlipTextModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def _lowercase (self : int ): self.config_tester.run_common_tests() def _lowercase (self : Dict ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowercase (self : Any ): pass def _lowercase (self : int ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def _lowercase (self : Optional[int] ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase (self : Tuple ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def _lowercase (self : int ): pass @slow def _lowercase (self : str ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _lowercase (self : List[str] , __a : Tuple=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / """file.csv""" _UpperCAmelCase : Dict = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = tmp_path / """malformed_file.csv""" _UpperCAmelCase : int = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / """csv_with_image.csv""" _UpperCAmelCase : List[Any] = textwrap.dedent( F'''\ image {image_file} ''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / """csv_with_label.csv""" _UpperCAmelCase : List[str] = textwrap.dedent( """\ label good bad good """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = tmp_path / """csv_with_int_list.csv""" _UpperCAmelCase : int = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = Csv() _UpperCAmelCase : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(SCREAMING_SNAKE_CASE__ ) in record.message for record in caplog.records ) @require_pil def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: _UpperCAmelCase : int = f.read().splitlines()[1] _UpperCAmelCase : Optional[int] = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) _UpperCAmelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _UpperCAmelCase : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() _UpperCAmelCase : Dict = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as f: _UpperCAmelCase : List[str] = f.read().splitlines()[1:] _UpperCAmelCase : str = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) _UpperCAmelCase : Any = csv._generate_tables([[csv_file_with_label]] ) _UpperCAmelCase : Tuple = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() _UpperCAmelCase : Any = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(SCREAMING_SNAKE_CASE__ ) for label in labels] def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCAmelCase_ : [int(SCREAMING_SNAKE_CASE__ ) for i in x.split()]} ) _UpperCAmelCase : str = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCAmelCase : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) _UpperCAmelCase : Optional[Any] = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
215
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
import pytest import datasets # Import fixture modules as plugins __UpperCamelCase : int = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def A ( _lowercase , _lowercase ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def A ( _lowercase ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def A ( _lowercase , _lowercase ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path_factory.getbasetemp() / '''cache''' SCREAMING_SNAKE_CASE : Optional[Any] = test_hf_cache_home / '''datasets''' SCREAMING_SNAKE_CASE : Union[str, Any] = test_hf_cache_home / '''metrics''' SCREAMING_SNAKE_CASE : Optional[int] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE__ ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ , scope='''session''' ) def A ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def A ( _lowercase ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def A ( _lowercase ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , SCREAMING_SNAKE_CASE__ )
182
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowerCamelCase : int = TypeVar("T") class __UpperCAmelCase ( Generic[T] ): UpperCamelCase = 42 # Cache store of keys UpperCamelCase = 42 # References of the keys in cache UpperCamelCase = 1_0 # Maximum capacity of cache def __init__( self : Dict, __A : int ): UpperCAmelCase : int = deque() UpperCAmelCase : Any = set() if not n: UpperCAmelCase : Any = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: UpperCAmelCase : Union[str, Any] = n def __magic_name__ ( self : Dict, __A : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCAmelCase : Optional[Any] = self.dq_store.pop() self.key_reference.remove(_UpperCamelCase ) else: self.dq_store.remove(_UpperCamelCase ) self.dq_store.appendleft(_UpperCamelCase ) self.key_reference.add(_UpperCamelCase ) def __magic_name__ ( self : List[Any] ): for k in self.dq_store: print(_UpperCamelCase ) def __repr__( self : Optional[Any] ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : Optional[int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
336
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _a = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = 14 ): """simple docstring""" if group not in primes: raise ValueError('Unsupported Group' ) _UpperCAmelCase = primes[group]['prime'] _UpperCAmelCase = primes[group]['generator'] _UpperCAmelCase = int(hexlify(urandom(32 ) ) , base=16 ) def UpperCamelCase ( self ): """simple docstring""" return hex(self.__private_key )[2:] def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pow(self.generator , self.__private_key , self.prime ) return hex(_UpperCamelCase )[2:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(_UpperCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = int(_UpperCamelCase , base=16 ) if not self.is_valid_public_key(_UpperCamelCase ): raise ValueError('Invalid public key' ) _UpperCAmelCase = pow(_UpperCamelCase , self.__private_key , self.prime ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() @staticmethod def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(_UpperCamelCase , (prime - 1) // 2 , _UpperCamelCase ) == 1 ) @staticmethod def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 14 ): """simple docstring""" _UpperCAmelCase = int(_UpperCamelCase , base=16 ) _UpperCAmelCase = int(_UpperCamelCase , base=16 ) _UpperCAmelCase = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(_UpperCamelCase , _UpperCamelCase ): raise ValueError('Invalid public key' ) _UpperCAmelCase = pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return shaaaa(str(_UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCamelCase__ ( *snake_case_ : Union[str, Any] ) -> int: with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as fh: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_EX ) try: print(*SCREAMING_SNAKE_CASE__ ) finally: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_UN ) snake_case_ = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) snake_case_ = torch.device('cuda', local_rank) snake_case_ = socket.gethostname() snake_case_ = F'[{hostname}-{local_rank}]' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank snake_case_ = dist.get_rank() snake_case_ = dist.get_world_size() printflock(F'{gpu} is OK (global rank: {rank}/{world_size})') dist.barrier() if rank == 0: printflock(F'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}') except Exception: printflock(F'{gpu} is broken') raise
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
a =256 # Modulus to hash a string a =1000003 def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: __lowerCamelCase : str = len(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) if p_len > t_len: return False __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __lowerCamelCase : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __lowerCamelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __lowerCamelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : Union[str, Any] = 'abc1abc12' __lowerCamelCase : int = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __lowerCamelCase : Tuple = 'alskfjaldsk23adsfabcabc' assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 2) __lowerCamelCase : Any = 'ABABX' __lowerCamelCase : List[str] = 'ABABZABABYABABX' assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 3) __lowerCamelCase : Tuple = 'AAAB' __lowerCamelCase : Dict = 'ABAAAAAB' assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 4) __lowerCamelCase : Optional[int] = 'abcdabcy' __lowerCamelCase : Union[str, Any] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Test 5) __lowerCamelCase : str = 'Lü' __lowerCamelCase : Dict = 'Lüsai' assert rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : List[Any] = 'Lue' assert not rabin_karp(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
73
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="None", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Any: UpperCamelCase : List[str] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : List[Any] = seq_length UpperCamelCase : List[Any] = is_training UpperCamelCase : int = use_input_mask UpperCamelCase : Union[str, Any] = use_token_type_ids UpperCamelCase : Dict = use_labels UpperCamelCase : Tuple = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : List[str] = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : int = type_sequence_label_size UpperCamelCase : int = initializer_range UpperCamelCase : List[Any] = num_labels UpperCamelCase : List[Any] = num_choices UpperCamelCase : Union[str, Any] = relative_attention UpperCamelCase : List[Any] = position_biased_input UpperCamelCase : Optional[Any] = pos_att_type UpperCamelCase : Optional[Any] = scope def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : List[Any] = None if self.use_token_type_ids: UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase : Optional[Any] = None UpperCamelCase : Union[str, Any] = None UpperCamelCase : List[Any] = None if self.use_labels: UpperCamelCase : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCamelCase : Optional[Any] = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=_UpperCamelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : Any = TFDebertaVaModel(config=_UpperCamelCase ) UpperCamelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase : List[str] = [input_ids, input_mask] UpperCamelCase : Optional[int] = model(_UpperCamelCase ) UpperCamelCase : str = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : List[Any] = TFDebertaVaForMaskedLM(config=_UpperCamelCase ) UpperCamelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase : Union[str, Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : int = self.num_labels UpperCamelCase : List[str] = TFDebertaVaForSequenceClassification(config=_UpperCamelCase ) UpperCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase : str = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : Tuple = TFDebertaVaForTokenClassification(config=_UpperCamelCase ) UpperCamelCase : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase : Optional[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase : List[str] = TFDebertaVaForQuestionAnswering(config=_UpperCamelCase ) UpperCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase : Optional[int] = model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[Any] = config_and_inputs UpperCamelCase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __A , __A , unittest.TestCase ): UpperCAmelCase__ : Any = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = False def snake_case_ ( self ) -> int: UpperCamelCase : Any = TFDebertaVaModelTester(self ) UpperCamelCase : int = ConfigTester(self, config_class=_UpperCamelCase, hidden_size=37 ) def snake_case_ ( self ) -> Dict: self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def snake_case_ ( self ) -> int: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[Any] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def snake_case_ ( self ) -> int: pass @slow def snake_case_ ( self ) -> Dict: UpperCamelCase : Optional[Any] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) UpperCamelCase : Union[str, Any] = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase : Union[str, Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase : Optional[Any] = model(_UpperCamelCase, attention_mask=_UpperCamelCase )[0] UpperCamelCase : List[str] = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], _UpperCamelCase, atol=1e-4 )
119
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
from collections import deque from .hash_table import HashTable class _snake_case ( __A ): '''simple docstring''' def __init__( self: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Tuple: super().__init__(*_UpperCamelCase ,**_UpperCamelCase ) def A__ ( self: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = self.values[key] def A__ ( self: List[Any] ) -> str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[int]=None ) -> str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase ,_UpperCamelCase )
345
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class snake_case ( __A ): a_ : str = "efficientnet" def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 6_00 , __UpperCAmelCase = 2.0 , __UpperCAmelCase = 3.1 , __UpperCAmelCase = 8 , __UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCAmelCase = [32, 16, 24, 40, 80, 1_12, 1_92] , __UpperCAmelCase = [16, 24, 40, 80, 1_12, 1_92, 3_20] , __UpperCAmelCase = [] , __UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCAmelCase = 0.25 , __UpperCAmelCase = "swish" , __UpperCAmelCase = 25_60 , __UpperCAmelCase = "mean" , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 0.001 , __UpperCAmelCase = 0.99 , __UpperCAmelCase = 0.5 , __UpperCAmelCase = 0.2 , **__UpperCAmelCase , ) ->str: super().__init__(**_UpperCamelCase) a_ = num_channels a_ = image_size a_ = width_coefficient a_ = depth_coefficient a_ = depth_divisor a_ = kernel_sizes a_ = in_channels a_ = out_channels a_ = depthwise_padding a_ = strides a_ = num_block_repeats a_ = expand_ratios a_ = squeeze_expansion_ratio a_ = hidden_act a_ = hidden_dim a_ = pooling_type a_ = initializer_range a_ = batch_norm_eps a_ = batch_norm_momentum a_ = dropout_rate a_ = drop_connect_rate a_ = sum(_UpperCamelCase) * 4 class snake_case ( __A ): a_ : Union[str, Any] = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def UpperCAmelCase__ ( self) ->float: return 1E-5
243
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowercase ( _snake_case : Dict ) ->Union[str, Any]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE : List[Any] = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class _UpperCAmelCase ( __A ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (a_ ): '''simple docstring''' __snake_case : Tuple = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=_UpperCamelCase , required=_UpperCamelCase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=_UpperCamelCase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=_UpperCamelCase , default=_UpperCamelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=_UpperCamelCase ) def __init__(self , a_ , a_ , a_ , a_ , a_ , *a_ , ): '''simple docstring''' __snake_case : Dict = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f"""Loading model {model_type}""" ) __snake_case : Dict = model_type __snake_case : Union[str, Any] = tf_checkpoint __snake_case : Optional[int] = pytorch_dump_output __snake_case : Dict = config __snake_case : List[str] = finetuning_task_name def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): __snake_case : str = self._tf_checkpoint __snake_case : Any = '''''' else: __snake_case : int = self._tf_checkpoint __snake_case : Optional[Any] = '''''' convert_transfo_xl_checkpoint_to_pytorch( _UpperCamelCase , self._config , self._pytorch_dump_output , _UpperCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
102
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ={ 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __A ( __A ): a__ : Dict = "sew" def __init__(self : Dict , __a : Any=32 , __a : Tuple=768 , __a : Optional[Any]=12 , __a : List[Any]=12 , __a : Optional[Any]=3072 , __a : List[str]=2 , __a : int="gelu" , __a : Optional[Any]=0.1 , __a : str=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=0.0 , __a : int=0.1 , __a : Optional[Any]=0.1 , __a : int=0.02 , __a : Tuple=1E-5 , __a : List[str]="group" , __a : int="gelu" , __a : Tuple=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a : List[Any]=False , __a : Union[str, Any]=128 , __a : Any=16 , __a : str=True , __a : Optional[int]=0.05 , __a : List[Any]=10 , __a : Optional[int]=2 , __a : Dict=0.0 , __a : Tuple=10 , __a : Any=0 , __a : Dict="mean" , __a : Optional[Any]=False , __a : str=False , __a : List[Any]=256 , __a : Union[str, Any]=0 , __a : int=1 , __a : List[Any]=2 , **__a : int , ): super().__init__(**_UpperCamelCase , pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = feat_extract_norm UpperCAmelCase_ = feat_extract_activation UpperCAmelCase_ = list(_UpperCamelCase ) UpperCAmelCase_ = list(_UpperCamelCase ) UpperCAmelCase_ = list(_UpperCamelCase ) UpperCAmelCase_ = conv_bias UpperCAmelCase_ = num_conv_pos_embeddings UpperCAmelCase_ = num_conv_pos_embedding_groups UpperCAmelCase_ = len(self.conv_dim ) UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = squeeze_factor UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = feat_proj_dropout UpperCAmelCase_ = final_dropout UpperCAmelCase_ = layerdrop UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ = apply_spec_augment UpperCAmelCase_ = mask_time_prob UpperCAmelCase_ = mask_time_length UpperCAmelCase_ = mask_time_min_masks UpperCAmelCase_ = mask_feature_prob UpperCAmelCase_ = mask_feature_length UpperCAmelCase_ = mask_feature_min_masks # ctc loss UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # sequence classification UpperCAmelCase_ = use_weighted_layer_sum UpperCAmelCase_ = classifier_proj_size @property def _lowercase (self : Dict ): return functools.reduce(operator.mul , self.conv_stride , 1 )
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
215
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger(__name__) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Tuple = os.path.abspath(SCREAMING_SNAKE_CASE__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model SCREAMING_SNAKE_CASE : Any = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") SCREAMING_SNAKE_CASE : Dict = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' SCREAMING_SNAKE_CASE : Optional[Any] = name[1:] # figure out how many levels deep the name is SCREAMING_SNAKE_CASE : Optional[Any] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(SCREAMING_SNAKE_CASE__ ) # read data SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) names.append('''/'''.join(SCREAMING_SNAKE_CASE__ ) ) arrays.append(SCREAMING_SNAKE_CASE__ ) logger.info(f"""Read a total of {len(SCREAMING_SNAKE_CASE__ ):,} layers""" ) # Sanity check if len(set(SCREAMING_SNAKE_CASE__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(SCREAMING_SNAKE_CASE__ ) )})""" ) SCREAMING_SNAKE_CASE : List[str] = list(set(SCREAMING_SNAKE_CASE__ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE : Dict = full_name.split('''/''' ) SCREAMING_SNAKE_CASE : Dict = model SCREAMING_SNAKE_CASE : List[str] = [] for i, m_name in enumerate(SCREAMING_SNAKE_CASE__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): SCREAMING_SNAKE_CASE : Tuple = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''embeddings''' ) SCREAMING_SNAKE_CASE : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) SCREAMING_SNAKE_CASE : Any = getattr(SCREAMING_SNAKE_CASE__ , '''encoder''' ) SCREAMING_SNAKE_CASE : Any = getattr(SCREAMING_SNAKE_CASE__ , '''layer''' ) SCREAMING_SNAKE_CASE : Optional[int] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , '''pooler''' ) SCREAMING_SNAKE_CASE : Dict = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) SCREAMING_SNAKE_CASE : List[str] = getattr(SCREAMING_SNAKE_CASE__ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) SCREAMING_SNAKE_CASE : Tuple = getattr(SCREAMING_SNAKE_CASE__ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) SCREAMING_SNAKE_CASE : List[str] = getattr(SCREAMING_SNAKE_CASE__ , '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , '''attention''' ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) SCREAMING_SNAKE_CASE : Tuple = getattr(SCREAMING_SNAKE_CASE__ , '''attention''' ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) SCREAMING_SNAKE_CASE : str = getattr(SCREAMING_SNAKE_CASE__ , '''attention''' ) SCREAMING_SNAKE_CASE : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) SCREAMING_SNAKE_CASE : Dict = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) SCREAMING_SNAKE_CASE : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) SCREAMING_SNAKE_CASE : Any = getattr(SCREAMING_SNAKE_CASE__ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) SCREAMING_SNAKE_CASE : List[str] = getattr(SCREAMING_SNAKE_CASE__ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , '''intermediate''' ) SCREAMING_SNAKE_CASE : str = getattr(SCREAMING_SNAKE_CASE__ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) SCREAMING_SNAKE_CASE : Any = getattr(SCREAMING_SNAKE_CASE__ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) SCREAMING_SNAKE_CASE : Any = getattr(SCREAMING_SNAKE_CASE__ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) SCREAMING_SNAKE_CASE : int = getattr(SCREAMING_SNAKE_CASE__ , '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary SCREAMING_SNAKE_CASE : Union[str, Any] = '''.'''.join(SCREAMING_SNAKE_CASE__ ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , SCREAMING_SNAKE_CASE__ ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: SCREAMING_SNAKE_CASE : int = array.transpose() if pointer.shape == array.shape: SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def A ( _lowercase , _lowercase , _lowercase ): # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : Dict = BertModel(SCREAMING_SNAKE_CASE__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) __UpperCamelCase : Any = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
182
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCamelCase : Optional[int] = 2_5_6_0_4_7 _lowerCamelCase : Dict = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( __A , unittest.TestCase ): UpperCamelCase = NllbTokenizer UpperCamelCase = NllbTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = {} def __magic_name__ ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[Any] = NllbTokenizer(_UpperCamelCase, keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : Dict = NllbTokenizer(_UpperCamelCase, keep_accents=_UpperCamelCase ) UpperCAmelCase : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCamelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ), [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]], ) UpperCAmelCase : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) UpperCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase, [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ], ) UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) def __magic_name__ ( self : List[str] ): UpperCAmelCase : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase, **_UpperCamelCase ) UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(_UpperCamelCase, **_UpperCamelCase ) UpperCAmelCase : Any = tempfile.mkdtemp() UpperCAmelCase : List[Any] = tokenizer_r.save_pretrained(_UpperCamelCase ) UpperCAmelCase : Any = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase : Dict = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_UpperCamelCase, _UpperCamelCase ) # Checks everything loads correctly in the same way UpperCAmelCase : int = tokenizer_r.from_pretrained(_UpperCamelCase ) UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase, _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(_UpperCamelCase, legacy_format=_UpperCamelCase ) UpperCAmelCase : Optional[Any] = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCamelCase, _UpperCamelCase ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(_UpperCamelCase ) UpperCAmelCase : str = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase, _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Tuple = tempfile.mkdtemp() UpperCAmelCase : Dict = tokenizer_r.save_pretrained(_UpperCamelCase, legacy_format=_UpperCamelCase ) UpperCAmelCase : List[Any] = tokenizer_p.save_pretrained(_UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : Union[str, Any] = tokenizer_r.from_pretrained(_UpperCamelCase ) UpperCAmelCase : Any = tokenizer_p.from_pretrained(_UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCamelCase, _UpperCamelCase ) ) shutil.rmtree(_UpperCamelCase ) @require_torch def __magic_name__ ( self : Any ): if not self.test_seqaseq: return UpperCAmelCase : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. UpperCAmelCase : str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] UpperCAmelCase : Any = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: UpperCAmelCase : int = tokenizer.prepare_seqaseq_batch( src_texts=_UpperCamelCase, tgt_texts=_UpperCamelCase, max_length=3, max_target_length=1_0, return_tensors='''pt''', src_lang='''eng_Latn''', tgt_lang='''ron_Latn''', ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 1_0 ) # max_target_length will default to max_length if not specified UpperCAmelCase : Tuple = tokenizer.prepare_seqaseq_batch( _UpperCamelCase, tgt_texts=_UpperCamelCase, max_length=3, return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.labels.shape[1], 3 ) UpperCAmelCase : Dict = tokenizer.prepare_seqaseq_batch( src_texts=_UpperCamelCase, max_length=3, max_target_length=1_0, return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1], 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3 ) self.assertNotIn('''decoder_input_ids''', _UpperCamelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def __magic_name__ ( self : List[str] ): pass def __magic_name__ ( self : Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : int = [AddedToken('''<special>''', lstrip=_UpperCamelCase )] UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase, additional_special_tokens=_UpperCamelCase, **_UpperCamelCase ) UpperCAmelCase : List[Any] = tokenizer_r.encode('''Hey this is a <special> token''' ) UpperCAmelCase : List[Any] = tokenizer_r.encode('''<special>''', add_special_tokens=_UpperCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained( _UpperCamelCase, additional_special_tokens=_UpperCamelCase, **_UpperCamelCase, ) UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained( _UpperCamelCase, additional_special_tokens=_UpperCamelCase, **_UpperCamelCase ) UpperCAmelCase : Tuple = tokenizer_p.encode('''Hey this is a <special> token''' ) UpperCAmelCase : List[Any] = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): UpperCamelCase = "facebook/nllb-200-distilled-600M" UpperCamelCase = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCamelCase = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCamelCase = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls : Optional[int] ): UpperCAmelCase : Union[str, Any] = NllbTokenizer.from_pretrained( cls.checkpoint_name, src_lang='''eng_Latn''', tgt_lang='''ron_Latn''' ) UpperCAmelCase : Union[str, Any] = 1 return cls def __magic_name__ ( self : Optional[int] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''], 2_5_6_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''], 2_5_6_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''], 2_5_6_0_5_7 ) def __magic_name__ ( self : str ): UpperCAmelCase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, _UpperCamelCase ) def __magic_name__ ( self : Any ): self.assertIn(_UpperCamelCase, self.tokenizer.all_special_ids ) # fmt: off UpperCAmelCase : Tuple = [RO_CODE, 4_2_5_4, 9_8_0_6_8, 1_1_2_9_2_3, 3_9_0_7_2, 3_9_0_9, 7_1_3, 1_0_2_7_6_7, 2_6, 1_7_3_1_4, 3_5_6_4_2, 1_4_6_8_3, 3_3_1_1_8, 2_0_2_2, 6_6_9_8_7, 2, 2_5_6_0_4_7] # fmt: on UpperCAmelCase : int = self.tokenizer.decode(_UpperCamelCase, skip_special_tokens=_UpperCamelCase ) UpperCAmelCase : int = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_UpperCamelCase ) self.assertEqual(_UpperCamelCase, _UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token, _UpperCamelCase ) def __magic_name__ ( self : Dict ): UpperCAmelCase : int = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0], _UpperCamelCase ) UpperCAmelCase : List[Any] = 1_0 UpperCAmelCase : Optional[Any] = self.tokenizer(_UpperCamelCase, max_length=_UpperCamelCase, truncation=_UpperCamelCase ).input_ids[0] self.assertEqual(ids[-1], 2 ) self.assertEqual(ids[0], _UpperCamelCase ) self.assertEqual(len(_UpperCamelCase ), _UpperCamelCase ) def __magic_name__ ( self : Tuple ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ), [2_5_6_2_0_3, 3] ) def __magic_name__ ( self : Dict ): UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase : Union[str, Any] = NllbTokenizer.from_pretrained(_UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, _UpperCamelCase ) @require_torch def __magic_name__ ( self : str ): UpperCAmelCase : Union[str, Any] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=_UpperCamelCase, truncation=_UpperCamelCase, max_length=len(self.expected_src_tokens ), return_tensors='''pt''', ) UpperCAmelCase : int = shift_tokens_right( batch['''labels'''], self.tokenizer.pad_token_id, self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(_UpperCamelCase, _UpperCamelCase ) self.assertEqual((2, 1_5), batch.input_ids.shape ) self.assertEqual((2, 1_5), batch.attention_mask.shape ) UpperCAmelCase : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, _UpperCamelCase ) self.assertEqual(_UpperCamelCase, batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : int = self.tokenizer(self.src_text, padding=_UpperCamelCase, truncation=_UpperCamelCase, max_length=3, return_tensors='''pt''' ) UpperCAmelCase : Dict = self.tokenizer( text_target=self.tgt_text, padding=_UpperCamelCase, truncation=_UpperCamelCase, max_length=1_0, return_tensors='''pt''' ) UpperCAmelCase : Optional[int] = targets['''input_ids'''] UpperCAmelCase : Dict = shift_tokens_right( _UpperCamelCase, self.tokenizer.pad_token_id, decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang], ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 1_0 ) @require_torch def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : int = self.tokenizer._build_translation_inputs( '''A test''', return_tensors='''pt''', src_lang='''eng_Latn''', tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(_UpperCamelCase ), { # A, test, EOS, en_XX '''input_ids''': [[2_5_6_0_4_7, 7_0, 7_3_5_6, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_6_0_5_7, }, ) @require_torch def __magic_name__ ( self : List[str] ): UpperCAmelCase : Any = True UpperCAmelCase : int = self.tokenizer( '''UN Chief says there is no military solution in Syria''', src_lang='''eng_Latn''', tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids, [1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2, 2_5_6_0_4_7] ) UpperCAmelCase : List[str] = False UpperCAmelCase : Dict = self.tokenizer( '''UN Chief says there is no military solution in Syria''', src_lang='''eng_Latn''', tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids, [2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 2_5_6_5_3, 6_3_7_0, 2_4_8, 2_5_4, 1_0_3_9_2_9, 9_4_9_9_5, 1_0_8, 4_9_4_8_6, 2] )
336
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _a = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _a = [0, 25, 50] _a = [25, 50, 75] _a = fuzz.membership.trimf(X, abca) _a = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _a = np.ones(75) _a = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _a = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _a = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _a = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _a = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _a = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
39
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : int ): """simple docstring""" __snake_case = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) __snake_case = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(_UpperCamelCase ) from datasets import load_dataset __snake_case = load_dataset('''nielsr/rvlcdip-demo''' ) __snake_case = dataset['''train'''][0]['''image'''].convert('''RGB''' ) __snake_case = image_processor(_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): __snake_case = model(**_UpperCamelCase ) __snake_case = outputs.logits __snake_case = torch.Size((1, 16) ) self.assertEqual(logits.shape , _UpperCamelCase ) __snake_case = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=_UpperCamelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline a =argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") a =parser.parse_args() a ="""cpu""" a ="""a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" a ="""path-to-your-trained-model""" a =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: a =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) a =pipe.to(device) # to channels last a =pipe.unet.to(memory_format=torch.channels_last) a =pipe.vae.to(memory_format=torch.channels_last) a =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: a =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex a =torch.randn(2, 4, 64, 64) a =torch.rand(1) * 999 a =torch.randn(2, 77, 768) a =(sample, timestep, encoder_hidden_status) try: a =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: a =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) a =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) a =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: a =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute a =666 a =torch.Generator(device).manual_seed(seed) a ={"""generator""": generator} if args.steps is not None: a =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): a =pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
73
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
def UpperCamelCase ( snake_case__ : Tuple ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('check_bouncy() accepts only integer arguments' ) UpperCamelCase : Any = str(SCREAMING_SNAKE_CASE__ ) UpperCamelCase : List[str] = ''.join(sorted(SCREAMING_SNAKE_CASE__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def UpperCamelCase ( snake_case__ : Tuple = 99 ) -> Optional[Any]: if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Optional[Any] = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE__ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
119
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _snake_case ( __A ): '''simple docstring''' A__ : Optional[Any] = "philschmid/bart-large-cnn-samsum" A__ : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) A__ : str = "summarizer" A__ : str = AutoTokenizer A__ : str = AutoModelForSeqaSeqLM A__ : Optional[int] = ["text"] A__ : Optional[int] = ["text"] def A__ ( self: str ,lowerCamelCase_: int ) -> Optional[int]: return self.pre_processor(_UpperCamelCase ,return_tensors="""pt""" ,truncation=_UpperCamelCase ) def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ) -> Tuple: return self.model.generate(**_UpperCamelCase )[0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Any: return self.pre_processor.decode(_UpperCamelCase ,skip_special_tokens=_UpperCamelCase ,clean_up_tokenization_spaces=_UpperCamelCase )
345
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = """▁""" SCREAMING_SNAKE_CASE : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE : Union[str, Any] = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } SCREAMING_SNAKE_CASE : List[Any] = { """facebook/xglm-564M""": 2048, } class _UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =["input_ids", "attention_mask"] def __init__(self , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __snake_case : Optional[Any] = 7 __snake_case : Any = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] __snake_case : List[str] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) __snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) __snake_case : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token __snake_case : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __snake_case : Union[str, Any] = len(self.sp_model ) __snake_case : List[Any] = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_UpperCamelCase ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): '''simple docstring''' __snake_case : List[str] = self.__dict__.copy() __snake_case : List[str] = None __snake_case : Dict = self.sp_model.serialized_model_proto() return state def __setstate__(self , a_ ): '''simple docstring''' __snake_case : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __snake_case : List[str] = {} __snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __snake_case : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : List[str] = self.sp_model.PieceToId(_UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = ''''''.join(_UpperCamelCase ).replace(_UpperCamelCase , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not os.path.isdir(_UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : List[Any] = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: __snake_case : str = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
102
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( snake_case_ : str ) -> Dict: '''simple docstring''' return x + 2 class __A ( unittest.TestCase ): def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = "x = 3" UpperCAmelCase_ = {} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {"x": 3} ) UpperCAmelCase_ = "x = y" UpperCAmelCase_ = {"y": 5} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {"x": 5, "y": 5} ) def _lowercase (self : Dict ): UpperCAmelCase_ = "y = add_two(x)" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {"add_two": add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = "x = 3" UpperCAmelCase_ = {} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {"x": 3} ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "test_dict = {\'x\': x, \'y\': add_two(x)}" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {"add_two": add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {"x": 3, "y": 5} ) self.assertDictEqual(_UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def _lowercase (self : Dict ): UpperCAmelCase_ = "x = 3\ny = 5" UpperCAmelCase_ = {} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {"x": 3, "y": 5} ) def _lowercase (self : str ): UpperCAmelCase_ = "text = f\'This is x: {x}.\'" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {"x": 3, "text": "This is x: 3."} ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = "if x <= 3:\n y = 2\nelse:\n y = 5" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {"x": 3, "y": 2} ) UpperCAmelCase_ = {"x": 8} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {"x": 8, "y": 5} ) def _lowercase (self : str ): UpperCAmelCase_ = "test_list = [x, add_two(x)]" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {"add_two": add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) def _lowercase (self : Any ): UpperCAmelCase_ = "y = x" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {"x": 3, "y": 3} ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "test_list = [x, add_two(x)]\ntest_list[1]" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {"add_two": add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) UpperCAmelCase_ = "test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']" UpperCAmelCase_ = {"x": 3} UpperCAmelCase_ = evaluate(_UpperCamelCase , {"add_two": add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = "x = 0\nfor i in range(3):\n x = i" UpperCAmelCase_ = {} UpperCAmelCase_ = evaluate(_UpperCamelCase , {"range": range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {"x": 2, "i": 2} )
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets A_ : Optional[int] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ A_ : Optional[Any] = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ A_ : Any = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _snake_case ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] ,) def _snake_case ( self ) -> Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _snake_case ( self ,a_ ,a_ ,a_=None ,a_="uniform_average" ,a_=True ) -> Tuple: _UpperCAmelCase : int = mean_squared_error( _UpperCamelCase ,_UpperCamelCase ,sample_weight=_UpperCamelCase ,multioutput=_UpperCamelCase ,squared=_UpperCamelCase ) return {"mse": mse}
215
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowercase__ ( __A): def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[str] = 5 # Realm tok SCREAMING_SNAKE_CASE : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(_UpperCamelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) def __A ( self : List[str] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def __A ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = RealmConfig(num_block_records=self.num_block_records ) return config def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = np.array( [ B'''This is the first record''', B'''This is the second record''', B'''This is the third record''', B'''This is the fourth record''', B'''This is the fifth record''', B'''This is a longer longer longer record''', ] , dtype=_UpperCamelCase , ) return block_records def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.get_config() SCREAMING_SNAKE_CASE : Dict = self.get_dummy_retriever() SCREAMING_SNAKE_CASE : Tuple = retriever.tokenizer SCREAMING_SNAKE_CASE : List[Any] = np.array([0, 3] , dtype='''long''' ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(['''Test question'''] ).input_ids SCREAMING_SNAKE_CASE : Tuple = tokenizer( ['''the fourth'''] , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = config.reader_seq_len SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = retriever( _UpperCamelCase , _UpperCamelCase , answer_ids=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(len(_UpperCamelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_config() SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_retriever() SCREAMING_SNAKE_CASE : List[str] = retriever.tokenizer SCREAMING_SNAKE_CASE : Dict = np.array([0, 3, 5] , dtype='''long''' ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(['''Test question'''] ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ).input_ids SCREAMING_SNAKE_CASE : List[str] = config.reader_seq_len SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = retriever( _UpperCamelCase , _UpperCamelCase , answer_ids=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors='''np''' ) self.assertEqual([False, True, True] , _UpperCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCamelCase ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path SCREAMING_SNAKE_CASE : str = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: SCREAMING_SNAKE_CASE : List[Any] = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) SCREAMING_SNAKE_CASE : Tuple = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , B'''This is the first record''' )
182
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[Any] = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _lowerCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
336
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0
from __future__ import annotations def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: """simple docstring""" if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _UpperCAmelCase , _UpperCAmelCase = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": _a = input('''Enter integers separated by spaces: ''') _a = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
39
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = nums.pop(0 ) snake_case_ = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def backtrack(SCREAMING_SNAKE_CASE__ ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): snake_case_, snake_case_ = nums[i], nums[start] backtrack(start + 1 ) snake_case_, snake_case_ = nums[i], nums[start] # backtrack snake_case_ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
8
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler snake_case_ = 16 snake_case_ = 32 def lowerCamelCase__ ( snake_case_ : Any ) -> Dict: return int(x / 2**20 ) class SCREAMING_SNAKE_CASE__ : def __enter__(self : Any ): """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __snake_case = torch.cuda.memory_allocated() return self def __exit__(self : List[str] , *a__ : str ): """simple docstring""" gc.collect() torch.cuda.empty_cache() __snake_case = torch.cuda.memory_allocated() __snake_case = torch.cuda.max_memory_allocated() __snake_case = bamb(self.end - self.begin ) __snake_case = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCamelCase__ ( snake_case_ : int , snake_case_ : Dict = 16 , snake_case_ : List[Any] = "bert-base-cased" , snake_case_ : Any = 320 , snake_case_ : int = 160 , ) -> Tuple: __snake_case = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) __snake_case = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} ) def tokenize_function(snake_case_ : int ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=SCREAMING_SNAKE_CASE__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __snake_case = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] ) -> Dict: # Initialize accelerator __snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['''lr'''] __snake_case = int(config['''num_epochs'''] ) __snake_case = int(config['''seed'''] ) __snake_case = int(config['''batch_size'''] ) __snake_case = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE__ ) __snake_case , __snake_case = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) # Instantiate optimizer __snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) if accelerator.state.deepspeed_plugin is not None: __snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __snake_case = 1 __snake_case = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE__ , ) else: __snake_case = DummyScheduler(SCREAMING_SNAKE_CASE__ , total_num_steps=SCREAMING_SNAKE_CASE__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # We need to keep track of how many total steps we have iterated over __snake_case = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case = 0 # Now we train the model __snake_case = {} for epoch in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __snake_case = model(**SCREAMING_SNAKE_CASE__ ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __snake_case = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowerCamelCase__ ( ) -> Optional[Any]: __snake_case = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=SCREAMING_SNAKE_CASE__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( '''--output_dir''' , type=SCREAMING_SNAKE_CASE__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=SCREAMING_SNAKE_CASE__ , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=SCREAMING_SNAKE_CASE__ , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='''Number of train epochs.''' , ) __snake_case = parser.parse_args() __snake_case = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class A_ ( __A ): _UpperCAmelCase : List[Any] = "Wav2Vec2FeatureExtractor" _UpperCAmelCase : Dict = "AutoTokenizer" def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str): super().__init__(_UpperCamelCase ,_UpperCamelCase) __lowerCamelCase : List[str] = self.feature_extractor __lowerCamelCase : List[Any] = False @classmethod def lowerCAmelCase ( cls : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : List[str]): try: return super().from_pretrained(_UpperCamelCase ,**_UpperCamelCase) except OSError: warnings.warn( F"Loading a tokenizer inside {cls.__name__} from a config that does not" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' ,_UpperCamelCase ,) __lowerCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(_UpperCamelCase ,**_UpperCamelCase) __lowerCamelCase : int = WavaVecaCTCTokenizer.from_pretrained(_UpperCamelCase ,**_UpperCamelCase) return cls(feature_extractor=_UpperCamelCase ,tokenizer=_UpperCamelCase) def __call__( self : Dict ,*SCREAMING_SNAKE_CASE__ : int ,**SCREAMING_SNAKE_CASE__ : Dict): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCamelCase ,**_UpperCamelCase) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.') __lowerCamelCase : List[Any] = kwargs.pop('raw_speech') else: __lowerCamelCase : int = kwargs.pop('audio' ,_UpperCamelCase) __lowerCamelCase : List[Any] = kwargs.pop('sampling_rate' ,_UpperCamelCase) __lowerCamelCase : int = kwargs.pop('text' ,_UpperCamelCase) if len(_UpperCamelCase) > 0: __lowerCamelCase : str = args[0] __lowerCamelCase : str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if audio is not None: __lowerCamelCase : Any = self.feature_extractor(_UpperCamelCase ,*_UpperCamelCase ,sampling_rate=_UpperCamelCase ,**_UpperCamelCase) if text is not None: __lowerCamelCase : Dict = self.tokenizer(_UpperCamelCase ,**_UpperCamelCase) if text is None: return inputs elif audio is None: return encodings else: __lowerCamelCase : Any = encodings['input_ids'] return inputs def lowerCAmelCase ( self : Any ,*SCREAMING_SNAKE_CASE__ : List[str] ,**SCREAMING_SNAKE_CASE__ : Optional[int]): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_UpperCamelCase ,**_UpperCamelCase) __lowerCamelCase : str = kwargs.pop('input_features' ,_UpperCamelCase) __lowerCamelCase : Dict = kwargs.pop('labels' ,_UpperCamelCase) if len(_UpperCamelCase) > 0: __lowerCamelCase : List[Any] = args[0] __lowerCamelCase : Optional[int] = args[1:] if input_features is not None: __lowerCamelCase : Optional[int] = self.feature_extractor.pad(_UpperCamelCase ,*_UpperCamelCase ,**_UpperCamelCase) if labels is not None: __lowerCamelCase : Union[str, Any] = self.tokenizer.pad(_UpperCamelCase ,**_UpperCamelCase) if labels is None: return input_features elif input_features is None: return labels else: __lowerCamelCase : Tuple = labels['input_ids'] return input_features def lowerCAmelCase ( self : Union[str, Any] ,*SCREAMING_SNAKE_CASE__ : str ,**SCREAMING_SNAKE_CASE__ : Optional[int]): return self.tokenizer.batch_decode(*_UpperCamelCase ,**_UpperCamelCase) def lowerCAmelCase ( self : List[str] ,*SCREAMING_SNAKE_CASE__ : Optional[Any] ,**SCREAMING_SNAKE_CASE__ : str): return self.tokenizer.decode(*_UpperCamelCase ,**_UpperCamelCase) @contextmanager def lowerCAmelCase ( self : str): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.') __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = self.tokenizer yield __lowerCamelCase : Optional[int] = self.feature_extractor __lowerCamelCase : List[str] = False
73
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = ["note_seq"] def __init__( self : Optional[int] , *_UpperCamelCase : str , **_UpperCamelCase : Optional[int] ) ->Any: requires_backends(self , ['''note_seq'''] ) @classmethod def snake_case__( cls : int , *_UpperCamelCase : Any , **_UpperCamelCase : List[Any] ) ->int: requires_backends(cls , ['''note_seq'''] ) @classmethod def snake_case__( cls : Dict , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : Union[str, Any] ) ->List[str]: requires_backends(cls , ['''note_seq'''] )
8
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable __UpperCAmelCase = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''DPTFeatureExtractor'''] __UpperCAmelCase = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration UpperCamelCase_ = 50000 UpperCamelCase_ = 5000 UpperCamelCase_ ,UpperCamelCase_ = os.path.split(__file__) UpperCamelCase_ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def lowerCamelCase_ ( _a : List[str] , _a : Union[str, Any] ): '''simple docstring''' for i in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Union[str, Any] = dataset[i] @get_duration def lowerCamelCase_ ( _a : int , _a : Dict , _a : str ): '''simple docstring''' for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Tuple = dataset[i : i + batch_size] @get_duration def lowerCamelCase_ ( _a : List[Any] , _a : List[str] , _a : int ): '''simple docstring''' with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Tuple = dataset[i] @get_duration def lowerCamelCase_ ( _a : Optional[Any] , _a : List[str] , _a : Tuple , _a : Optional[Any] ): '''simple docstring''' with dataset.formatted_as(type=SCREAMING_SNAKE_CASE__ ): for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Optional[int] = dataset[i : i + batch_size] def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Tuple = {"""num examples""": SPEED_TEST_N_EXAMPLES} UpperCAmelCase_ : List[str] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] UpperCAmelCase_ : Optional[Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) UpperCAmelCase_ : str = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) UpperCAmelCase_ : Tuple = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , """dataset.arrow""" ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Tuple = func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) print("""shuffling dataset""" ) UpperCAmelCase_ : Any = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Union[str, Any] = func( SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
345
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" for attribute in key.split("." ): a_ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: a_ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: a_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value else: a_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == "group" , ) a_ = True else: for key, mapped_key in MAPPING.items(): a_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(SCREAMING_SNAKE_CASE__ )[0].split("." )[-2] a_ = mapped_key.replace("*" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "weight" in name: a_ = "weight" elif "bias" in name: a_ = "bias" else: a_ = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" a_ = SEWConfig() if is_finetuned: a_ = model.wav_encoder.wav_model.cfg else: a_ = model.cfg a_ = fs_config.conv_bias a_ = eval(fs_config.conv_feature_layers ) a_ = [x[0] for x in conv_layers] a_ = [x[1] for x in conv_layers] a_ = [x[2] for x in conv_layers] a_ = "gelu" a_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" a_ = 0.0 a_ = fs_config.activation_fn.name a_ = fs_config.encoder_embed_dim a_ = 0.02 a_ = fs_config.encoder_ffn_embed_dim a_ = 1E-5 a_ = fs_config.encoder_layerdrop a_ = fs_config.encoder_attention_heads a_ = fs_config.conv_pos_groups a_ = fs_config.conv_pos a_ = len(SCREAMING_SNAKE_CASE__ ) a_ = fs_config.encoder_layers a_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: a_ = model.cfg a_ = fs_config.final_dropout a_ = fs_config.layerdrop a_ = fs_config.activation_dropout a_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 a_ = fs_config.attention_dropout a_ = fs_config.dropout_input a_ = fs_config.dropout a_ = fs_config.mask_channel_length a_ = fs_config.mask_channel_prob a_ = fs_config.mask_length a_ = fs_config.mask_prob a_ = "Wav2Vec2FeatureExtractor" a_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True ) ->Optional[Any]: """simple docstring""" if is_finetuned: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: a_ = SEWConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: a_ = convert_config(model[0] , SCREAMING_SNAKE_CASE__ ) a_ = model[0].eval() a_ = True if config.feat_extract_norm == "layer" else False a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) if is_finetuned: if dict_path: a_ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.eos_index a_ = len(target_dict.symbols ) a_ = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE__ ) a_ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) a_ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) a_ = SEWForCTC(SCREAMING_SNAKE_CASE__ ) else: a_ = SEWModel(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase_ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
243
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
0
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowercase ( _snake_case : int ) ->List[Any]: # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowercase ( ) ->Any: """simple docstring""" with parallel_backend('''spark''' ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : str = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE__ ): with parallel_backend('''unsupported backend''' ): map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE__ ): with parallel_backend('''unsupported backend''' ): map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' , [2, -1] ) def lowercase ( _snake_case : Optional[int] ) ->Any: """simple docstring""" __snake_case : List[str] = [1, 2] __snake_case : Union[str, Any] = {'''a''': 1, '''b''': 2} __snake_case : Optional[int] = {'''a''': [1, 2], '''b''': [3, 4]} __snake_case : int = {'''a''': {'''1''': 1}, '''b''': 2} __snake_case : int = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} __snake_case : Optional[Any] = [2, 3] __snake_case : int = {'''a''': 2, '''b''': 3} __snake_case : Dict = {'''a''': [2, 3], '''b''': [4, 5]} __snake_case : Any = {'''a''': {'''1''': 2}, '''b''': 3} __snake_case : str = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark''' ): assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=SCREAMING_SNAKE_CASE__ ) == expected_map_nested_sa
102
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __A ( metaclass=__A ): a__ : List[Any] = ["onnx"] def __init__(self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): requires_backends(self , ["onnx"] ) @classmethod def _lowercase (cls : Optional[int] , *__a : str , **__a : Optional[Any] ): requires_backends(cls , ["onnx"] ) @classmethod def _lowercase (cls : int , *__a : Optional[int] , **__a : int ): requires_backends(cls , ["onnx"] )
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE (*SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = list(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): snake_case_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 128 ): if function is None: return functools.partial(SCREAMING_SNAKE_CASE__ , starting_batch_size=SCREAMING_SNAKE_CASE__ ) snake_case_ = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case_ = list(inspect.signature(SCREAMING_SNAKE_CASE__ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE__ ) < (len(SCREAMING_SNAKE_CASE__ ) + 1): snake_case_ = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
8
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase ( __A ): """simple docstring""" UpperCAmelCase = "detr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self ,a_=True ,a_=None ,a_=3 ,a_=100 ,a_=6 ,a_=2_048 ,a_=8 ,a_=6 ,a_=2_048 ,a_=8 ,a_=0.0 ,a_=0.0 ,a_=True ,a_="relu" ,a_=256 ,a_=0.1 ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1.0 ,a_=False ,a_="sine" ,a_="resnet50" ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=1 ,a_=1 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> Optional[int]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_UpperCamelCase ,_UpperCamelCase ): _UpperCAmelCase : List[Any] = backbone_config.get("""model_type""" ) _UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : List[str] = config_class.from_dict(_UpperCamelCase ) # set timm attributes to None _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = None, None, None _UpperCAmelCase : Tuple = use_timm_backbone _UpperCAmelCase : List[str] = backbone_config _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : Union[str, Any] = num_queries _UpperCAmelCase : Any = d_model _UpperCAmelCase : Optional[int] = encoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : Dict = encoder_attention_heads _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : List[Any] = decoder_layers _UpperCAmelCase : Optional[Any] = decoder_attention_heads _UpperCAmelCase : Tuple = dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : int = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : Any = init_std _UpperCAmelCase : List[str] = init_xavier_std _UpperCAmelCase : List[str] = encoder_layerdrop _UpperCAmelCase : Union[str, Any] = decoder_layerdrop _UpperCAmelCase : Optional[int] = encoder_layers _UpperCAmelCase : Optional[Any] = auxiliary_loss _UpperCAmelCase : Dict = position_embedding_type _UpperCAmelCase : List[Any] = backbone _UpperCAmelCase : str = use_pretrained_backbone _UpperCAmelCase : str = dilation # Hungarian matcher _UpperCAmelCase : int = class_cost _UpperCAmelCase : str = bbox_cost _UpperCAmelCase : Optional[Any] = giou_cost # Loss coefficients _UpperCAmelCase : Optional[int] = mask_loss_coefficient _UpperCAmelCase : Dict = dice_loss_coefficient _UpperCAmelCase : Optional[int] = bbox_loss_coefficient _UpperCAmelCase : Optional[int] = giou_loss_coefficient _UpperCAmelCase : int = eos_coefficient super().__init__(is_encoder_decoder=_UpperCamelCase ,**_UpperCamelCase ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> Optional[int]: return cls(backbone_config=_UpperCamelCase ,**_UpperCamelCase ) def _snake_case ( self ) -> Dict[str, any]: _UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : Union[str, Any] = self.backbone_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output class lowercase ( __A ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-5 @property def _snake_case ( self ) -> int: return 12
215
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [ord(SCREAMING_SNAKE_CASE__ ) - 96 for elem in plain] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return "".join(chr(elem + 96 ) for elem in encoded ) def __SCREAMING_SNAKE_CASE (): snake_case_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , SCREAMING_SNAKE_CASE__ ) print('''Decoded:''' , decode(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
8
0
import collections import os import re from pathlib import Path __UpperCamelCase : str = 'src/transformers' # Matches is_xxx_available() __UpperCamelCase : int = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __UpperCamelCase : int = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __UpperCamelCase : List[str] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __UpperCamelCase : List[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __UpperCamelCase : List[Any] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __UpperCamelCase : Tuple = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __UpperCamelCase : Tuple = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __UpperCamelCase : List[str] = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __UpperCamelCase : str = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __UpperCamelCase : Union[str, Any] = re.compile(R'^\s*try:') # Catches a line with else: __UpperCamelCase : Dict = re.compile(R'^\s*else:') def A ( _lowercase ): if _re_test_backend.search(SCREAMING_SNAKE_CASE__ ) is None: return None SCREAMING_SNAKE_CASE : Union[str, Any] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE__ )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE__ ) def A ( _lowercase ): with open(SCREAMING_SNAKE_CASE__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.readlines() SCREAMING_SNAKE_CASE : Dict = 0 while line_index < len(SCREAMING_SNAKE_CASE__ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE__ ): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE : Optional[int] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE : List[str] = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE__ ).groups()[0] SCREAMING_SNAKE_CASE : Tuple = re.findall(R'''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue SCREAMING_SNAKE_CASE : Dict = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: SCREAMING_SNAKE_CASE : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 SCREAMING_SNAKE_CASE : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ) is not None: SCREAMING_SNAKE_CASE : int = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE : Tuple = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ) is not None: SCREAMING_SNAKE_CASE : List[Any] = _re_between_brackets.search(SCREAMING_SNAKE_CASE__ ).groups()[0].split(''', ''' ) SCREAMING_SNAKE_CASE : Optional[int] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE__ ) > 0] objects.extend(SCREAMING_SNAKE_CASE__ ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE__ ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE : Dict = [] while ( line_index < len(SCREAMING_SNAKE_CASE__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] SCREAMING_SNAKE_CASE : Union[str, Any] = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 SCREAMING_SNAKE_CASE : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE__ ): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: SCREAMING_SNAKE_CASE : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): SCREAMING_SNAKE_CASE : Tuple = lines[line_index] SCREAMING_SNAKE_CASE : Dict = _re_import.search(SCREAMING_SNAKE_CASE__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 SCREAMING_SNAKE_CASE : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A ( _lowercase , _lowercase ): def find_duplicates(_lowercase ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE : Any = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) SCREAMING_SNAKE_CASE : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): SCREAMING_SNAKE_CASE : Optional[int] = '''base imports''' if key == '''none''' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def A ( ): SCREAMING_SNAKE_CASE : List[str] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE__ ): if "__init__.py" in files: SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , '''__init__.py''' ) SCREAMING_SNAKE_CASE : Tuple = parse_init(SCREAMING_SNAKE_CASE__ ) if objects is not None: SCREAMING_SNAKE_CASE : Optional[Any] = analyze_results(*SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: SCREAMING_SNAKE_CASE : List[str] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(SCREAMING_SNAKE_CASE__ ) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE__ ) ) def A ( ): SCREAMING_SNAKE_CASE : str = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE__ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(SCREAMING_SNAKE_CASE__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE__ ) / folder).glob('''*.py''' ) ) ) == 0: continue SCREAMING_SNAKE_CASE : Dict = str((Path(SCREAMING_SNAKE_CASE__ ) / folder).relative_to(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE : List[str] = short_path.replace(os.path.sep , '''.''' ) submodules.append(SCREAMING_SNAKE_CASE__ ) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE : List[Any] = str((Path(SCREAMING_SNAKE_CASE__ ) / fname).relative_to(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE : List[Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE__ ) return submodules __UpperCamelCase : Optional[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def A ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE : Tuple = direct_transformers_import(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE : Optional[Any] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE__ , '''__init__.py''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() import_structure_keys.update(set(re.findall(R'''import_structure\[\"([^\"]*)\"\]''' , SCREAMING_SNAKE_CASE__ ) ) ) SCREAMING_SNAKE_CASE : Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE__ ) > 0: SCREAMING_SNAKE_CASE : List[str] = '''\n'''.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
182
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
import copy import random from transformers import CLIPTokenizer class __UpperCAmelCase ( __A ): def __init__( self : int, *__A : int, **__A : int ): super().__init__(*_UpperCamelCase, **_UpperCamelCase ) UpperCAmelCase : Dict = {} def __magic_name__ ( self : Optional[Any], __A : Optional[Any], *__A : Optional[int], **__A : List[str] ): UpperCAmelCase : Dict = super().add_tokens(_UpperCamelCase, *_UpperCamelCase, **_UpperCamelCase ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ''' `placeholder_token` that is not already in the tokenizer.''' ) def __magic_name__ ( self : Union[str, Any], __A : Any, *__A : Dict, __A : Optional[Any]=1, **__A : Optional[Any] ): UpperCAmelCase : str = [] if num_vec_per_token == 1: self.try_adding_tokens(_UpperCamelCase, *_UpperCamelCase, **_UpperCamelCase ) output.append(_UpperCamelCase ) else: UpperCAmelCase : Any = [] for i in range(_UpperCamelCase ): UpperCAmelCase : Optional[Any] = placeholder_token + F'''_{i}''' self.try_adding_tokens(_UpperCamelCase, *_UpperCamelCase, **_UpperCamelCase ) output.append(_UpperCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) UpperCAmelCase : List[str] = output def __magic_name__ ( self : List[str], __A : Tuple, __A : Dict=False, __A : Union[str, Any]=1.0 ): if isinstance(_UpperCamelCase, _UpperCamelCase ): UpperCAmelCase : Optional[int] = [] for i in range(len(_UpperCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=_UpperCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase : List[Any] = self.token_map[placeholder_token] UpperCAmelCase : List[str] = tokens[: 1 + int(len(_UpperCamelCase ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase : str = copy.copy(_UpperCamelCase ) random.shuffle(_UpperCamelCase ) UpperCAmelCase : Optional[int] = text.replace(_UpperCamelCase, ''' '''.join(_UpperCamelCase ) ) return text def __call__( self : List[str], __A : Any, *__A : int, __A : Optional[Any]=False, __A : Tuple=1.0, **__A : Optional[int] ): return super().__call__( self.replace_placeholder_tokens_in_text( _UpperCamelCase, vector_shuffle=_UpperCamelCase, prop_tokens_to_load=_UpperCamelCase ), *_UpperCamelCase, **_UpperCamelCase, ) def __magic_name__ ( self : str, __A : Any, *__A : Any, __A : Union[str, Any]=False, __A : List[Any]=1.0, **__A : Any ): return super().encode( self.replace_placeholder_tokens_in_text( _UpperCamelCase, vector_shuffle=_UpperCamelCase, prop_tokens_to_load=_UpperCamelCase ), *_UpperCamelCase, **_UpperCamelCase, )
336
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __A ( __lowerCAmelCase )-> Union[str, Any]: """simple docstring""" for param in module.parameters(): _UpperCAmelCase = False def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __A ( __lowerCAmelCase )-> Any: """simple docstring""" _UpperCAmelCase = plt.imshow(SCREAMING_SNAKE_CASE__ ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE__ ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE__ ) plt.show() def __A ( )-> Dict: """simple docstring""" _UpperCAmelCase = datetime.now() _UpperCAmelCase = current_time.strftime('%H:%M:%S' ) return timestamp
39
from __future__ import annotations from collections.abc import Generator def __SCREAMING_SNAKE_CASE (): snake_case_ = {} snake_case_ = 2 while True: snake_case_ = factor_map.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if factor: snake_case_ = factor + prime while x in factor_map: x += factor snake_case_ = factor else: snake_case_ = prime yield prime prime += 1 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1E10 ): snake_case_ = sieve() snake_case_ = 1 while True: snake_case_ = next(SCREAMING_SNAKE_CASE__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE__ ) n += 2 if __name__ == "__main__": print(solution())
8
0
from sklearn.metrics import fa_score import datasets snake_case_ = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' snake_case_ = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' snake_case_ = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def a (self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def a (self : List[str] , a__ : str , a__ : Optional[Any] , a__ : List[Any]=None , a__ : Optional[int]=1 , a__ : List[str]="binary" , a__ : Tuple=None ): """simple docstring""" __snake_case = fa_score( _UpperCamelCase , _UpperCamelCase , labels=_UpperCamelCase , pos_label=_UpperCamelCase , average=_UpperCamelCase , sample_weight=_UpperCamelCase ) return {"f1": float(_UpperCamelCase ) if score.size == 1 else score}
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A_ : def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : List[str]=1_3 ,SCREAMING_SNAKE_CASE__ : int=3_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=2 ,SCREAMING_SNAKE_CASE__ : Any=3 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1_6 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=[1, 2, 1] ,SCREAMING_SNAKE_CASE__ : Tuple=[2, 2, 4] ,SCREAMING_SNAKE_CASE__ : List[Any]=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=2.0 ,SCREAMING_SNAKE_CASE__ : Any=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 ,SCREAMING_SNAKE_CASE__ : int=0.0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]="gelu" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 ,SCREAMING_SNAKE_CASE__ : List[Any]=1E-5 ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 ,SCREAMING_SNAKE_CASE__ : int=8 ,SCREAMING_SNAKE_CASE__ : Tuple=["stage1", "stage2", "stage3"] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 2, 3] ,): __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : Optional[Any] = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : Any = embed_dim __lowerCamelCase : Union[str, Any] = depths __lowerCamelCase : str = num_heads __lowerCamelCase : Any = window_size __lowerCamelCase : List[Any] = mlp_ratio __lowerCamelCase : str = qkv_bias __lowerCamelCase : Union[str, Any] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[str] = drop_path_rate __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : Optional[int] = use_absolute_embeddings __lowerCamelCase : Dict = patch_norm __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : Tuple = is_training __lowerCamelCase : Union[str, Any] = scope __lowerCamelCase : Optional[int] = use_labels __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : str = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : List[Any] = out_indices def lowerCAmelCase ( self : Tuple): __lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __lowerCamelCase : Dict = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size) __lowerCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : List[Any]): return MaskFormerSwinConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : Union[str, Any] = MaskFormerSwinModel(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() __lowerCamelCase : Union[str, Any] = model(_UpperCamelCase) __lowerCamelCase : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim)) def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Tuple): __lowerCamelCase : Any = MaskFormerSwinBackbone(config=_UpperCamelCase) model.to(_UpperCamelCase) model.eval() __lowerCamelCase : int = model(_UpperCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) ,len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) ,[1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) ,len(config.out_features)) self.parent.assertListEqual(model.channels ,[1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(_UpperCamelCase): __lowerCamelCase : List[Any] = ['stem'] __lowerCamelCase : List[Any] = MaskFormerSwinBackbone(config=_UpperCamelCase) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Any = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( __A , __A , unittest.TestCase ): _UpperCAmelCase : Tuple = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self) __lowerCamelCase : Tuple = ConfigTester(self ,config_class=_UpperCamelCase ,embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' )) def lowerCAmelCase ( self : List[str]): pass def lowerCAmelCase ( self : int): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : int): return def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase) @unittest.skip('Swin does not use inputs_embeds') def lowerCAmelCase ( self : List[str]): pass @unittest.skip('Swin does not support feedforward chunking') def lowerCAmelCase ( self : List[Any]): pass def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(_UpperCamelCase) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase ,nn.Linear)) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(_UpperCamelCase) __lowerCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Optional[int] = [*signature.parameters.keys()] __lowerCamelCase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCamelCase) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions') def lowerCAmelCase ( self : Optional[Any]): pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone') def lowerCAmelCase ( self : int): pass def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]): __lowerCamelCase : List[Any] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() with torch.no_grad(): __lowerCamelCase : Any = model(**self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase)) __lowerCamelCase : Dict = outputs.hidden_states __lowerCamelCase : List[str] = getattr( self.model_tester ,'expected_num_hidden_layers' ,len(self.model_tester.depths) + 1) self.assertEqual(len(_UpperCamelCase) ,_UpperCamelCase) # Swin has a different seq_length __lowerCamelCase : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) ,[num_patches, self.model_tester.embed_dim] ,) def lowerCAmelCase ( self : List[str]): __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Any = True self.check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Union[str, Any] = True self.check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase) def lowerCAmelCase ( self : str): __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[int] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = True self.check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,(padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : str = True self.check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,(padded_height, padded_width)) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints') def lowerCAmelCase ( self : List[str]): pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def lowerCAmelCase ( self : List[Any]): pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def lowerCAmelCase ( self : List[str]): pass def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE__ : Any): __lowerCamelCase : Optional[int] = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[Any]={}): with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**_UpperCamelCase ,return_dict=_UpperCamelCase ,**_UpperCamelCase) __lowerCamelCase : List[Any] = model(**_UpperCamelCase ,return_dict=_UpperCamelCase ,**_UpperCamelCase).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : List[str]): if isinstance(_UpperCamelCase ,(List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(_UpperCamelCase ,_UpperCamelCase): recursive_check(_UpperCamelCase ,_UpperCamelCase) elif isinstance(_UpperCamelCase ,_UpperCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() ,dict_object.values()): recursive_check(_UpperCamelCase ,_UpperCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCamelCase) ,set_nan_tensor_to_zero(_UpperCamelCase) ,atol=1E-5) ,msg=( 'Tuple and dict output are not equal. Difference:' F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(_UpperCamelCase).any()} and `inf`: {torch.isinf(_UpperCamelCase)}. Dict has" F" `nan`: {torch.isnan(_UpperCamelCase).any()} and `inf`: {torch.isinf(_UpperCamelCase)}." ) ,) recursive_check(_UpperCamelCase ,_UpperCamelCase) for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(_UpperCamelCase) model.to(_UpperCamelCase) model.eval() __lowerCamelCase : Dict = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase) __lowerCamelCase : Dict = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase) check_equivalence(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase) __lowerCamelCase : Optional[Any] = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ,return_labels=_UpperCamelCase) __lowerCamelCase : Any = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ,return_labels=_UpperCamelCase) check_equivalence(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase) __lowerCamelCase : List[str] = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase) __lowerCamelCase : Optional[Any] = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase) check_equivalence(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,{'output_hidden_states': True}) __lowerCamelCase : str = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ,return_labels=_UpperCamelCase) __lowerCamelCase : Optional[Any] = self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ,return_labels=_UpperCamelCase) check_equivalence(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,{'output_hidden_states': True}) @require_torch class A_ ( unittest.TestCase , __A ): _UpperCAmelCase : int = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCAmelCase : int = MaskFormerSwinConfig def lowerCAmelCase ( self : Any): __lowerCamelCase : Tuple = MaskFormerSwinModelTester(self) def lowerCAmelCase ( self : Dict): __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Optional[Any] = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : List[Any] = backbone_class(_UpperCamelCase) backbone.to(_UpperCamelCase) backbone.eval() __lowerCamelCase : Optional[Any] = backbone(**_UpperCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps ,_UpperCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels): self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True __lowerCamelCase : int = backbone(**_UpperCamelCase ,output_hidden_states=_UpperCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) ,len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**_UpperCamelCase ,output_attentions=_UpperCamelCase) self.assertIsNotNone(outputs.attentions)
73
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "philschmid/bart-large-cnn-samsum" SCREAMING_SNAKE_CASE : Tuple = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) SCREAMING_SNAKE_CASE : str = "summarizer" SCREAMING_SNAKE_CASE : str = AutoTokenizer SCREAMING_SNAKE_CASE : str = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE : Optional[int] = ["text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def snake_case__( self : str , _UpperCamelCase : int ) ->Optional[int]: return self.pre_processor(_UpperCamelCase , return_tensors='''pt''' , truncation=_UpperCamelCase ) def snake_case__( self : Tuple , _UpperCamelCase : Optional[int] ) ->Tuple: return self.model.generate(**_UpperCamelCase )[0] def snake_case__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->Any: return self.pre_processor.decode(_UpperCamelCase , skip_special_tokens=_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase )
8
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase_ ( __A ): UpperCAmelCase__ : List[str] = "canine" def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1_6384, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=0XE000, SCREAMING_SNAKE_CASE_=0XE001, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1_6384, SCREAMING_SNAKE_CASE_=128, **SCREAMING_SNAKE_CASE_, ) -> List[Any]: super().__init__(pad_token_id=_UpperCamelCase, bos_token_id=_UpperCamelCase, eos_token_id=_UpperCamelCase, **_UpperCamelCase ) UpperCamelCase : int = max_position_embeddings UpperCamelCase : Dict = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : str = intermediate_size UpperCamelCase : Union[str, Any] = hidden_act UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : int = initializer_range UpperCamelCase : Optional[int] = type_vocab_size UpperCamelCase : List[Any] = layer_norm_eps # Character config: UpperCamelCase : Dict = downsampling_rate UpperCamelCase : List[Any] = upsampling_kernel_size UpperCamelCase : Dict = num_hash_functions UpperCamelCase : Any = num_hash_buckets UpperCamelCase : str = local_transformer_stride
119
from collections import deque from .hash_table import HashTable class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : int , **_UpperCamelCase : Tuple ) ->Tuple: super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict ) ->Tuple: snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_UpperCamelCase ) snake_case_ = self.values[key] def snake_case__( self : List[Any] ) ->str: return ( sum(self.charge_factor - len(_UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def snake_case__( self : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int]=None ) ->str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_UpperCamelCase ) == 0 ): return key return super()._collision_resolution(_UpperCamelCase , _UpperCamelCase )
8
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class _snake_case ( __A ): '''simple docstring''' def __init__( self: Tuple ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[Any] ) -> None: warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
345
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] snake_case_ = run_maze(SCREAMING_SNAKE_CASE__ , 0 , 0 , SCREAMING_SNAKE_CASE__ ) if solved: print('''\n'''.join(str(SCREAMING_SNAKE_CASE__ ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = len(SCREAMING_SNAKE_CASE__ ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE__ , i + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j + 1 , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , i - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or run_maze(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , j - 1 , SCREAMING_SNAKE_CASE__ ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" import math def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCamelCase_ = 'Enter the base and the power separated by a comma: ' UpperCamelCase_ , UpperCamelCase_ = map(int, input(prompt).split(',')) UpperCamelCase_ , UpperCamelCase_ = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. UpperCamelCase_ = res(xa, ya) UpperCamelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
243
from decimal import Decimal, getcontext from math import ceil, factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) snake_case_ = precision snake_case_ = ceil(precision / 14 ) snake_case_ = 426880 * Decimal(10005 ).sqrt() snake_case_ = 1 snake_case_ = 13591409 snake_case_ = Decimal(SCREAMING_SNAKE_CASE__ ) for k in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
8
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase__ ="biogpt" def __init__(self , a_=4_23_84 , a_=10_24 , a_=24 , a_=16 , a_=40_96 , a_="gelu" , a_=0.1 , a_=0.1 , a_=10_24 , a_=0.02 , a_=1E-12 , a_=True , a_=True , a_=0.0 , a_=0.0 , a_=1 , a_=0 , a_=2 , **a_ , ): '''simple docstring''' __snake_case : Tuple = vocab_size __snake_case : Optional[int] = max_position_embeddings __snake_case : Tuple = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : int = layer_norm_eps __snake_case : Dict = scale_embedding __snake_case : Optional[Any] = use_cache __snake_case : Union[str, Any] = layerdrop __snake_case : int = activation_dropout super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase )
102
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class __A ( __A ): a__ : Optional[Any] = "switch_transformers" a__ : Tuple = ["past_key_values"] a__ : int = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__(self : Tuple , __a : Optional[int]=32128 , __a : Any=768 , __a : Optional[Any]=64 , __a : List[Any]=2048 , __a : Union[str, Any]=64 , __a : Union[str, Any]=12 , __a : List[Any]=3 , __a : str=12 , __a : Union[str, Any]=3 , __a : Tuple=12 , __a : Dict=8 , __a : Any=False , __a : Dict=0.01 , __a : Optional[Any]="float32" , __a : Optional[int]=False , __a : List[str]=32 , __a : str=128 , __a : Tuple=0.1 , __a : List[str]=1E-6 , __a : Optional[int]=0.0_01 , __a : Optional[int]=0.0_01 , __a : Any=1.0 , __a : Optional[int]="relu" , __a : Dict=True , __a : Optional[int]=False , __a : Dict=True , __a : Tuple=0 , __a : List[Any]=1 , **__a : Tuple , ): UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_model UpperCAmelCase_ = d_kv UpperCAmelCase_ = d_ff UpperCAmelCase_ = num_sparse_encoder_layers UpperCAmelCase_ = num_layers UpperCAmelCase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: UpperCAmelCase_ = self.num_layers // self.num_sparse_encoder_layers else: UpperCAmelCase_ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: UpperCAmelCase_ = self.num_decoder_layers // self.num_sparse_decoder_layers else: UpperCAmelCase_ = self.num_decoder_layers # HACK: this will create 0 sparse layers UpperCAmelCase_ = num_heads UpperCAmelCase_ = num_experts UpperCAmelCase_ = expert_capacity UpperCAmelCase_ = router_bias UpperCAmelCase_ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) UpperCAmelCase_ = router_dtype UpperCAmelCase_ = router_ignore_padding_tokens UpperCAmelCase_ = relative_attention_num_buckets UpperCAmelCase_ = relative_attention_max_distance UpperCAmelCase_ = dropout_rate UpperCAmelCase_ = layer_norm_epsilon UpperCAmelCase_ = initializer_factor UpperCAmelCase_ = feed_forward_proj UpperCAmelCase_ = use_cache UpperCAmelCase_ = add_router_probs UpperCAmelCase_ = router_z_loss_coef UpperCAmelCase_ = router_aux_loss_coef UpperCAmelCase_ = self.feed_forward_proj.split("-" ) UpperCAmelCase_ = act_info[-1] UpperCAmelCase_ = act_info[0] == "gated" if len(_UpperCamelCase ) > 1 and act_info[0] != "gated" or len(_UpperCamelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ = "gelu_new" super().__init__( pad_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , is_encoder_decoder=_UpperCamelCase , **_UpperCamelCase , )
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''DPTFeatureExtractor'''] lowerCAmelCase_ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
0
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Input value must be a \'int\' type""" ) return bin(SCREAMING_SNAKE_CASE__ ).count("""1""" ) if __name__ == "__main__": import doctest doctest.testmod()
215
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': 5_12, } lowerCAmelCase_ = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = LxmertTokenizer def __init__( self : Union[str, Any] , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : Dict=True , _UpperCamelCase : Any="[UNK]" , _UpperCamelCase : Tuple="[SEP]" , _UpperCamelCase : List[Any]="[PAD]" , _UpperCamelCase : Union[str, Any]="[CLS]" , _UpperCamelCase : str="[MASK]" , _UpperCamelCase : List[str]=True , _UpperCamelCase : List[str]=None , **_UpperCamelCase : List[str] , ) ->Any: super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _UpperCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(_UpperCamelCase , normalizer_state.pop('''type''' ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**_UpperCamelCase ) snake_case_ = do_lower_case def snake_case__( self : Optional[int] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=None ) ->List[Any]: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__( self : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
8
0
import math from collections.abc import Callable def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[str] = xa SCREAMING_SNAKE_CASE : Union[str, Any] = xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('''float division by zero, could not find root''' ) SCREAMING_SNAKE_CASE : int = x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na SCREAMING_SNAKE_CASE : Tuple = x_na SCREAMING_SNAKE_CASE : int = x_na def A ( _lowercase ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
182
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 10001 ): try: snake_case_ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) snake_case_ = [] snake_case_ = 2 while len(SCREAMING_SNAKE_CASE__ ) < nth: if is_prime(SCREAMING_SNAKE_CASE__ ): primes.append(SCREAMING_SNAKE_CASE__ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE__ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
8
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _lowerCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCamelCase : Optional[Any] = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } _lowerCamelCase : List[str] = { "unc-nlp/lxmert-base-uncased": 5_1_2, } _lowerCamelCase : Optional[int] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __UpperCAmelCase ( __A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = LxmertTokenizer def __init__( self : Union[str, Any], __A : int=None, __A : Optional[Any]=None, __A : Dict=True, __A : Any="[UNK]", __A : Tuple="[SEP]", __A : List[Any]="[PAD]", __A : Union[str, Any]="[CLS]", __A : str="[MASK]", __A : List[str]=True, __A : List[str]=None, **__A : List[str], ): super().__init__( _UpperCamelCase, tokenizer_file=_UpperCamelCase, do_lower_case=_UpperCamelCase, unk_token=_UpperCamelCase, sep_token=_UpperCamelCase, pad_token=_UpperCamelCase, cls_token=_UpperCamelCase, mask_token=_UpperCamelCase, tokenize_chinese_chars=_UpperCamelCase, strip_accents=_UpperCamelCase, **_UpperCamelCase, ) UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', _UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', _UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', _UpperCamelCase ) != tokenize_chinese_chars ): UpperCAmelCase : Any = getattr(_UpperCamelCase, normalizer_state.pop('''type''' ) ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Tuple = strip_accents UpperCAmelCase : Union[str, Any] = tokenize_chinese_chars UpperCAmelCase : Tuple = normalizer_class(**_UpperCamelCase ) UpperCAmelCase : Any = do_lower_case def __magic_name__ ( self : Optional[int], __A : List[Any], __A : List[str]=None ): UpperCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__ ( self : int, __A : List[int], __A : Optional[List[int]] = None ): UpperCAmelCase : int = [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self : Any, __A : str, __A : Optional[str] = None ): UpperCAmelCase : Tuple = self._tokenizer.model.save(_UpperCamelCase, name=_UpperCamelCase ) return tuple(_UpperCamelCase )
336
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCAmelCase_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCAmelCase_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Optional[int] ) ->List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def snake_case__( self : List[Any] ) ->Optional[int]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def snake_case__( self : int , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]="uniform_average" , _UpperCamelCase : Tuple=True ) ->Tuple: snake_case_ = mean_squared_error( _UpperCamelCase , _UpperCamelCase , sample_weight=_UpperCamelCase , multioutput=_UpperCamelCase , squared=_UpperCamelCase ) return {"mse": mse}
8
0