code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def _UpperCamelCase ( lowercase__ = 1000000 ): __SCREAMING_SNAKE_CASE : List[str] = set(range(3 , lowercase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowercase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase__ , lowercase__ ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [float(lowercase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase__ , limit + 1 , lowercase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
9
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase : Union[str, Any] =3 def _UpperCamelCase ( lowercase__ ): print('''Generating primitive root of p''' ) while True: __SCREAMING_SNAKE_CASE : Tuple = random.randrange(3 , lowercase__ ) if pow(lowercase__ , 2 , lowercase__ ) == 1: continue if pow(lowercase__ , lowercase__ , lowercase__ ) == 1: continue return g def _UpperCamelCase ( lowercase__ ): print('''Generating prime p...''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = rabin_miller.generate_large_prime(lowercase__ ) # select large prime number. __SCREAMING_SNAKE_CASE : Dict = primitive_root(lowercase__ ) # one primitive root on modulo p. __SCREAMING_SNAKE_CASE : int = random.randrange(3 , lowercase__ ) # private_key -> have to be greater than 2 for safety. __SCREAMING_SNAKE_CASE : Optional[Any] = cryptomath.find_mod_inverse(pow(lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (key_size, e_a, e_a, p) __SCREAMING_SNAKE_CASE : str = (key_size, d) return public_key, private_key def _UpperCamelCase ( lowercase__ , lowercase__ ): if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = generate_key(lowercase__ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , '''w''' ) as fo: fo.write(F'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , '''w''' ) as fo: fo.write(F'''{private_key[0]},{private_key[1]}''' ) def _UpperCamelCase ( ): print('''Making key files...''' ) make_key_files('''elgamal''' , 2048 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
9
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=lowercase__ , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=lowercase__ , default=5 ) parser.add_argument('''--batch_size''' , type=lowercase__ , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=lowercase__ , default=1 ) parser.add_argument('''--freeze''' , type=lowercase__ , default=lowercase__ ) parser.add_argument('''--learning_rate''' , type=lowercase__ , default=5e-4 ) parser.add_argument('''--seed''' , type=lowercase__ , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=lowercase__ , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=lowercase__ , default=10 ) parser.add_argument('''--weight_decay''' , type=lowercase__ , default=0.01 ) parser.add_argument('''--output_dir''' , type=lowercase__ , default='''./results''' ) return parser.parse_args() __lowerCAmelCase : List[Any] =load('accuracy') def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = eval_pred __SCREAMING_SNAKE_CASE : int = np.argmax(lowercase__ , axis=1 ) return metric.compute(predictions=lowercase__ , references=lowercase__ ) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] ) -> None: super().__init__() __SCREAMING_SNAKE_CASE : Dict = trainer def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :int ) -> Optional[int]: if control.should_evaluate: __SCREAMING_SNAKE_CASE : List[str] = deepcopy(lowerCAmelCase__ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[Any] = get_args() set_seed(args.seed ) __SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = dataset.train_test_split(test_size=0.2 ) __SCREAMING_SNAKE_CASE : int = train_test['''test'''].train_test_split(test_size=0.5 ) __SCREAMING_SNAKE_CASE : Optional[int] = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) __SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __SCREAMING_SNAKE_CASE : str = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Any = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(lowercase__ ): __SCREAMING_SNAKE_CASE : Any = tokenizer(example['''src'''] , truncation=lowercase__ , max_length=1024 ) __SCREAMING_SNAKE_CASE : List[str] = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __SCREAMING_SNAKE_CASE : Union[str, Any] = train_test_validation.map( lowercase__ , batched=lowercase__ , remove_columns=train_test_validation['''train'''].column_names , ) __SCREAMING_SNAKE_CASE : Dict = DataCollatorWithPadding(tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) __SCREAMING_SNAKE_CASE : Any = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) print('''Training...''' ) trainer.add_callback(CustomCallback(lowercase__ ) ) trainer.train() if __name__ == "__main__": main()
9
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowercase : '''simple docstring''' def __init__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Dict=7 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=99 , lowerCAmelCase__ :Optional[Any]=36 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :int=4 , lowerCAmelCase__ :List[str]=37 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :List[str]=16 , lowerCAmelCase__ :Union[str, Any]=2 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=6 , lowerCAmelCase__ :int=6 , lowerCAmelCase__ :Union[str, Any]=3 , lowerCAmelCase__ :Union[str, Any]=4 , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :List[Any]=1_000 , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = parent __SCREAMING_SNAKE_CASE : Optional[int] = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : str = image_size __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : Any = is_training __SCREAMING_SNAKE_CASE : Dict = use_input_mask __SCREAMING_SNAKE_CASE : Dict = use_token_type_ids __SCREAMING_SNAKE_CASE : int = use_labels __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : int = type_sequence_label_size __SCREAMING_SNAKE_CASE : Any = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = coordinate_size __SCREAMING_SNAKE_CASE : Optional[Any] = shape_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : Optional[int] = num_choices __SCREAMING_SNAKE_CASE : Optional[int] = scope __SCREAMING_SNAKE_CASE : str = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __SCREAMING_SNAKE_CASE : Optional[Any] = text_seq_length __SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 + 1 __SCREAMING_SNAKE_CASE : Optional[int] = self.text_seq_length + self.image_seq_length def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __SCREAMING_SNAKE_CASE : Tuple = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE : List[str] = bbox[i, j, 3] __SCREAMING_SNAKE_CASE : Optional[Any] = bbox[i, j, 1] __SCREAMING_SNAKE_CASE : List[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 2] __SCREAMING_SNAKE_CASE : Tuple = bbox[i, j, 0] __SCREAMING_SNAKE_CASE : str = tmp_coordinate __SCREAMING_SNAKE_CASE : str = tf.constant(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __magic_name__( self :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMvaModel(config=lowerCAmelCase__ ) # text + image __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , training=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __SCREAMING_SNAKE_CASE : Any = model({'''pixel_values''': pixel_values} , training=lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __magic_name__( self :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : List[str] = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : str = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , training=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : Dict = config_and_inputs __SCREAMING_SNAKE_CASE : int = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ : int = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[int] = False def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> Any: return True def __magic_name__( self :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any]=False ) -> dict: __SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(lowerCAmelCase__ ) if model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = { k: tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCAmelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __SCREAMING_SNAKE_CASE : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = TFLayoutLMvaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__( self :str ) -> Optional[int]: self.config_tester.run_common_tests() def __magic_name__( self :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase__ ) if getattr(lowerCAmelCase__ , '''hf_compute_loss''' , lowerCAmelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label __SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase__ )[0] ] __SCREAMING_SNAKE_CASE : int = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = prepared_for_class.pop('''input_ids''' ) __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , **lowerCAmelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: __SCREAMING_SNAKE_CASE : Tuple = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __SCREAMING_SNAKE_CASE : Optional[int] = -100 __SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , **lowerCAmelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __SCREAMING_SNAKE_CASE : int = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) # Get keys that were added with the _prepare_for_class function __SCREAMING_SNAKE_CASE : List[str] = prepared_for_class.keys() - inputs_dict.keys() __SCREAMING_SNAKE_CASE : str = inspect.signature(model.call ).parameters __SCREAMING_SNAKE_CASE : Optional[int] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __SCREAMING_SNAKE_CASE : Any = {0: '''input_ids'''} for label_key in label_keys: __SCREAMING_SNAKE_CASE : Optional[int] = signature_names.index(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = label_key __SCREAMING_SNAKE_CASE : List[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __SCREAMING_SNAKE_CASE : int = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __SCREAMING_SNAKE_CASE : Union[str, Any] = prepared_for_class[value] __SCREAMING_SNAKE_CASE : Dict = tuple(lowerCAmelCase__ ) # Send to model __SCREAMING_SNAKE_CASE : Union[str, Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __magic_name__( self :Optional[Any] ) -> Tuple: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[int] ) -> Tuple: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Any = type self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :str ) -> Union[str, Any]: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :str ) -> Dict: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__( self :int ) -> Optional[Any]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : List[Any] = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Tuple ) -> Optional[int]: return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) if is_vision_available() else None @slow def __magic_name__( self :Tuple ) -> int: __SCREAMING_SNAKE_CASE : Any = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : Dict = prepare_img() __SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ).pixel_values __SCREAMING_SNAKE_CASE : str = tf.constant([[1, 2]] ) __SCREAMING_SNAKE_CASE : int = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __SCREAMING_SNAKE_CASE : Optional[Any] = model(input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
9
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = np.full((len(lowercase__ ), sequence_length, 2) , lowercase__ ) else: __SCREAMING_SNAKE_CASE : List[Any] = np.full((len(lowercase__ ), sequence_length) , lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tensor[:sequence_length] else: __SCREAMING_SNAKE_CASE : Optional[Any] = tensor[:sequence_length] else: if isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = tensor[:sequence_length] else: __SCREAMING_SNAKE_CASE : Optional[int] = tensor[:sequence_length] return out_tensor.tolist() def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = ord(lowercase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __SCREAMING_SNAKE_CASE : List[str] = unicodedata.category(lowercase__ ) if cat.startswith('''P''' ): return True return False @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : int = -100 SCREAMING_SNAKE_CASE__ : str = "pt" def __magic_name__( self :Tuple , lowerCAmelCase__ :Any ) -> List[Any]: import torch __SCREAMING_SNAKE_CASE : int = '''label''' if '''label''' in features[0].keys() else '''labels''' __SCREAMING_SNAKE_CASE : List[str] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(batch['''entity_ids'''] ).shape[1] __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.padding_side if padding_side == "right": __SCREAMING_SNAKE_CASE : Optional[int] = [ list(lowerCAmelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase__ )) for label in labels ] else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase__ )) + list(lowerCAmelCase__ ) for label in labels ] __SCREAMING_SNAKE_CASE : Optional[Any] = [feature['''ner_tags'''] for feature in features] __SCREAMING_SNAKE_CASE : Optional[int] = padding_tensor(lowerCAmelCase__ , -1 , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = [feature['''original_entity_spans'''] for feature in features] __SCREAMING_SNAKE_CASE : int = padding_tensor(lowerCAmelCase__ , (-1, -1) , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = {k: torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
9
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=7 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :Dict=30 , lowerCAmelCase__ :Tuple=400 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''shortest_edge''': 18} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def __magic_name__( self :Tuple ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VivitImageProcessor if is_vision_available() else None def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def __magic_name__( self :int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :str ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :Any ) -> List[str]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=1e-12 ): __SCREAMING_SNAKE_CASE : int = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase__ , axis=1 ) , a_min=lowercase__ ) ).T __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase__ , axis=1 ) , a_min=lowercase__ ) ).T return jnp.matmul(lowercase__ , norm_emb_a.T ) class _lowercase ( nn.Module ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : CLIPConfig SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa def __magic_name__( self :str ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = FlaxCLIPVisionModule(self.config.vision_config ) __SCREAMING_SNAKE_CASE : str = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase__ , dtype=self.dtype ) __SCREAMING_SNAKE_CASE : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __SCREAMING_SNAKE_CASE : Tuple = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __SCREAMING_SNAKE_CASE : str = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) __SCREAMING_SNAKE_CASE : Dict = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self :Any , lowerCAmelCase__ :str ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = self.vision_model(lowerCAmelCase__ )[1] __SCREAMING_SNAKE_CASE : Any = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = jax_cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Any = jax_cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __SCREAMING_SNAKE_CASE : Tuple = 0.0 __SCREAMING_SNAKE_CASE : Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __SCREAMING_SNAKE_CASE : Optional[int] = jnp.round(lowerCAmelCase__ , 3 ) __SCREAMING_SNAKE_CASE : str = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase__ ) # Use a lower threshold if an image has any special care concept __SCREAMING_SNAKE_CASE : int = is_special_care * 0.01 __SCREAMING_SNAKE_CASE : List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __SCREAMING_SNAKE_CASE : Optional[int] = jnp.round(lowerCAmelCase__ , 3 ) __SCREAMING_SNAKE_CASE : int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = CLIPConfig SCREAMING_SNAKE_CASE__ : int = '''clip_input''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxStableDiffusionSafetyCheckerModule def __init__( self :List[Any] , lowerCAmelCase__ :CLIPConfig , lowerCAmelCase__ :Optional[Tuple] = None , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :jnp.dtype = jnp.floataa , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: if input_shape is None: __SCREAMING_SNAKE_CASE : Optional[int] = (1, 224, 224, 3) __SCREAMING_SNAKE_CASE : int = self.module_class(config=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **lowerCAmelCase__ ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , input_shape=lowerCAmelCase__ , seed=lowerCAmelCase__ , dtype=lowerCAmelCase__ , _do_init=_do_init ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :jax.random.KeyArray , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :FrozenDict = None ) -> FrozenDict: # init input tensor __SCREAMING_SNAKE_CASE : Optional[int] = jax.random.normal(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = jax.random.split(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = {'''params''': params_rng, '''dropout''': dropout_rng} __SCREAMING_SNAKE_CASE : Dict = self.module.init(lowerCAmelCase__ , lowerCAmelCase__ )['''params'''] return random_params def __call__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :dict = None , ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) , rngs={} , )
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
class _lowercase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :list[int] ) -> None: __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [0] * len_array if len_array > 0: __SCREAMING_SNAKE_CASE : List[Any] = array[0] for i in range(1 , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = self.prefix_sum[i - 1] + array[i] def __magic_name__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int ) -> bool: __SCREAMING_SNAKE_CASE : Dict = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
9
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = len(set_a.intersection(lowercase__ ) ) if alternative_union: __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) + len(lowercase__ ) else: __SCREAMING_SNAKE_CASE : int = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: __SCREAMING_SNAKE_CASE : Tuple = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": __lowerCAmelCase : List[Any] ={'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : Optional[Any] ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
9
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :Optional[int]=56 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :int=99 , lowerCAmelCase__ :str=32 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Tuple=2 , lowerCAmelCase__ :Any=7 , lowerCAmelCase__ :Tuple="gelu_new" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :Tuple=512 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Optional[int]=0.02 , lowerCAmelCase__ :int=4 , lowerCAmelCase__ :Any="block_sparse" , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :str=False , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Tuple=3 , ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : List[Any] = is_training __SCREAMING_SNAKE_CASE : Tuple = use_attention_mask __SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = num_choices __SCREAMING_SNAKE_CASE : Optional[int] = rescale_embeddings __SCREAMING_SNAKE_CASE : List[Any] = attention_type __SCREAMING_SNAKE_CASE : Optional[int] = use_bias __SCREAMING_SNAKE_CASE : Any = block_size __SCREAMING_SNAKE_CASE : Dict = num_random_blocks def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Any = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = config_and_inputs __SCREAMING_SNAKE_CASE : str = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : str = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :int ) -> Optional[Any]: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :int ) -> int: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :Dict ) -> str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :Optional[int] ) -> Dict: super().test_hidden_states_output() @slow def __magic_name__( self :Optional[Any] ) -> Tuple: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int]=None , **lowerCAmelCase__ :Union[str, Any] ): return model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : Any = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __magic_name__( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str]=1E-5 , lowerCAmelCase__ :Optional[int]="outputs" , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
def _UpperCamelCase ( lowercase__ ): if num < 0: return False __SCREAMING_SNAKE_CASE : int = num __SCREAMING_SNAKE_CASE : int = 0 while num > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
9
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.normalize(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(lowercase__ ) return torch.mm(lowercase__ , normalized_text_embeds.t() ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig SCREAMING_SNAKE_CASE__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self :str , lowerCAmelCase__ :CLIPConfig ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModel(config.vision_config ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase__ ) @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : List[str] = special_cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Any = self.special_care_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : List[str] = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 __SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = special_care * 0.01 __SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
1
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : List[str] ={ 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = '''convbert''' def __init__( self :Dict , lowerCAmelCase__ :Tuple=30_522 , lowerCAmelCase__ :Optional[Any]=768 , lowerCAmelCase__ :int=12 , lowerCAmelCase__ :List[str]=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :List[Any]=512 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Optional[int]=0.02 , lowerCAmelCase__ :List[Any]=1E-1_2 , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :Dict=0 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :Tuple=9 , lowerCAmelCase__ :Optional[int]=1 , lowerCAmelCase__ :List[Any]=None , **lowerCAmelCase__ :Union[str, Any] , ) -> int: super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : str = embedding_size __SCREAMING_SNAKE_CASE : List[str] = head_ratio __SCREAMING_SNAKE_CASE : Optional[Any] = conv_kernel_size __SCREAMING_SNAKE_CASE : int = num_groups __SCREAMING_SNAKE_CASE : int = classifier_dropout class _lowercase ( A__ ): '''simple docstring''' @property def __magic_name__( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run __lowerCAmelCase : Optional[int] =True except (ImportError, AttributeError): __lowerCAmelCase : Optional[Any] =object def _UpperCamelCase ( *lowercase__ , **lowercase__ ): pass __lowerCAmelCase : Union[str, Any] =False __lowerCAmelCase : Union[str, Any] =logging.get_logger('transformers-cli/serving') def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowercase__ , args.host , args.port , args.workers ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : dict class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] SCREAMING_SNAKE_CASE__ : Optional[List[int]] class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any class _lowercase ( A__ ): '''simple docstring''' @staticmethod def __magic_name__( lowerCAmelCase__ :ArgumentParser ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=lowerCAmelCase__ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=lowerCAmelCase__ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=lowerCAmelCase__ , default=8_888 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=lowerCAmelCase__ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=lowerCAmelCase__ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=lowerCAmelCase__ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=lowerCAmelCase__ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=lowerCAmelCase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self :int , lowerCAmelCase__ :Pipeline , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Any: __SCREAMING_SNAKE_CASE : str = pipeline __SCREAMING_SNAKE_CASE : Dict = host __SCREAMING_SNAKE_CASE : List[Any] = port __SCREAMING_SNAKE_CASE : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(f'''Serving model over {host}:{port}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=['''POST'''] , ), ] , timeout=600 , ) def __magic_name__( self :Union[str, Any] ) -> Optional[int]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def __magic_name__( self :Dict ) -> Any: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __magic_name__( self :str , lowerCAmelCase__ :str = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ :bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Any: try: __SCREAMING_SNAKE_CASE : int = self._pipeline.tokenizer.tokenize(lowerCAmelCase__ ) if return_ids: __SCREAMING_SNAKE_CASE : List[str] = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCAmelCase__ )} ) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ :bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , lowerCAmelCase__ :bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ) -> List[Any]: try: __SCREAMING_SNAKE_CASE : int = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return ServeDeTokenizeResult(model='''''' , text=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(lowerCAmelCase__ )} ) async def __magic_name__( self :Dict , lowerCAmelCase__ :str=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> Optional[int]: # Check we don't have empty string if len(lowerCAmelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __SCREAMING_SNAKE_CASE : str = self._pipeline(lowerCAmelCase__ ) return ServeForwardResult(output=lowerCAmelCase__ ) except Exception as e: raise HTTPException(500 , {'''error''': str(lowerCAmelCase__ )} )
9
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _UpperCamelCase ( lowercase__ , lowercase__=False ): try: __SCREAMING_SNAKE_CASE : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __SCREAMING_SNAKE_CASE : Any = default else: # KEY is set, convert it to True or False. try: __SCREAMING_SNAKE_CASE : List[Any] = strtobool(lowercase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value __lowerCAmelCase : Dict =parse_flag_from_env('RUN_SLOW', default=False) def _UpperCamelCase ( lowercase__ ): return unittest.skip('''Test was skipped''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(lowercase__ ) def _UpperCamelCase ( lowercase__=None , lowercase__=None ): if test_case is None: return partial(lowercase__ , version=lowercase__ ) return unittest.skipUnless(is_torch_version('''>=''' , lowercase__ ) , F'''test requires torch version >= {version}''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(lowercase__ ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(lowercase__ ) __lowerCAmelCase : Optional[Any] =( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _UpperCamelCase ( lowercase__ ): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(lowercase__ ) class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = True @classmethod def __magic_name__( cls :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() @classmethod def __magic_name__( cls :List[Any] ) -> List[str]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __magic_name__( self :List[Any] ) -> List[str]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase__ ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Any: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :str , lowerCAmelCase__ :Union[mock.Mock, List[mock.Mock]] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = mocks if isinstance(lowerCAmelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = AcceleratorState() __SCREAMING_SNAKE_CASE : Optional[int] = tensor[None].clone().to(state.device ) __SCREAMING_SNAKE_CASE : List[str] = gather(lowercase__ ).cpu() __SCREAMING_SNAKE_CASE : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowercase__ ): return False return True class _lowercase : '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :str ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = returncode __SCREAMING_SNAKE_CASE : Optional[int] = stdout __SCREAMING_SNAKE_CASE : Dict = stderr async def _UpperCamelCase ( lowercase__ , lowercase__ ): while True: __SCREAMING_SNAKE_CASE : Tuple = await stream.readline() if line: callback(lowercase__ ) else: break async def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=False , lowercase__=False ): if echo: print('''\nRunning: ''' , ''' '''.join(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowercase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowercase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] def tee(lowercase__ , lowercase__ , lowercase__ , lowercase__="" ): __SCREAMING_SNAKE_CASE : Tuple = line.decode('''utf-8''' ).rstrip() sink.append(lowercase__ ) if not quiet: print(lowercase__ , lowercase__ , file=lowercase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowercase__ : tee(lowercase__ , lowercase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowercase__ : tee(lowercase__ , lowercase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=lowercase__ , ) return _RunOutput(await p.wait() , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=None , lowercase__=180 , lowercase__=False , lowercase__=True ): __SCREAMING_SNAKE_CASE : Union[str, Any] = asyncio.get_event_loop() __SCREAMING_SNAKE_CASE : Dict = loop.run_until_complete( _stream_subprocess(lowercase__ , env=lowercase__ , stdin=lowercase__ , timeout=lowercase__ , quiet=lowercase__ , echo=lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ''' '''.join(lowercase__ ) if result.returncode > 0: __SCREAMING_SNAKE_CASE : int = '''\n'''.join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class _lowercase ( A__ ): '''simple docstring''' pass def _UpperCamelCase ( lowercase__ , lowercase__=False ): try: __SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.check_output(lowercase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowercase__ , '''decode''' ): __SCREAMING_SNAKE_CASE : List[str] = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(lowercase__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
9
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :NestedDataStructureLike[PathLike] , lowerCAmelCase__ :Optional[NamedSplit] = None , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Optional[int] , ) -> Tuple: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Dict ) -> Tuple: # Build iterable dataset if self.streaming: __SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
9
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase : List[str] =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Any ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
9
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) return image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 364 if '''coco''' in model_name else 224 __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=lowercase__ , text_config=lowercase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __SCREAMING_SNAKE_CASE : str = tokenizer('''\n''' , add_special_tokens=lowercase__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_blipa_config(lowercase__ , eos_token_id=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : int = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __SCREAMING_SNAKE_CASE : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('''Done!''' ) # update state dict keys __SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) if key.startswith('''Qformer.bert''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5''' , '''language''' ) __SCREAMING_SNAKE_CASE : Tuple = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE : List[str] = load_demo_image() __SCREAMING_SNAKE_CASE : Any = vis_processors['''eval'''](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase__ ) # create processor __SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowercase__ , return_tensors='''pt''' ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __SCREAMING_SNAKE_CASE : Dict = hf_model(lowercase__ , lowercase__ ).logits else: __SCREAMING_SNAKE_CASE : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_model(lowercase__ , lowercase__ , labels=lowercase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase__ ) else: # cast to same type __SCREAMING_SNAKE_CASE : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) , lowercase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowercase__ , return_tensors='''pt''' ).input_ids.to(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate( lowercase__ , lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[1] __SCREAMING_SNAKE_CASE : Any = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() __lowerCAmelCase : Tuple =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(4_2) __lowerCAmelCase : Any ='sshleifer/student_marian_en_ro_6_1' __lowerCAmelCase : Optional[int] ='sshleifer/tiny-mbart' @require_torch class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :str , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Any=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Tuple=True , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=lowerCAmelCase__ , num_train_epochs=1 , distributed=lowerCAmelCase__ , extra_args_str=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , do_predict=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = TrainerState.load_from_json(os.path.join(lowerCAmelCase__ , '''trainer_state.json''' ) ).log_history if not do_eval: return __SCREAMING_SNAKE_CASE : str = [log for log in logs if '''eval_loss''' in log.keys()] __SCREAMING_SNAKE_CASE : Dict = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats __SCREAMING_SNAKE_CASE : List[Any] = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , lowerCAmelCase__ ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __magic_name__( self :Optional[Any] ) -> Dict: self.run_seqaseq_quick() @require_torch_multi_gpu def __magic_name__( self :str ) -> Tuple: self.run_seqaseq_quick(distributed=lowerCAmelCase__ ) @require_torch_multi_gpu def __magic_name__( self :Tuple ) -> List[Any]: self.run_seqaseq_quick(distributed=lowerCAmelCase__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __magic_name__( self :Dict ) -> Optional[Any]: self.run_seqaseq_quick(distributed=lowerCAmelCase__ , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __magic_name__( self :Any ) -> List[Any]: self.run_seqaseq_quick(distributed=lowerCAmelCase__ , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __magic_name__( self :int ) -> Any: self.run_seqaseq_quick(distributed=lowerCAmelCase__ , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=lowerCAmelCase__ ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def __magic_name__( self :str ) -> Dict: self.run_seqaseq_quick( distributed=lowerCAmelCase__ , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=lowerCAmelCase__ ) @require_apex @require_torch_gpu def __magic_name__( self :Dict ) -> List[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=lowerCAmelCase__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=lowerCAmelCase__ , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def __magic_name__( self :int , lowerCAmelCase__ :int ) -> Tuple: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout __SCREAMING_SNAKE_CASE : Union[str, Any] = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } __SCREAMING_SNAKE_CASE : Union[str, Any] = experiments[experiment_id] __SCREAMING_SNAKE_CASE : List[str] = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} __SCREAMING_SNAKE_CASE : str = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**lowerCAmelCase__ , extra_args_str=data['''extra_args_str'''] ) __SCREAMING_SNAKE_CASE : int = len(re.findall(lowerCAmelCase__ , cl.err ) ) self.assertEqual(lowerCAmelCase__ , data['''n_matches'''] ) @slow def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = self.run_trainer( eval_steps=2 , max_len=128 , model_name=lowerCAmelCase__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=lowerCAmelCase__ , ) # Check metrics __SCREAMING_SNAKE_CASE : int = TrainerState.load_from_json(os.path.join(lowerCAmelCase__ , '''trainer_state.json''' ) ).log_history __SCREAMING_SNAKE_CASE : List[Any] = [log for log in logs if '''eval_loss''' in log.keys()] __SCREAMING_SNAKE_CASE : str = eval_metrics[0] __SCREAMING_SNAKE_CASE : Tuple = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , lowerCAmelCase__ ) # test if do_predict saves generations and metrics __SCREAMING_SNAKE_CASE : Dict = os.listdir(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = {os.path.basename(lowerCAmelCase__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __magic_name__( self :Any ) -> Optional[Any]: from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCAmelCase__ :str ) -> Tuple[int, float]: __SCREAMING_SNAKE_CASE : str = '''--skip_memory_metrics 0''' __SCREAMING_SNAKE_CASE : int = self.run_trainer( max_len=128 , model_name=lowerCAmelCase__ , learning_rate=3E-4 , num_train_epochs=1 , optim=lowerCAmelCase__ , distributed=lowerCAmelCase__ , extra_args_str=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , do_predict=lowerCAmelCase__ , n_gpus_to_use=1 , ) # Check metrics __SCREAMING_SNAKE_CASE : Optional[Any] = TrainerState.load_from_json(Path(lowerCAmelCase__ , '''trainer_state.json''' ) ).log_history __SCREAMING_SNAKE_CASE : Optional[Any] = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) __SCREAMING_SNAKE_CASE : Optional[Any] = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) __SCREAMING_SNAKE_CASE : List[str] = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) __SCREAMING_SNAKE_CASE : Optional[Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb __SCREAMING_SNAKE_CASE : Optional[Any] = gpu_peak_mem_orig + gpu_alloc_mem_orig __SCREAMING_SNAKE_CASE : str = gpu_peak_mem_bnb + gpu_alloc_mem_bnb __SCREAMING_SNAKE_CASE : Optional[int] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings __SCREAMING_SNAKE_CASE : Union[str, Any] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( lowerCAmelCase__ , lowerCAmelCase__ , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( lowerCAmelCase__ , lowerCAmelCase__ , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( lowerCAmelCase__ , lowerCAmelCase__ , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :float = 3E-3 , lowerCAmelCase__ :str = "adafactor" , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :str = None , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = None , ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' __SCREAMING_SNAKE_CASE : Optional[int] = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : List[str] = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(lowerCAmelCase__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(lowerCAmelCase__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() __SCREAMING_SNAKE_CASE : Any = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(lowerCAmelCase__ )} '''.split() __SCREAMING_SNAKE_CASE : str = ''' --do_predict '''.split() __SCREAMING_SNAKE_CASE : Any = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: __SCREAMING_SNAKE_CASE : int = get_gpu_count() __SCREAMING_SNAKE_CASE : Tuple = get_torch_dist_unique_port() __SCREAMING_SNAKE_CASE : Union[str, Any] = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() __SCREAMING_SNAKE_CASE : int = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) else: __SCREAMING_SNAKE_CASE : Optional[int] = ['''run_translation.py'''] + args with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): main() return output_dir
9
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ConsistencyModelPipeline SCREAMING_SNAKE_CASE__ : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE__ : List[str] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def __magic_name__( self :Dict , lowerCAmelCase__ :List[str]=False ) -> Optional[int]: if class_cond: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_cond_unet else: __SCREAMING_SNAKE_CASE : Dict = self.dummy_uncond_unet # Default to CM multistep sampler __SCREAMING_SNAKE_CASE : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE : Dict = { '''unet''': unet, '''scheduler''': scheduler, } return components def __magic_name__( self :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int]=0 ) -> Any: if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def __magic_name__( self :Any ) -> str: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = ConsistencyModelPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Dict = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Optional[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components(class_cond=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = ConsistencyModelPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Tuple = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Dict = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :str ) -> Optional[int]: __SCREAMING_SNAKE_CASE : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = ConsistencyModelPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = 1 __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : int = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :str ) -> str: __SCREAMING_SNAKE_CASE : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components(class_cond=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = ConsistencyModelPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : int = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :Dict , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :int="cpu" , lowerCAmelCase__ :Optional[Any]=torch.floataa , lowerCAmelCase__ :Union[str, Any]=(1, 3, 64, 64) ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __SCREAMING_SNAKE_CASE : str = self.get_fixed_latents(seed=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ , shape=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = latents return inputs def __magic_name__( self :Dict , lowerCAmelCase__ :Dict=0 , lowerCAmelCase__ :List[Any]="cpu" , lowerCAmelCase__ :str=torch.floataa , lowerCAmelCase__ :Union[str, Any]=(1, 3, 64, 64) ) -> Optional[Any]: if type(lowerCAmelCase__ ) == str: __SCREAMING_SNAKE_CASE : str = torch.device(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) return latents def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE : str = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE : List[str] = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Dict = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE : Dict = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE : Optional[int] = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_inputs() __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __magic_name__( self :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __SCREAMING_SNAKE_CASE : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __SCREAMING_SNAKE_CASE : Any = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 1 __SCREAMING_SNAKE_CASE : Any = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Any = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
9
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : str ='▁' __lowerCAmelCase : Any ={'vocab_file': 'spiece.model'} __lowerCAmelCase : Any ={ 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } __lowerCAmelCase : Optional[int] ={ 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]="</s>" , lowerCAmelCase__ :Dict="<unk>" , lowerCAmelCase__ :int=[] , lowerCAmelCase__ :Optional[Dict[str, Any]] = None , **lowerCAmelCase__ :Optional[Any] , ) -> None: __SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = vocab_file __SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def __magic_name__( self :Any ) -> List[str]: return self.sp_model.get_piece_size() def __magic_name__( self :Union[str, Any] ) -> Dict[str, int]: __SCREAMING_SNAKE_CASE : List[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.__dict__.copy() __SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self :Any , lowerCAmelCase__ :int ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :Tuple ) -> Tuple: return self.sp_model.piece_to_id(lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Optional[Any] ) -> int: if index < self.sp_model.get_piece_size(): __SCREAMING_SNAKE_CASE : str = self.sp_model.IdToPiece(lowerCAmelCase__ ) return token def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Any ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Optional[int] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token __SCREAMING_SNAKE_CASE : Any = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __magic_name__( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
class _lowercase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Dict ) -> Optional[Any]: # we need a list not a string, so do something to change the type __SCREAMING_SNAKE_CASE : Optional[int] = arr.split(''',''' ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = [int(self.array[0] )] * len(self.array ) __SCREAMING_SNAKE_CASE : List[str] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __SCREAMING_SNAKE_CASE : Dict = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __SCREAMING_SNAKE_CASE : int = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowerCAmelCase : Any =input('please input some numbers:') __lowerCAmelCase : Tuple =SubArray(whole_array) __lowerCAmelCase : str =array.solve_sub_array() print(('the results is:', re))
9
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : str ={ 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''data2vec-vision''' def __init__( self :List[Any] , lowerCAmelCase__ :Union[str, Any]=768 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :List[Any]=12 , lowerCAmelCase__ :Optional[Any]=3_072 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :Union[str, Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=224 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Tuple=3 , lowerCAmelCase__ :str=False , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :int=False , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[Any]=[3, 5, 7, 11] , lowerCAmelCase__ :List[str]=[1, 2, 3, 6] , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Any=0.4 , lowerCAmelCase__ :Optional[int]=256 , lowerCAmelCase__ :Tuple=1 , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :str=255 , **lowerCAmelCase__ :Optional[Any] , ) -> Dict: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : str = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : str = image_size __SCREAMING_SNAKE_CASE : str = patch_size __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = use_mask_token __SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = use_relative_position_bias __SCREAMING_SNAKE_CASE : int = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE : int = layer_scale_init_value __SCREAMING_SNAKE_CASE : Tuple = drop_path_rate __SCREAMING_SNAKE_CASE : Any = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : List[Any] = out_indices __SCREAMING_SNAKE_CASE : str = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : List[str] = use_auxiliary_head __SCREAMING_SNAKE_CASE : List[Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE : Tuple = auxiliary_channels __SCREAMING_SNAKE_CASE : str = auxiliary_num_convs __SCREAMING_SNAKE_CASE : str = auxiliary_concat_input __SCREAMING_SNAKE_CASE : Optional[int] = semantic_loss_ignore_index class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = version.parse('''1.11''' ) @property def __magic_name__( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __magic_name__( self :List[str] ) -> float: return 1E-4
9
from __future__ import annotations import bisect def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE : Any = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) - 1 while left <= right: __SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 __SCREAMING_SNAKE_CASE : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE : int = midpoint - 1 else: __SCREAMING_SNAKE_CASE : Dict = midpoint + 1 return None def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None __SCREAMING_SNAKE_CASE : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase : str =sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase : Tuple =int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase : Tuple =binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
1
from itertools import product def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = sides_number __SCREAMING_SNAKE_CASE : Union[str, Any] = max_face_number * dice_number __SCREAMING_SNAKE_CASE : List[str] = [0] * (max_total + 1) __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : str = range(lowercase__ , max_face_number + 1 ) for dice_numbers in product(lowercase__ , repeat=lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = sum(lowercase__ ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = total_frequency_distribution( sides_number=4 , dice_number=9 ) __SCREAMING_SNAKE_CASE : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6 ) __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : List[Any] = 9 __SCREAMING_SNAKE_CASE : List[Any] = 4 * 9 __SCREAMING_SNAKE_CASE : Dict = 6 for peter_total in range(lowercase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __SCREAMING_SNAKE_CASE : str = (4**9) * (6**6) __SCREAMING_SNAKE_CASE : str = peter_wins_count / total_games_number __SCREAMING_SNAKE_CASE : int = round(lowercase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
9
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[str] =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase : str =2_5_0_0_0_4 __lowerCAmelCase : Any =2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = MBartTokenizer SCREAMING_SNAKE_CASE__ : str = MBartTokenizerFast SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : Optional[int] = True def __magic_name__( self :List[str] ) -> str: super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE : Any = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __magic_name__( self :Dict ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE : Dict = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : str = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''facebook/mbart-large-en-ro''' SCREAMING_SNAKE_CASE__ : Optional[int] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE__ : Any = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] SCREAMING_SNAKE_CASE__ : Tuple = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __magic_name__( cls :str ) -> int: __SCREAMING_SNAKE_CASE : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __SCREAMING_SNAKE_CASE : List[Any] = 1 return cls def __magic_name__( self :Optional[Any] ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Tuple: self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE : int = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 10 __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> List[str]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_026, 250_001] ) def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __magic_name__( self :Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = targets['''input_ids'''] __SCREAMING_SNAKE_CASE : Any = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__( self :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3_034, 2, 250_004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
9
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = XCLIPTextConfig() # derive patch size from model name __SCREAMING_SNAKE_CASE : Optional[int] = model_name.find('''patch''' ) __SCREAMING_SNAKE_CASE : Dict = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPVisionConfig(patch_size=lowercase__ , num_frames=lowercase__ ) if "large" in model_name: __SCREAMING_SNAKE_CASE : int = 768 __SCREAMING_SNAKE_CASE : Dict = 3072 __SCREAMING_SNAKE_CASE : List[Any] = 12 __SCREAMING_SNAKE_CASE : Any = 1024 __SCREAMING_SNAKE_CASE : Union[str, Any] = 4096 __SCREAMING_SNAKE_CASE : Union[str, Any] = 16 __SCREAMING_SNAKE_CASE : List[Any] = 24 __SCREAMING_SNAKE_CASE : Union[str, Any] = 768 __SCREAMING_SNAKE_CASE : str = 3072 if model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Any = 336 __SCREAMING_SNAKE_CASE : int = XCLIPConfig.from_text_vision_configs(lowercase__ , lowercase__ ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 768 return config def _UpperCamelCase ( lowercase__ ): # text encoder if name == "token_embedding.weight": __SCREAMING_SNAKE_CASE : Dict = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : int = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __SCREAMING_SNAKE_CASE : str = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __SCREAMING_SNAKE_CASE : Dict = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def _UpperCamelCase ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : List[str] = orig_state_dict.pop(lowercase__ ) if "attn.in_proj" in key: __SCREAMING_SNAKE_CASE : str = key.split('''.''' ) if key.startswith('''visual''' ): __SCREAMING_SNAKE_CASE : str = key_split[3] __SCREAMING_SNAKE_CASE : Union[str, Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __SCREAMING_SNAKE_CASE : int = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : str = val[ :dim ] __SCREAMING_SNAKE_CASE : Union[str, Any] = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Optional[int] = val[ -dim: ] else: if "weight" in key: __SCREAMING_SNAKE_CASE : Any = val[ :dim, : ] __SCREAMING_SNAKE_CASE : Optional[int] = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Optional[int] = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Optional[int] = val[:dim] __SCREAMING_SNAKE_CASE : Optional[int] = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif key.startswith('''mit''' ): __SCREAMING_SNAKE_CASE : Dict = key_split[2] __SCREAMING_SNAKE_CASE : Any = config.vision_config.mit_hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Dict = val[:dim, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : List[Any] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : Optional[Any] = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : List[str] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = key_split[2] __SCREAMING_SNAKE_CASE : Optional[int] = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Dict = val[:dim, :] __SCREAMING_SNAKE_CASE : Optional[Any] = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Tuple = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Any = val[-dim:] else: __SCREAMING_SNAKE_CASE : List[str] = rename_key(lowercase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __SCREAMING_SNAKE_CASE : Any = val.T __SCREAMING_SNAKE_CASE : Dict = val return orig_state_dict def _UpperCamelCase ( lowercase__ ): if num_frames == 8: __SCREAMING_SNAKE_CASE : List[str] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __SCREAMING_SNAKE_CASE : str = '''eating_spaghetti.npy''' elif num_frames == 32: __SCREAMING_SNAKE_CASE : Dict = '''eating_spaghetti_32_frames.npy''' __SCREAMING_SNAKE_CASE : str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowercase__ , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.load(lowercase__ ) return list(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Union[str, Any] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] __SCREAMING_SNAKE_CASE : int = 8 if "16-frames" in model_name: __SCREAMING_SNAKE_CASE : Tuple = 16 elif "shot" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = 32 __SCREAMING_SNAKE_CASE : Any = get_xclip_config(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : str = XCLIPModel(lowercase__ ) model.eval() if "drive" in checkpoint_url: __SCREAMING_SNAKE_CASE : Optional[int] = '''pytorch_model.bin''' gdown.cached_download(lowercase__ , lowercase__ , quiet=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowercase__ , map_location='''cpu''' )['''model'''] else: __SCREAMING_SNAKE_CASE : List[str] = torch.hub.load_state_dict_from_url(lowercase__ )['''model'''] __SCREAMING_SNAKE_CASE : str = convert_state_dict(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = XCLIPModel(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __SCREAMING_SNAKE_CASE : Tuple = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __SCREAMING_SNAKE_CASE : Dict = VideoMAEImageProcessor(size=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : int = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = XCLIPProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = prepare_video(lowercase__ ) __SCREAMING_SNAKE_CASE : int = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowercase__ , return_tensors='''pt''' , padding=lowercase__ ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowercase__ ) # Verify outputs __SCREAMING_SNAKE_CASE : Tuple = outputs.logits_per_video __SCREAMING_SNAKE_CASE : Optional[int] = logits_per_video.softmax(dim=1 ) print('''Probs:''' , lowercase__ ) # kinetics-400 if model_name == "xclip-base-patch32": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": __SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __SCREAMING_SNAKE_CASE : Any = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(lowercase__ , organization='''nielsr''' ) processor.push_to_hub(lowercase__ , organization='''nielsr''' ) slow_tokenizer.push_to_hub(lowercase__ , organization='''nielsr''' ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
from PIL import Image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = image.size __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = image.load() for i in range(lowercase__ ): for j in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = pixels[j, i] mean += pixel mean //= width * height for j in range(lowercase__ ): for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __lowerCAmelCase : Dict =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
9
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = PegasusConfig SCREAMING_SNAKE_CASE__ : Tuple = {} SCREAMING_SNAKE_CASE__ : Tuple = '''gelu''' def __init__( self :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Union[str, Any]=7 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :Tuple=99 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :Union[str, Any]=4 , lowerCAmelCase__ :List[str]=37 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :str=40 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :str=0 , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : Dict = seq_length __SCREAMING_SNAKE_CASE : int = is_training __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = eos_token_id __SCREAMING_SNAKE_CASE : List[str] = pad_token_id __SCREAMING_SNAKE_CASE : Optional[int] = bos_token_id def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE : str = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __SCREAMING_SNAKE_CASE : Tuple = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __magic_name__( self :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder() __SCREAMING_SNAKE_CASE : List[Any] = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids[:1, :] __SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE : str = inputs_dict['''head_mask'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # first forward pass __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) __SCREAMING_SNAKE_CASE : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __SCREAMING_SNAKE_CASE : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): if attention_mask is None: __SCREAMING_SNAKE_CASE : str = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __SCREAMING_SNAKE_CASE : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = TFPegasusModelTester(self ) __SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> List[Any]: self.config_tester.run_common_tests() def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] SCREAMING_SNAKE_CASE__ : int = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers SCREAMING_SNAKE_CASE__ : Optional[Any] = '''google/pegasus-xsum''' @cached_property def __magic_name__( self :Tuple ) -> Optional[Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__( self :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__( self :Union[str, Any] , **lowerCAmelCase__ :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.translate_src_text(**lowerCAmelCase__ ) assert self.expected_text == generated_words def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE : str = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Any = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ ) return generated_words @slow def __magic_name__( self :Tuple ) -> int: self._assert_generated_batch_equal_expected()
9
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
1
def _UpperCamelCase ( lowercase__ = 10 , lowercase__ = 1000 , lowercase__ = True ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def _UpperCamelCase ( lowercase__ , lowercase__ ): return int((number_a + number_a) / 2 ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(lowercase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) __SCREAMING_SNAKE_CASE : Dict = lower __SCREAMING_SNAKE_CASE : Union[str, Any] = higher __SCREAMING_SNAKE_CASE : List[Any] = [] while True: __SCREAMING_SNAKE_CASE : Dict = get_avg(lowercase__ , lowercase__ ) last_numbers.append(lowercase__ ) if answer(lowercase__ ) == "low": __SCREAMING_SNAKE_CASE : Optional[Any] = number elif answer(lowercase__ ) == "high": __SCREAMING_SNAKE_CASE : Dict = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = int(input('''Enter lower value : ''' ).strip() ) __SCREAMING_SNAKE_CASE : Dict = int(input('''Enter high value : ''' ).strip() ) __SCREAMING_SNAKE_CASE : List[Any] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": main()
9
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['''input_features''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :List[Any]=80 , lowerCAmelCase__ :Union[str, Any]=16_000 , lowerCAmelCase__ :List[str]=80 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , **lowerCAmelCase__ :Tuple , ) -> List[str]: super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = num_mel_bins __SCREAMING_SNAKE_CASE : List[str] = do_ceptral_normalize __SCREAMING_SNAKE_CASE : Any = normalize_means __SCREAMING_SNAKE_CASE : Dict = normalize_vars __SCREAMING_SNAKE_CASE : Any = True def __magic_name__( self :str , lowerCAmelCase__ :np.ndarray , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __SCREAMING_SNAKE_CASE : str = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ta_kaldi.fbank(lowerCAmelCase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __magic_name__( lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[bool] = True , lowerCAmelCase__ :Optional[bool] = True , lowerCAmelCase__ :float = 0.0 , ) -> np.ndarray: # make sure we normalize float32 arrays if normalize_means: __SCREAMING_SNAKE_CASE : int = x[:input_length].mean(axis=0 ) __SCREAMING_SNAKE_CASE : List[str] = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if normalize_vars: __SCREAMING_SNAKE_CASE : Optional[int] = x[:input_length].std(axis=0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: __SCREAMING_SNAKE_CASE : Tuple = padding_value # make sure array is in float32 __SCREAMING_SNAKE_CASE : Union[str, Any] = x.astype(np.floataa ) return x def __magic_name__( self :str , lowerCAmelCase__ :List[np.ndarray] , lowerCAmelCase__ :Optional[np.ndarray] = None ) -> List[np.ndarray]: __SCREAMING_SNAKE_CASE : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase__ , lowerCAmelCase__ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] def __call__( self :int , lowerCAmelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ :Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , **lowerCAmelCase__ :int , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE : Tuple = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : List[str] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): __SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : Optional[Any] = [raw_speech] # extract fbank features __SCREAMING_SNAKE_CASE : Dict = [self._extract_fbank_features(lowerCAmelCase__ ) for waveform in raw_speech] # convert into correct format for padding __SCREAMING_SNAKE_CASE : Tuple = BatchFeature({'''input_features''': features} ) __SCREAMING_SNAKE_CASE : Tuple = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format __SCREAMING_SNAKE_CASE : str = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] __SCREAMING_SNAKE_CASE : Dict = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __SCREAMING_SNAKE_CASE : Tuple = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __SCREAMING_SNAKE_CASE : Tuple = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD else None ) __SCREAMING_SNAKE_CASE : List[str] = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : Dict = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
9
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=7 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :Dict=30 , lowerCAmelCase__ :Tuple=400 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''shortest_edge''': 18} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def __magic_name__( self :Tuple ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VivitImageProcessor if is_vision_available() else None def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def __magic_name__( self :int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :str ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :Any ) -> List[str]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __lowerCAmelCase : Optional[Any] =argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __lowerCAmelCase : str =parser.parse_args() if args.model_type == "bert": __lowerCAmelCase : str =BertForMaskedLM.from_pretrained(args.model_name) __lowerCAmelCase : Tuple ='bert' else: raise ValueError('args.model_type should be "bert".') __lowerCAmelCase : Tuple =model.state_dict() __lowerCAmelCase : Dict ={} for w in ["word_embeddings", "position_embeddings"]: __lowerCAmelCase : str =state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __lowerCAmelCase : Union[str, Any] =state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] __lowerCAmelCase : Dict =0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: __lowerCAmelCase : Optional[Any] =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __lowerCAmelCase : Tuple =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __lowerCAmelCase : int =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __lowerCAmelCase : List[Any] =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __lowerCAmelCase : Optional[Any] =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __lowerCAmelCase : Union[str, Any] =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __lowerCAmelCase : Optional[int] =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __lowerCAmelCase : Dict =state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __lowerCAmelCase : str =state_dict['cls.predictions.decoder.weight'] __lowerCAmelCase : str =state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __lowerCAmelCase : List[Any] =state_dict[f"""cls.predictions.transform.dense.{w}"""] __lowerCAmelCase : int =state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __lowerCAmelCase : Optional[Any] ='sshleifer/mar_enro_6_3_student' class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Tuple: super().setUp() __SCREAMING_SNAKE_CASE : Tuple = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = f'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def __magic_name__( self :List[Any] ) -> List[str]: MarianMTModel.from_pretrained(lowerCAmelCase__ ) @slow @require_torch_gpu def __magic_name__( self :Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Any = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script __SCREAMING_SNAKE_CASE : List[Any] = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() __SCREAMING_SNAKE_CASE : Any = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): __SCREAMING_SNAKE_CASE : List[Any] = bash_script.replace(lowerCAmelCase__ , str(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __SCREAMING_SNAKE_CASE : Dict = f''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __SCREAMING_SNAKE_CASE : Optional[int] = ['''finetune.py'''] + bash_script.split() + args with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() __SCREAMING_SNAKE_CASE : Any = pl.Trainer.add_argparse_args(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = SummarizationModule.add_model_specific_args(lowerCAmelCase__ , os.getcwd() ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() __SCREAMING_SNAKE_CASE : str = main(lowerCAmelCase__ ) # Check metrics __SCREAMING_SNAKE_CASE : List[str] = load_json(model.metrics_save_path ) __SCREAMING_SNAKE_CASE : int = metrics['''val'''][0] __SCREAMING_SNAKE_CASE : Dict = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , lowerCAmelCase__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __SCREAMING_SNAKE_CASE : Dict = os.listdir(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [x for x in contents if x.endswith('''.ckpt''' )][0] __SCREAMING_SNAKE_CASE : int = os.path.join(args.output_dir , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __SCREAMING_SNAKE_CASE : Dict = {os.path.basename(lowerCAmelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class _lowercase ( A__ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : str = f'''{self.test_file_dir_str}/test_data/wmt_en_ro''' __SCREAMING_SNAKE_CASE : Optional[Any] = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script __SCREAMING_SNAKE_CASE : int = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) __SCREAMING_SNAKE_CASE : Optional[int] = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) __SCREAMING_SNAKE_CASE : Tuple = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): __SCREAMING_SNAKE_CASE : Any = bash_script.replace(lowerCAmelCase__ , str(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE : Any = bash_script.replace('''--fp16''' , '''''' ) __SCREAMING_SNAKE_CASE : Tuple = 6 __SCREAMING_SNAKE_CASE : str = ( ['''distillation.py'''] + bash_script.split() + [ f'''--output_dir={output_dir}''', '''--gpus=1''', '''--learning_rate=1e-3''', f'''--num_train_epochs={epochs}''', '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() __SCREAMING_SNAKE_CASE : str = pl.Trainer.add_argparse_args(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = SummarizationDistiller.add_model_specific_args(lowerCAmelCase__ , os.getcwd() ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __SCREAMING_SNAKE_CASE : Any = distill_main(lowerCAmelCase__ ) # Check metrics __SCREAMING_SNAKE_CASE : List[Any] = load_json(model.metrics_save_path ) __SCREAMING_SNAKE_CASE : List[str] = metrics['''val'''][0] __SCREAMING_SNAKE_CASE : List[str] = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f'''val_avg_{model.val_metric}'''] , lowerCAmelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict __SCREAMING_SNAKE_CASE : List[str] = os.listdir(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = [x for x in contents if x.endswith('''.ckpt''' )][0] __SCREAMING_SNAKE_CASE : List[str] = os.path.join(args.output_dir , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : int = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __SCREAMING_SNAKE_CASE : Any = {os.path.basename(lowerCAmelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[int] ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = len(set_a.intersection(lowercase__ ) ) if alternative_union: __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) + len(lowercase__ ) else: __SCREAMING_SNAKE_CASE : int = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: __SCREAMING_SNAKE_CASE : Tuple = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": __lowerCAmelCase : List[Any] ={'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : Optional[Any] ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
9
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __lowerCAmelCase : List[str] ={ 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''facebook/nllb-200-distilled-600M''' SCREAMING_SNAKE_CASE__ : List[str] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''translator''' SCREAMING_SNAKE_CASE__ : str = AutoTokenizer SCREAMING_SNAKE_CASE__ : Any = AutoModelForSeqaSeqLM SCREAMING_SNAKE_CASE__ : List[Any] = LANGUAGE_CODES SCREAMING_SNAKE_CASE__ : List[Any] = ['''text''', '''text''', '''text'''] SCREAMING_SNAKE_CASE__ : Dict = ['''text'''] def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple ) -> Union[str, Any]: if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) __SCREAMING_SNAKE_CASE : Dict = self.lang_to_code[src_lang] __SCREAMING_SNAKE_CASE : str = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors='''pt''' , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] ) -> int: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
9
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.normalize(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(lowercase__ ) return torch.mm(lowercase__ , normalized_text_embeds.t() ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig SCREAMING_SNAKE_CASE__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self :str , lowerCAmelCase__ :CLIPConfig ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModel(config.vision_config ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase__ ) @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : List[str] = special_cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Any = self.special_care_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : List[str] = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 __SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = special_care * 0.01 __SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) SCREAMING_SNAKE_CASE__ : Dict = '''CIDAS/clipseg-rd64-refined''' SCREAMING_SNAKE_CASE__ : Optional[int] = '''image_segmenter''' SCREAMING_SNAKE_CASE__ : Tuple = CLIPSegForImageSegmentation SCREAMING_SNAKE_CASE__ : List[Any] = ['''image''', '''text'''] SCREAMING_SNAKE_CASE__ : str = ['''image'''] def __init__( self :Dict , *lowerCAmelCase__ :str , **lowerCAmelCase__ :str ) -> Tuple: requires_backends(self , ['''vision'''] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :"Image" , lowerCAmelCase__ :str ) -> Dict: return self.pre_processor(text=[label] , images=[image] , padding=lowerCAmelCase__ , return_tensors='''pt''' ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Tuple ) -> Optional[int]: with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = self.model(**lowerCAmelCase__ ).logits return logits def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = outputs.cpu().detach().numpy() __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
9
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : "DiagonalGaussianDistribution" class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = True @register_to_config def __init__( self :str , lowerCAmelCase__ :int = 3 , lowerCAmelCase__ :int = 3 , lowerCAmelCase__ :Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase__ :Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase__ :Tuple[int] = (64,) , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :str = "silu" , lowerCAmelCase__ :int = 4 , lowerCAmelCase__ :int = 32 , lowerCAmelCase__ :int = 32 , lowerCAmelCase__ :float = 0.1_8215 , ) -> str: super().__init__() # pass init params to Encoder __SCREAMING_SNAKE_CASE : int = Encoder( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , down_block_types=lowerCAmelCase__ , block_out_channels=lowerCAmelCase__ , layers_per_block=lowerCAmelCase__ , act_fn=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , double_z=lowerCAmelCase__ , ) # pass init params to Decoder __SCREAMING_SNAKE_CASE : Optional[Any] = Decoder( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , up_block_types=lowerCAmelCase__ , block_out_channels=lowerCAmelCase__ , layers_per_block=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , act_fn=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : str = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = False # only relevant if vae tiling is enabled __SCREAMING_SNAKE_CASE : Any = self.config.sample_size __SCREAMING_SNAKE_CASE : Tuple = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __SCREAMING_SNAKE_CASE : str = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __SCREAMING_SNAKE_CASE : int = 0.25 def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int]=False ) -> List[str]: if isinstance(lowerCAmelCase__ , (Encoder, Decoder) ): __SCREAMING_SNAKE_CASE : List[str] = value def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :bool = True ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = use_tiling def __magic_name__( self :Union[str, Any] ) -> int: self.enable_tiling(lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = True def __magic_name__( self :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : Optional[Any] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __magic_name__( self :Tuple ) -> Dict[str, AttentionProcessor]: __SCREAMING_SNAKE_CASE : Dict = {} def fn_recursive_add_processors(lowerCAmelCase__ :str , lowerCAmelCase__ :torch.nn.Module , lowerCAmelCase__ :Dict[str, AttentionProcessor] ): if hasattr(lowerCAmelCase__ , '''set_processor''' ): __SCREAMING_SNAKE_CASE : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase__ , lowerCAmelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return processors def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase__ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase__ :str , lowerCAmelCase__ :torch.nn.Module , lowerCAmelCase__ :Tuple ): if hasattr(lowerCAmelCase__ , '''set_processor''' ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): module.set_processor(lowerCAmelCase__ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase__ , lowerCAmelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> List[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :bool = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) if self.use_slicing and x.shape[0] > 1: __SCREAMING_SNAKE_CASE : List[Any] = [self.encoder(lowerCAmelCase__ ) for x_slice in x.split(1 )] __SCREAMING_SNAKE_CASE : Tuple = torch.cat(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : str = self.encoder(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.quant_conv(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = DiagonalGaussianDistribution(lowerCAmelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.post_quant_conv(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.decoder(lowerCAmelCase__ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase__ ) @apply_forward_hook def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: __SCREAMING_SNAKE_CASE : Optional[int] = [self._decode(lowerCAmelCase__ ).sample for z_slice in z.split(1 )] __SCREAMING_SNAKE_CASE : str = torch.cat(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Tuple = self._decode(lowerCAmelCase__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCAmelCase__ ) def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = min(a.shape[2] , b.shape[2] , lowerCAmelCase__ ) for y in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = min(a.shape[3] , b.shape[3] , lowerCAmelCase__ ) for x in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :bool = True ) -> AutoencoderKLOutput: __SCREAMING_SNAKE_CASE : Optional[int] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __SCREAMING_SNAKE_CASE : Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor ) __SCREAMING_SNAKE_CASE : List[Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __SCREAMING_SNAKE_CASE : str = [] for i in range(0 , x.shape[2] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = [] for j in range(0 , x.shape[3] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __SCREAMING_SNAKE_CASE : Any = self.encoder(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.quant_conv(lowerCAmelCase__ ) row.append(lowerCAmelCase__ ) rows.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = [] for i, row in enumerate(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = [] for j, tile in enumerate(lowerCAmelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __SCREAMING_SNAKE_CASE : int = self.blend_v(rows[i - 1][j] , lowerCAmelCase__ , lowerCAmelCase__ ) if j > 0: __SCREAMING_SNAKE_CASE : Optional[int] = self.blend_h(row[j - 1] , lowerCAmelCase__ , lowerCAmelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase__ , dim=3 ) ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(lowerCAmelCase__ , dim=2 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DiagonalGaussianDistribution(lowerCAmelCase__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __SCREAMING_SNAKE_CASE : Optional[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __SCREAMING_SNAKE_CASE : Optional[int] = int(self.tile_sample_min_size * self.tile_overlap_factor ) __SCREAMING_SNAKE_CASE : int = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(0 , z.shape[2] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = [] for j in range(0 , z.shape[3] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __SCREAMING_SNAKE_CASE : List[Any] = self.post_quant_conv(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.decoder(lowerCAmelCase__ ) row.append(lowerCAmelCase__ ) rows.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = [] for i, row in enumerate(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = [] for j, tile in enumerate(lowerCAmelCase__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = self.blend_v(rows[i - 1][j] , lowerCAmelCase__ , lowerCAmelCase__ ) if j > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.blend_h(row[j - 1] , lowerCAmelCase__ , lowerCAmelCase__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase__ , dim=3 ) ) __SCREAMING_SNAKE_CASE : str = torch.cat(lowerCAmelCase__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: __SCREAMING_SNAKE_CASE : str = sample __SCREAMING_SNAKE_CASE : str = self.encode(lowerCAmelCase__ ).latent_dist if sample_posterior: __SCREAMING_SNAKE_CASE : List[str] = posterior.sample(generator=lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : int = posterior.mode() __SCREAMING_SNAKE_CASE : str = self.decode(lowerCAmelCase__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase__ )
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :int ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = 0 def __magic_name__( self :Dict ) -> Any: __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : List[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> str: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : str = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : Optional[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :int ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[str] = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE : Tuple = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : List[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE : Dict = CLIPImageProcessor(**lowerCAmelCase__ ) # save in new folder model_config.save_pretrained(lowerCAmelCase__ ) config.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE : List[str] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :str ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :int ) -> Union[str, Any]: with self.assertRaisesRegex( lowerCAmelCase__ , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained('''clip-base''' ) def __magic_name__( self :Dict ) -> Dict: with self.assertRaisesRegex( lowerCAmelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , revision='''aaaaaa''' ) def __magic_name__( self :Tuple ) -> List[str]: with self.assertRaisesRegex( lowerCAmelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __magic_name__( self :Optional[Any] ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __magic_name__( self :Dict ) -> Tuple: try: AutoConfig.register('''custom''' , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Dict = Path(lowerCAmelCase__ ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE : List[Any] = Path(lowerCAmelCase__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(lowerCAmelCase__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(lowerCAmelCase__ , '''w''' ) ) __SCREAMING_SNAKE_CASE : List[str] = CustomImageProcessor.from_pretrained(lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __magic_name__( self :List[Any] ) -> int: class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = True try: AutoConfig.register('''custom''' , lowerCAmelCase__ ) AutoImageProcessor.register(lowerCAmelCase__ , lowerCAmelCase__ ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(lowerCAmelCase__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
9
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
1
__lowerCAmelCase : str =8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
9
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :NestedDataStructureLike[PathLike] , lowerCAmelCase__ :Optional[NamedSplit] = None , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Optional[int] , ) -> Tuple: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Dict ) -> Tuple: # Build iterable dataset if self.streaming: __SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
9
1
from __future__ import annotations class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :list[list[int]] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(lowerCAmelCase__ ) != 0: __SCREAMING_SNAKE_CASE : Tuple = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error __SCREAMING_SNAKE_CASE : Optional[Any] = rows else: __SCREAMING_SNAKE_CASE : Tuple = [] def __magic_name__( self :Dict ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __magic_name__( self :Any ) -> int: return len(self.rows ) @property def __magic_name__( self :List[Any] ) -> int: return len(self.rows[0] ) @property def __magic_name__( self :int ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def __magic_name__( self :List[Any] ) -> bool: return self.order[0] == self.order[1] def __magic_name__( self :Optional[Any] ) -> Matrix: __SCREAMING_SNAKE_CASE : Dict = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __magic_name__( self :List[Any] ) -> bool: return bool(self.determinant() ) def __magic_name__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : Any = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Matrix: return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __magic_name__( self :List[str] ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __magic_name__( self :str ) -> Matrix: __SCREAMING_SNAKE_CASE : List[str] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Matrix: __SCREAMING_SNAKE_CASE : Dict = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self :Any ) -> str: return str(self.rows ) def __str__( self :List[Any] ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(lowerCAmelCase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int | None = None ) -> None: __SCREAMING_SNAKE_CASE : Optional[Any] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = self.rows[0:position] + [row] + self.rows[position:] def __magic_name__( self :Tuple , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int | None = None ) -> None: __SCREAMING_SNAKE_CASE : List[str] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __SCREAMING_SNAKE_CASE : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __SCREAMING_SNAKE_CASE : Optional[int] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self :Optional[Any] , lowerCAmelCase__ :object ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self :Any , lowerCAmelCase__ :object ) -> bool: return not self == other def __neg__( self :Any ) -> Matrix: return self * -1 def __add__( self :List[Any] , lowerCAmelCase__ :Matrix ) -> Matrix: if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self :Dict , lowerCAmelCase__ :Matrix ) -> Matrix: if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self :Optional[int] , lowerCAmelCase__ :Matrix | int | float ) -> Matrix: if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self :Union[str, Any] , lowerCAmelCase__ :int ) -> Matrix: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def __magic_name__( cls :Optional[int] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :list[int] ) -> int: return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) return image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 364 if '''coco''' in model_name else 224 __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=lowercase__ , text_config=lowercase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __SCREAMING_SNAKE_CASE : str = tokenizer('''\n''' , add_special_tokens=lowercase__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_blipa_config(lowercase__ , eos_token_id=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : int = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __SCREAMING_SNAKE_CASE : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('''Done!''' ) # update state dict keys __SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) if key.startswith('''Qformer.bert''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5''' , '''language''' ) __SCREAMING_SNAKE_CASE : Tuple = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE : List[str] = load_demo_image() __SCREAMING_SNAKE_CASE : Any = vis_processors['''eval'''](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase__ ) # create processor __SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowercase__ , return_tensors='''pt''' ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __SCREAMING_SNAKE_CASE : Dict = hf_model(lowercase__ , lowercase__ ).logits else: __SCREAMING_SNAKE_CASE : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_model(lowercase__ , lowercase__ , labels=lowercase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase__ ) else: # cast to same type __SCREAMING_SNAKE_CASE : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) , lowercase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowercase__ , return_tensors='''pt''' ).input_ids.to(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate( lowercase__ , lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[1] __SCREAMING_SNAKE_CASE : Any = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() __lowerCAmelCase : Tuple =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) __SCREAMING_SNAKE_CASE : Tuple = [True] * (num + 1) __SCREAMING_SNAKE_CASE : Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase__ ): __SCREAMING_SNAKE_CASE : str = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] =int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
9
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
1
from __future__ import annotations import os from collections.abc import Mapping __lowerCAmelCase : Optional[int] =tuple[int, int] class _lowercase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :set[int] , lowerCAmelCase__ :Mapping[EdgeT, int] ) -> None: __SCREAMING_SNAKE_CASE : set[int] = vertices __SCREAMING_SNAKE_CASE : dict[EdgeT, int] = { (min(lowerCAmelCase__ ), max(lowerCAmelCase__ )): weight for edge, weight in edges.items() } def __magic_name__( self :List[str] , lowerCAmelCase__ :EdgeT , lowerCAmelCase__ :int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __SCREAMING_SNAKE_CASE : List[str] = weight def __magic_name__( self :List[str] ) -> Graph: __SCREAMING_SNAKE_CASE : Graph = Graph({min(self.vertices )} , {} ) __SCREAMING_SNAKE_CASE : EdgeT __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : EdgeT __SCREAMING_SNAKE_CASE : int while len(subgraph.vertices ) < len(self.vertices ): __SCREAMING_SNAKE_CASE : int = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __SCREAMING_SNAKE_CASE : Union[str, Any] = edge __SCREAMING_SNAKE_CASE : Dict = weight subgraph.add_edge(lowerCAmelCase__ , lowerCAmelCase__ ) return subgraph def _UpperCamelCase ( lowercase__ = "p107_network.txt" ): __SCREAMING_SNAKE_CASE : str = os.path.abspath(os.path.dirname(lowercase__ ) ) __SCREAMING_SNAKE_CASE : str = os.path.join(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : dict[EdgeT, int] = {} __SCREAMING_SNAKE_CASE : list[str] __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : int with open(lowercase__ ) as f: __SCREAMING_SNAKE_CASE : int = f.read().strip().split('''\n''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [line.split(''',''' ) for line in data] for edgea in range(1 , len(lowercase__ ) ): for edgea in range(lowercase__ ): if adjaceny_matrix[edgea][edgea] != "-": __SCREAMING_SNAKE_CASE : List[str] = int(adjaceny_matrix[edgea][edgea] ) __SCREAMING_SNAKE_CASE : Graph = Graph(set(range(len(lowercase__ ) ) ) , lowercase__ ) __SCREAMING_SNAKE_CASE : Graph = graph.prims_algorithm() __SCREAMING_SNAKE_CASE : int = sum(graph.edges.values() ) __SCREAMING_SNAKE_CASE : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
9
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
1
from typing import Dict, Optional import numpy as np import datasets __lowerCAmelCase : Dict ='\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' __lowerCAmelCase : List[Any] ='\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' __lowerCAmelCase : Optional[int] ='\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = False , ): if label_map is not None: for old_id, new_id in label_map.items(): __SCREAMING_SNAKE_CASE : Dict = new_id # turn into Numpy arrays __SCREAMING_SNAKE_CASE : List[str] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = np.array(lowercase__ ) if reduce_labels: __SCREAMING_SNAKE_CASE : int = 255 __SCREAMING_SNAKE_CASE : List[str] = label - 1 __SCREAMING_SNAKE_CASE : Any = 255 __SCREAMING_SNAKE_CASE : Union[str, Any] = label != ignore_index __SCREAMING_SNAKE_CASE : Optional[Any] = np.not_equal(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : str = pred_label[mask] __SCREAMING_SNAKE_CASE : int = np.array(lowercase__ )[mask] __SCREAMING_SNAKE_CASE : List[Any] = pred_label[pred_label == label] __SCREAMING_SNAKE_CASE : str = np.histogram(lowercase__ , bins=lowercase__ , range=(0, num_labels - 1) )[0] __SCREAMING_SNAKE_CASE : List[str] = np.histogram(lowercase__ , bins=lowercase__ , range=(0, num_labels - 1) )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = np.histogram(lowercase__ , bins=lowercase__ , range=(0, num_labels - 1) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = False , ): __SCREAMING_SNAKE_CASE : int = np.zeros((num_labels,) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : Any = np.zeros((num_labels,) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : str = np.zeros((num_labels,) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : Any = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = intersect_and_union( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = total_intersect_and_union( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # compute metrics __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Optional[int] = total_area_intersect.sum() / total_area_label.sum() __SCREAMING_SNAKE_CASE : Union[str, Any] = total_area_intersect / total_area_union __SCREAMING_SNAKE_CASE : Optional[Any] = total_area_intersect / total_area_label __SCREAMING_SNAKE_CASE : Dict = np.nanmean(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = np.nanmean(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = all_acc __SCREAMING_SNAKE_CASE : List[Any] = iou __SCREAMING_SNAKE_CASE : Optional[Any] = acc if nan_to_num is not None: __SCREAMING_SNAKE_CASE : List[str] = {metric: np.nan_to_num(lowercase__ , nan=lowercase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :bool , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[Dict[int, int]] = None , lowerCAmelCase__ :bool = False , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = mean_iou( results=lowerCAmelCase__ , gt_seg_maps=lowerCAmelCase__ , num_labels=lowerCAmelCase__ , ignore_index=lowerCAmelCase__ , nan_to_num=lowerCAmelCase__ , label_map=lowerCAmelCase__ , reduce_labels=lowerCAmelCase__ , ) return iou_result
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Distribution , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Any=0 ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 if scale is None else scale __SCREAMING_SNAKE_CASE : List[str] = 0.0 if loc is None else loc super().__init__(lowerCAmelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCAmelCase__ )] ) @property def __magic_name__( self :List[Any] ) -> Any: return self.base_dist.mean * self.scale + self.loc @property def __magic_name__( self :List[str] ) -> List[Any]: return self.base_dist.variance * self.scale**2 @property def __magic_name__( self :Union[str, Any] ) -> Optional[int]: return self.variance.sqrt() class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Callable[..., Tuple[torch.Tensor]] , **lowerCAmelCase__ :Tuple ) -> None: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = args_dim __SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList([nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) for dim in args_dim.values()] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = domain_map def __magic_name__( self :int , lowerCAmelCase__ :torch.Tensor ) -> Tuple[torch.Tensor]: __SCREAMING_SNAKE_CASE : str = [proj(lowerCAmelCase__ ) for proj in self.proj] return self.domain_map(*lowerCAmelCase__ ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Dict ) -> Dict: super().__init__() __SCREAMING_SNAKE_CASE : int = function def __magic_name__( self :int , lowerCAmelCase__ :Optional[int] , *lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: return self.function(lowerCAmelCase__ , *lowerCAmelCase__ ) class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : type SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : Dict[str, int] def __init__( self :List[str] , lowerCAmelCase__ :int = 1 ) -> None: __SCREAMING_SNAKE_CASE : str = dim __SCREAMING_SNAKE_CASE : str = {k: dim * self.args_dim[k] for k in self.args_dim} def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Dict: if self.dim == 1: return self.distribution_class(*lowerCAmelCase__ ) else: return Independent(self.distribution_class(*lowerCAmelCase__ ) , 1 ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , ) -> Distribution: __SCREAMING_SNAKE_CASE : List[Any] = self._base_distribution(lowerCAmelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCAmelCase__ , loc=lowerCAmelCase__ , scale=lowerCAmelCase__ , event_dim=self.event_dim ) @property def __magic_name__( self :int ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def __magic_name__( self :int ) -> int: return len(self.event_shape ) @property def __magic_name__( self :Union[str, Any] ) -> float: return 0.0 def __magic_name__( self :List[Any] , lowerCAmelCase__ :int ) -> nn.Module: return ParameterProjection( in_features=lowerCAmelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __magic_name__( self :int , *lowerCAmelCase__ :torch.Tensor ) -> List[str]: raise NotImplementedError() @staticmethod def __magic_name__( lowerCAmelCase__ :torch.Tensor ) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCAmelCase__ ) + 4.0 )) / 2.0 class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} SCREAMING_SNAKE_CASE__ : type = StudentT @classmethod def __magic_name__( cls :List[Any] , lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :torch.Tensor ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = cls.squareplus(lowerCAmelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) __SCREAMING_SNAKE_CASE : str = 2.0 + cls.squareplus(lowerCAmelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict[str, int] = {"loc": 1, "scale": 1} SCREAMING_SNAKE_CASE__ : type = Normal @classmethod def __magic_name__( cls :Union[str, Any] , lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :torch.Tensor ) -> Any: __SCREAMING_SNAKE_CASE : Dict = cls.squareplus(lowerCAmelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict[str, int] = {"total_count": 1, "logits": 1} SCREAMING_SNAKE_CASE__ : type = NegativeBinomial @classmethod def __magic_name__( cls :List[str] , lowerCAmelCase__ :torch.Tensor , lowerCAmelCase__ :torch.Tensor ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = cls.squareplus(lowerCAmelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> Distribution: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCAmelCase__ , logits=lowerCAmelCase__ ) else: return Independent(self.distribution_class(total_count=lowerCAmelCase__ , logits=lowerCAmelCase__ ) , 1 ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None ) -> Distribution: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
9
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
1
import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase : Dict ='path-to-your-trained-model' __lowerCAmelCase : int =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') __lowerCAmelCase : Dict ='A photo of sks dog in a bucket' __lowerCAmelCase : Dict =pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
9
from __future__ import annotations import bisect def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE : Any = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) - 1 while left <= right: __SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 __SCREAMING_SNAKE_CASE : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE : int = midpoint - 1 else: __SCREAMING_SNAKE_CASE : Dict = midpoint + 1 return None def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None __SCREAMING_SNAKE_CASE : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase : str =sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase : Tuple =int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase : Tuple =binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :int = 16 , lowerCAmelCase__ :int = 88 , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :int = 32 , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :str = "geglu" , lowerCAmelCase__ :Optional[int] = None , ) -> int: super().__init__() __SCREAMING_SNAKE_CASE : int = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCAmelCase__ , attention_head_dim=lowerCAmelCase__ , in_channels=lowerCAmelCase__ , num_layers=lowerCAmelCase__ , dropout=lowerCAmelCase__ , norm_num_groups=lowerCAmelCase__ , cross_attention_dim=lowerCAmelCase__ , attention_bias=lowerCAmelCase__ , sample_size=lowerCAmelCase__ , num_vector_embeds=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , num_embeds_ada_norm=lowerCAmelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __SCREAMING_SNAKE_CASE : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __SCREAMING_SNAKE_CASE : Optional[int] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __SCREAMING_SNAKE_CASE : List[str] = [1, 0] def __magic_name__( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :bool = True , ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = hidden_states __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __SCREAMING_SNAKE_CASE : str = self.transformer_index_for_condition[i] __SCREAMING_SNAKE_CASE : Optional[Any] = self.transformers[transformer_index]( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , timestep=lowerCAmelCase__ , cross_attention_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __SCREAMING_SNAKE_CASE : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __SCREAMING_SNAKE_CASE : List[str] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCAmelCase__ )
9
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowerCAmelCase : List[Any] =logging.get_logger(__name__) @add_end_docstrings( A__ , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :Any , lowerCAmelCase__ :GenericTensor ) -> np.ndarray: if self.framework == "tf": __SCREAMING_SNAKE_CASE : str = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE : List[str] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __magic_name__( self :Optional[int] , lowerCAmelCase__ :GenericTensor ) -> np.ndarray: __SCREAMING_SNAKE_CASE : str = self.get_masked_index(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def __magic_name__( self :str , lowerCAmelCase__ :GenericTensor ) -> int: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any]=None , **lowerCAmelCase__ :Tuple ) -> Dict[str, GenericTensor]: if return_tensors is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.framework __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.ensure_exactly_one_mask_token(lowerCAmelCase__ ) return model_inputs def __magic_name__( self :Dict , lowerCAmelCase__ :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = self.model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = model_inputs['''input_ids'''] return model_outputs def __magic_name__( self :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int]=5 , lowerCAmelCase__ :Tuple=None ) -> Union[str, Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE : Dict = target_ids.shape[0] __SCREAMING_SNAKE_CASE : int = model_outputs['''input_ids'''][0] __SCREAMING_SNAKE_CASE : Union[str, Any] = model_outputs['''logits'''] if self.framework == "tf": __SCREAMING_SNAKE_CASE : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __SCREAMING_SNAKE_CASE : int = outputs.numpy() __SCREAMING_SNAKE_CASE : Tuple = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE : List[str] = stable_softmax(lowerCAmelCase__ , axis=-1 ) if target_ids is not None: __SCREAMING_SNAKE_CASE : Dict = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.expand_dims(lowerCAmelCase__ , 0 ) __SCREAMING_SNAKE_CASE : List[Any] = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE : int = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE : Dict = logits.softmax(dim=-1 ) if target_ids is not None: __SCREAMING_SNAKE_CASE : List[Any] = probs[..., target_ids] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = probs.topk(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : int = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __SCREAMING_SNAKE_CASE : int = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE : List[Any] = target_ids[p].tolist() __SCREAMING_SNAKE_CASE : Dict = p # Filter padding out: __SCREAMING_SNAKE_CASE : Optional[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) if single_mask: return result[0] return result def __magic_name__( self :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str=None ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = [targets] try: __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE : int = {} __SCREAMING_SNAKE_CASE : Dict = [] for target in targets: __SCREAMING_SNAKE_CASE : int = vocab.get(lowerCAmelCase__ , lowerCAmelCase__ ) if id_ is None: __SCREAMING_SNAKE_CASE : Any = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )['''input_ids'''] if len(lowerCAmelCase__ ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue __SCREAMING_SNAKE_CASE : List[Any] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) __SCREAMING_SNAKE_CASE : Any = np.array(lowerCAmelCase__ ) return target_ids def __magic_name__( self :Any , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = {} if targets is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE : List[Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self :List[str] , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1: return outputs[0] return outputs
9
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = "x" , lowercase__ = 10**-10 , lowercase__ = 1 , ): __SCREAMING_SNAKE_CASE : Optional[Any] = symbols(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = lambdify(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = lambdify(lowercase__ , diff(lowercase__ , lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = starting_point while True: if diff_function(lowercase__ ) != 0: __SCREAMING_SNAKE_CASE : int = prev_guess - multiplicity * func(lowercase__ ) / diff_function( lowercase__ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __SCREAMING_SNAKE_CASE : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson("exp(x) - 1", 1_0, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
9
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowercase : '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :str=None , lowerCAmelCase__ :str=None , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str="resnet50" , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Union[str, Any]=32 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Optional[Any]=True , ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Dict = out_indices if out_indices is not None else [4] __SCREAMING_SNAKE_CASE : Optional[Any] = stage_names __SCREAMING_SNAKE_CASE : Dict = out_features __SCREAMING_SNAKE_CASE : List[Any] = backbone __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : str = num_channels __SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone __SCREAMING_SNAKE_CASE : Tuple = is_training def __magic_name__( self :Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values def __magic_name__( self :Dict ) -> Dict: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __magic_name__( self :int , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Any = TimmBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs __SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : List[str] = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :Any ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = TimmBackboneModelTester(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Optional[int]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Any = '''resnet18''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''microsoft/resnet-18''' __SCREAMING_SNAKE_CASE : str = AutoBackbone.from_pretrained(lowerCAmelCase__ , use_timm_backbone=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoBackbone.from_pretrained(lowerCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __SCREAMING_SNAKE_CASE : Any = AutoBackbone.from_pretrained(lowerCAmelCase__ , use_timm_backbone=lowerCAmelCase__ , out_indices=[1, 2, 3] ) __SCREAMING_SNAKE_CASE : Dict = AutoBackbone.from_pretrained(lowerCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __magic_name__( self :str ) -> List[Any]: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __magic_name__( self :Tuple ) -> Any: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __magic_name__( self :List[str] ) -> int: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __magic_name__( self :List[str] ) -> Tuple: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __magic_name__( self :str ) -> str: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __magic_name__( self :Dict ) -> Tuple: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __magic_name__( self :List[str] ) -> Tuple: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __magic_name__( self :Union[str, Any] ) -> int: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __magic_name__( self :List[str] ) -> Union[str, Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __magic_name__( self :Dict ) -> str: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __magic_name__( self :Dict ) -> Any: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __magic_name__( self :str ) -> Tuple: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __magic_name__( self :int ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: pass def __magic_name__( self :List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Tuple = self.has_attentions # no need to test all models as different heads yield the same functionality __SCREAMING_SNAKE_CASE : Union[str, Any] = self.all_model_classes[0] __SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = model(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = outputs[0][-1] # Encoder-/Decoder-only models __SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __SCREAMING_SNAKE_CASE : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(**lowerCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __SCREAMING_SNAKE_CASE : Dict = copy.deepcopy(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __SCREAMING_SNAKE_CASE : Dict = copy.deepcopy(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(**lowerCAmelCase__ )
9
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
1
def _UpperCamelCase ( lowercase__ , lowercase__ ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
9
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[str] =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = XLMRobertaTokenizer SCREAMING_SNAKE_CASE__ : List[str] = XLMRobertaTokenizerFast SCREAMING_SNAKE_CASE__ : str = True SCREAMING_SNAKE_CASE__ : int = True def __magic_name__( self :List[str] ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__( self :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = '''<pad>''' __SCREAMING_SNAKE_CASE : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1_002 ) def __magic_name__( self :int ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = XLMRobertaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __SCREAMING_SNAKE_CASE : List[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE : List[str] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Any = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @cached_property def __magic_name__( self :List[str] ) -> Union[str, Any]: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name ) __SCREAMING_SNAKE_CASE : Tuple = XLMRobertaTokenizer(f.name , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def __magic_name__( self :Optional[int] ) -> int: if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : int = '''I was born in 92000, and this is falsé.''' __SCREAMING_SNAKE_CASE : str = tokenizer.tokenize(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : str = tokenizer.encode(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __magic_name__( self :Optional[int] ) -> int: __SCREAMING_SNAKE_CASE : Tuple = '''Hello World!''' __SCREAMING_SNAKE_CASE : Optional[int] = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) __SCREAMING_SNAKE_CASE : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __magic_name__( self :Dict ) -> List[Any]: # fmt: off __SCREAMING_SNAKE_CASE : Tuple = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
9
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
9
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=7 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :Dict=30 , lowerCAmelCase__ :Tuple=400 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''shortest_edge''': 18} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def __magic_name__( self :Tuple ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VivitImageProcessor if is_vision_available() else None def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def __magic_name__( self :int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :str ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :Any ) -> List[str]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
1
from __future__ import annotations def _UpperCamelCase ( lowercase__ , lowercase__ ): # Checks if the entire collection has been sorted if len(lowercase__ ) <= 1 or n <= 1: return insert_next(lowercase__ , n - 1 ) rec_insertion_sort(lowercase__ , n - 1 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): # Checks order between adjacent elements if index >= len(lowercase__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = ( collection[index], collection[index - 1], ) insert_next(lowercase__ , index + 1 ) if __name__ == "__main__": __lowerCAmelCase : Any =input('Enter integers separated by spaces: ') __lowerCAmelCase : list[int] =[int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = checkpoints.load_tax_checkpoint(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = flatten_dict(lowercase__ ) return flax_params def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = {} __SCREAMING_SNAKE_CASE : str = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } __SCREAMING_SNAKE_CASE : Optional[Any] = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE : Optional[int] = new_key.replace(lowercase__ , lowercase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __SCREAMING_SNAKE_CASE : List[str] = new_key.replace(lowercase__ , lowercase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE : Union[str, Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __SCREAMING_SNAKE_CASE : List[Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = flax_dict[key] __SCREAMING_SNAKE_CASE : Any = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(converted_dict[key].T ) else: __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False , lowercase__=False ): __SCREAMING_SNAKE_CASE : int = get_flax_param(lowercase__ ) if not use_large: __SCREAMING_SNAKE_CASE : str = PixaStructVisionConfig() __SCREAMING_SNAKE_CASE : List[Any] = PixaStructTextConfig() else: __SCREAMING_SNAKE_CASE : Any = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __SCREAMING_SNAKE_CASE : Tuple = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __SCREAMING_SNAKE_CASE : List[str] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=lowercase__ ) __SCREAMING_SNAKE_CASE : int = PixaStructForConditionalGeneration(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = rename_and_convert_flax_params(lowercase__ ) model.load_state_dict(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) __SCREAMING_SNAKE_CASE : Tuple = PixaStructImageProcessor() __SCREAMING_SNAKE_CASE : Dict = PixaStructProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) if use_large: __SCREAMING_SNAKE_CASE : Optional[Any] = 4096 __SCREAMING_SNAKE_CASE : Tuple = True # mkdir if needed os.makedirs(lowercase__ , exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) print('''Model saved in {}'''.format(lowercase__ ) ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') __lowerCAmelCase : List[Any] =parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
9
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = len(set_a.intersection(lowercase__ ) ) if alternative_union: __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) + len(lowercase__ ) else: __SCREAMING_SNAKE_CASE : int = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: __SCREAMING_SNAKE_CASE : Tuple = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": __lowerCAmelCase : List[Any] ={'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : Optional[Any] ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
9
1
import copy import re class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = '''hp''' SCREAMING_SNAKE_CASE__ : int = {} SCREAMING_SNAKE_CASE__ : List[str] = None @classmethod def __magic_name__( cls :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = prefix __SCREAMING_SNAKE_CASE : int = defaults cls.build_naming_info() @staticmethod def __magic_name__( lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if len(lowerCAmelCase__ ) == 0: return "" __SCREAMING_SNAKE_CASE : str = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCAmelCase__ ) + 1 ): __SCREAMING_SNAKE_CASE : Tuple = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __SCREAMING_SNAKE_CASE : Union[str, Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : List[Any] = '''''' while integer != 0: __SCREAMING_SNAKE_CASE : List[str] = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s __SCREAMING_SNAKE_CASE : Dict = 0 while True: __SCREAMING_SNAKE_CASE : Tuple = word + '''#''' + int_to_alphabetic(lowerCAmelCase__ ) if sword in info["reverse_short_word"]: continue else: __SCREAMING_SNAKE_CASE : str = sword break __SCREAMING_SNAKE_CASE : List[Any] = short_word __SCREAMING_SNAKE_CASE : int = word return short_word @staticmethod def __magic_name__( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = param_name.split('''_''' ) __SCREAMING_SNAKE_CASE : List[str] = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ , lowerCAmelCase__ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __SCREAMING_SNAKE_CASE : List[str] = ['''''', '''_'''] for separator in separators: __SCREAMING_SNAKE_CASE : Tuple = separator.join(lowerCAmelCase__ ) if shortname not in info["reverse_short_param"]: __SCREAMING_SNAKE_CASE : Dict = shortname __SCREAMING_SNAKE_CASE : List[Any] = param_name return shortname return param_name @staticmethod def __magic_name__( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str ) -> int: __SCREAMING_SNAKE_CASE : int = TrialShortNamer.shortname_for_key(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = short_name __SCREAMING_SNAKE_CASE : List[str] = param_name @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: if cls.NAMING_INFO is not None: return __SCREAMING_SNAKE_CASE : List[str] = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } __SCREAMING_SNAKE_CASE : Any = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = info @classmethod def __magic_name__( cls :int , lowerCAmelCase__ :Tuple ) -> List[Any]: cls.build_naming_info() assert cls.PREFIX is not None __SCREAMING_SNAKE_CASE : Dict = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __SCREAMING_SNAKE_CASE : Union[str, Any] = cls.NAMING_INFO['''short_param'''][k] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = 1 if v else 0 __SCREAMING_SNAKE_CASE : Any = '''''' if isinstance(lowerCAmelCase__ , (int, float) ) else '''-''' __SCREAMING_SNAKE_CASE : Dict = f'''{key}{sep}{v}''' name.append(lowerCAmelCase__ ) return "_".join(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :str , lowerCAmelCase__ :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = repr[len(cls.PREFIX ) + 1 :] if repr == "": __SCREAMING_SNAKE_CASE : List[Any] = [] else: __SCREAMING_SNAKE_CASE : List[Any] = repr.split('''_''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {} for value in values: if "-" in value: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = value.split('''-''' ) else: __SCREAMING_SNAKE_CASE : int = re.sub('''[0-9.]''' , '''''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = float(re.sub('''[^0-9.]''' , '''''' , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = cls.NAMING_INFO['''reverse_short_param'''][p_k] __SCREAMING_SNAKE_CASE : List[str] = p_v for k in cls.DEFAULTS: if k not in parameters: __SCREAMING_SNAKE_CASE : Optional[int] = cls.DEFAULTS[k] return parameters
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
__lowerCAmelCase : Optional[int] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase : Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase : int ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
9
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.normalize(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(lowercase__ ) return torch.mm(lowercase__ , normalized_text_embeds.t() ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig SCREAMING_SNAKE_CASE__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self :str , lowerCAmelCase__ :CLIPConfig ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModel(config.vision_config ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase__ ) @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : List[str] = special_cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Any = self.special_care_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : List[str] = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 __SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = special_care * 0.01 __SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
1
from abc import ABC, abstractmethod from typing import List, Optional class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Tuple ) -> Union[str, Any]: # test for the above condition self.test() def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Tuple = False while not completed: if counter == 1: self.reset() __SCREAMING_SNAKE_CASE : Optional[Any] = self.advance() if not self.does_advance(lowerCAmelCase__ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.update(lowerCAmelCase__ ) counter += 1 if counter > 10_000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __magic_name__( self :Optional[int] ) -> str: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :str , lowerCAmelCase__ :int ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :List[str] ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :Tuple ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Dict=False ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :List[int] ) -> Optional[Any]: super(lowerCAmelCase__ , self ).__init__() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = token_ids __SCREAMING_SNAKE_CASE : Optional[Any] = len(self.token_ids ) __SCREAMING_SNAKE_CASE : Tuple = -1 # the index of the currently fulfilled step __SCREAMING_SNAKE_CASE : int = False def __magic_name__( self :List[str] ) -> List[str]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> List[str]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __magic_name__( self :int , lowerCAmelCase__ :int ) -> Tuple: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False if self.does_advance(lowerCAmelCase__ ): self.fulfilled_idx += 1 __SCREAMING_SNAKE_CASE : Dict = True if self.fulfilled_idx == (self.seqlen - 1): __SCREAMING_SNAKE_CASE : Union[str, Any] = True __SCREAMING_SNAKE_CASE : int = completed else: # failed to make progress. __SCREAMING_SNAKE_CASE : List[str] = True self.reset() return stepped, completed, reset def __magic_name__( self :Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = 0 def __magic_name__( self :Any ) -> str: return self.seqlen - (self.fulfilled_idx + 1) def __magic_name__( self :str , lowerCAmelCase__ :Optional[Any]=False ) -> List[str]: __SCREAMING_SNAKE_CASE : int = PhrasalConstraint(self.token_ids ) if stateful: __SCREAMING_SNAKE_CASE : Any = self.seqlen __SCREAMING_SNAKE_CASE : Dict = self.fulfilled_idx __SCREAMING_SNAKE_CASE : List[str] = self.completed return new_constraint class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :List[List[int]] , lowerCAmelCase__ :List[Any]=True ) -> str: __SCREAMING_SNAKE_CASE : Any = max([len(lowerCAmelCase__ ) for one in nested_token_ids] ) __SCREAMING_SNAKE_CASE : int = {} for token_ids in nested_token_ids: __SCREAMING_SNAKE_CASE : int = root for tidx, token_id in enumerate(lowerCAmelCase__ ): if token_id not in level: __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : Dict = level[token_id] if no_subsets and self.has_subsets(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = root def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : int = self.trie for current_token in current_seq: __SCREAMING_SNAKE_CASE : List[Any] = start[current_token] __SCREAMING_SNAKE_CASE : Optional[Any] = list(start.keys() ) return next_tokens def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = self.next_tokens(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) == 0 def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = list(root.values() ) if len(lowerCAmelCase__ ) == 0: return 1 else: return sum([self.count_leaves(lowerCAmelCase__ ) for nn in next_nodes] ) def __magic_name__( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = self.count_leaves(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) != leaf_count class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :List[List[int]] ) -> int: super(lowerCAmelCase__ , self ).__init__() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or len(lowerCAmelCase__ ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __SCREAMING_SNAKE_CASE : str = DisjunctiveTrie(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nested_token_ids __SCREAMING_SNAKE_CASE : Optional[Any] = self.trie.max_height __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : Tuple = False def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.trie.next_tokens(self.current_seq ) if len(lowerCAmelCase__ ) == 0: return None else: return token_list def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : Tuple = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __magic_name__( self :Any , lowerCAmelCase__ :int ) -> Union[str, Any]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(lowerCAmelCase__ ): self.current_seq.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = True else: __SCREAMING_SNAKE_CASE : List[str] = True self.reset() __SCREAMING_SNAKE_CASE : Optional[Any] = self.trie.reached_leaf(self.current_seq ) __SCREAMING_SNAKE_CASE : Any = completed return stepped, completed, reset def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = [] def __magic_name__( self :Optional[Any] ) -> Tuple: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __magic_name__( self :Any , lowerCAmelCase__ :Tuple=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: __SCREAMING_SNAKE_CASE : int = self.seqlen __SCREAMING_SNAKE_CASE : List[Any] = self.current_seq __SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class _lowercase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :List[Constraint] ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = constraints # max # of steps required to fulfill a given constraint __SCREAMING_SNAKE_CASE : Optional[Any] = max([c.seqlen for c in constraints] ) __SCREAMING_SNAKE_CASE : Tuple = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = False self.init_state() def __magic_name__( self :int ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[str] = [constraint.copy(stateful=lowerCAmelCase__ ) for constraint in self.constraints] def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __SCREAMING_SNAKE_CASE : Union[str, Any] = constraint.advance() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.append(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.extend(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Tuple = self.inprogress_constraint.advance() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.append(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): token_list.extend(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 0: return None else: return token_list def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Optional[List[int]] ) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = self.add(lowerCAmelCase__ ) # the entire list of constraints are fulfilled if self.completed: break def __magic_name__( self :str , lowerCAmelCase__ :int ) -> Any: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = False, False if self.completed: __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.update(lowerCAmelCase__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : int = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __SCREAMING_SNAKE_CASE : int = None if len(self.pending_constraints ) == 0: # we're done! __SCREAMING_SNAKE_CASE : List[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = pending_constraint.update(lowerCAmelCase__ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = None if not complete and stepped: __SCREAMING_SNAKE_CASE : Dict = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __SCREAMING_SNAKE_CASE : Tuple = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __SCREAMING_SNAKE_CASE : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __magic_name__( self :int , lowerCAmelCase__ :List[Any]=True ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __SCREAMING_SNAKE_CASE : Dict = [ constraint.copy(stateful=lowerCAmelCase__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.copy(stateful=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
9
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : str ={ 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''decision_transformer''' SCREAMING_SNAKE_CASE__ : Dict = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : Any = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :Union[str, Any] , lowerCAmelCase__ :Dict=17 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :List[Any]=128 , lowerCAmelCase__ :Any=4_096 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :int=1 , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=50_256 , lowerCAmelCase__ :List[Any]=50_256 , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :List[Any]=False , **lowerCAmelCase__ :Optional[Any] , ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = state_dim __SCREAMING_SNAKE_CASE : Any = act_dim __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = max_ep_len __SCREAMING_SNAKE_CASE : Optional[int] = action_tanh __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Dict = n_positions __SCREAMING_SNAKE_CASE : Optional[int] = n_layer __SCREAMING_SNAKE_CASE : Optional[Any] = n_head __SCREAMING_SNAKE_CASE : List[str] = n_inner __SCREAMING_SNAKE_CASE : str = activation_function __SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop __SCREAMING_SNAKE_CASE : Dict = embd_pdrop __SCREAMING_SNAKE_CASE : List[str] = attn_pdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Any = scale_attn_weights __SCREAMING_SNAKE_CASE : int = use_cache __SCREAMING_SNAKE_CASE : int = scale_attn_by_inverse_layer_idx __SCREAMING_SNAKE_CASE : Optional[Any] = reorder_and_upcast_attn __SCREAMING_SNAKE_CASE : int = bos_token_id __SCREAMING_SNAKE_CASE : Dict = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :int ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = inspect.getfile(accelerate.test_utils ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __SCREAMING_SNAKE_CASE : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __magic_name__( self :Optional[int] ) -> Any: print(f'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def __magic_name__( self :Optional[int] ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def __magic_name__( self :str ) -> int: print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __SCREAMING_SNAKE_CASE : Dict = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase : Dict =Accelerator() __lowerCAmelCase : Any =(accelerator.state.process_index + 2, 1_0) __lowerCAmelCase : List[Any] =torch.randint(0, 1_0, shape).to(accelerator.device) __lowerCAmelCase : Tuple ='' __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __lowerCAmelCase : Union[str, Any] =accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __lowerCAmelCase : Optional[int] =accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
9
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __lowerCAmelCase : Tuple =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCAmelCase : Any =1_2_8_0_2_2 __lowerCAmelCase : List[Any] =1_2_8_0_2_8 @require_sentencepiece class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MaMaaaTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Dict = True def __magic_name__( self :Dict ) -> Any: super().setUp() __SCREAMING_SNAKE_CASE : int = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __SCREAMING_SNAKE_CASE : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __SCREAMING_SNAKE_CASE : List[str] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__( self :Union[str, Any] , **lowerCAmelCase__ :List[str] ) -> List[str]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :Tuple ) -> Any: return ( "This is a test", "This is a test", ) def __magic_name__( self :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''</s>''' __SCREAMING_SNAKE_CASE : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(lowerCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def __magic_name__( self :Optional[Any] ) -> int: pass def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2, 3, 4, 5, 6] , ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) __SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''This is a test''' ) @slow def __magic_name__( self :Optional[int] ) -> List[Any]: # fmt: off __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''facebook/m2m100_418M''' SCREAMING_SNAKE_CASE__ : str = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] SCREAMING_SNAKE_CASE__ : Dict = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off SCREAMING_SNAKE_CASE__ : int = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def __magic_name__( cls :Dict ) -> int: __SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) __SCREAMING_SNAKE_CASE : Dict = 1 return cls def __magic_name__( self :int ) -> Dict: self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 128_063 ) def __magic_name__( self :Dict ) -> Any: __SCREAMING_SNAKE_CASE : Any = self.tokenizer.get_vocab() self.assertEqual(len(lowerCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''en''' __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Optional[int]: self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off __SCREAMING_SNAKE_CASE : Optional[int] = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = MaMaaaTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCAmelCase__ ) @require_torch def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = '''en''' __SCREAMING_SNAKE_CASE : Dict = '''fr''' __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __SCREAMING_SNAKE_CASE : List[str] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __magic_name__( self :Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __SCREAMING_SNAKE_CASE : int = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __magic_name__( self :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __SCREAMING_SNAKE_CASE : Optional[int] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __magic_name__( self :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # en_XX, A, test, EOS '''input_ids''': [[128_022, 58, 4_183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128_006, } , )
9
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :NestedDataStructureLike[PathLike] , lowerCAmelCase__ :Optional[NamedSplit] = None , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Optional[int] , ) -> Tuple: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Dict ) -> Tuple: # Build iterable dataset if self.streaming: __SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
9
1
from typing import Any def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validation( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) # Creates data structures and fill initial step __SCREAMING_SNAKE_CASE : dict = {} __SCREAMING_SNAKE_CASE : dict = {} for state in states_space: __SCREAMING_SNAKE_CASE : List[Any] = observations_space[0] __SCREAMING_SNAKE_CASE : str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __SCREAMING_SNAKE_CASE : List[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase__ ) ): __SCREAMING_SNAKE_CASE : List[Any] = observations_space[o] __SCREAMING_SNAKE_CASE : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __SCREAMING_SNAKE_CASE : int = '''''' __SCREAMING_SNAKE_CASE : Any = -1 for k_state in states_space: __SCREAMING_SNAKE_CASE : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __SCREAMING_SNAKE_CASE : Tuple = probability __SCREAMING_SNAKE_CASE : Union[str, Any] = k_state # Update probabilities and pointers dicts __SCREAMING_SNAKE_CASE : str = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = arg_max # The final observation __SCREAMING_SNAKE_CASE : Union[str, Any] = observations_space[len(lowercase__ ) - 1] # argmax for given final observation __SCREAMING_SNAKE_CASE : Tuple = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = -1 for k_state in states_space: __SCREAMING_SNAKE_CASE : Dict = probabilities[(k_state, final_observation)] if probability > max_probability: __SCREAMING_SNAKE_CASE : int = probability __SCREAMING_SNAKE_CASE : Optional[int] = k_state __SCREAMING_SNAKE_CASE : Optional[int] = arg_max # Process pointers backwards __SCREAMING_SNAKE_CASE : List[Any] = last_state __SCREAMING_SNAKE_CASE : Optional[Any] = [] for o in range(len(lowercase__ ) - 1 , -1 , -1 ): result.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = pointers[previous, observations_space[o]] result.reverse() return result def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _validate_not_empty( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) _validate_lists(lowercase__ , lowercase__ ) _validate_dicts( lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): _validate_list(lowercase__ , '''observations_space''' ) _validate_list(lowercase__ , '''states_space''' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): if not isinstance(_object , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''{var_name} must be a list''' raise ValueError(lowercase__ ) else: for x in _object: if not isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''{var_name} must be a list of strings''' raise ValueError(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , ): _validate_dict(lowercase__ , '''initial_probabilities''' , lowercase__ ) _validate_nested_dict(lowercase__ , '''transition_probabilities''' ) _validate_nested_dict(lowercase__ , '''emission_probabilities''' ) def _UpperCamelCase ( lowercase__ , lowercase__ ): _validate_dict(_object , lowercase__ , lowercase__ ) for x in _object.values(): _validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): if not isinstance(_object , lowercase__ ): __SCREAMING_SNAKE_CASE : str = F'''{var_name} must be a dict''' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ): __SCREAMING_SNAKE_CASE : Dict = F'''{var_name} all keys must be strings''' raise ValueError(lowercase__ ) if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ): __SCREAMING_SNAKE_CASE : Tuple = '''nested dictionary ''' if nested else '''''' __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowercase__ ) if __name__ == "__main__": from doctest import testmod testmod()
9
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) return image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 364 if '''coco''' in model_name else 224 __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=lowercase__ , text_config=lowercase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __SCREAMING_SNAKE_CASE : str = tokenizer('''\n''' , add_special_tokens=lowercase__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_blipa_config(lowercase__ , eos_token_id=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : int = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __SCREAMING_SNAKE_CASE : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('''Done!''' ) # update state dict keys __SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) if key.startswith('''Qformer.bert''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5''' , '''language''' ) __SCREAMING_SNAKE_CASE : Tuple = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE : List[str] = load_demo_image() __SCREAMING_SNAKE_CASE : Any = vis_processors['''eval'''](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase__ ) # create processor __SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowercase__ , return_tensors='''pt''' ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __SCREAMING_SNAKE_CASE : Dict = hf_model(lowercase__ , lowercase__ ).logits else: __SCREAMING_SNAKE_CASE : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_model(lowercase__ , lowercase__ , labels=lowercase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase__ ) else: # cast to same type __SCREAMING_SNAKE_CASE : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) , lowercase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowercase__ , return_tensors='''pt''' ).input_ids.to(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate( lowercase__ , lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[1] __SCREAMING_SNAKE_CASE : Any = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() __lowerCAmelCase : Tuple =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={'vocab_file': 'vocab.txt'} __lowerCAmelCase : List[Any] ={ 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __lowerCAmelCase : Any ={ 'openbmb/cpm-ant-10b': 1_0_2_4, } def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = collections.OrderedDict() with open(lowercase__ , '''r''' , encoding='''utf-8''' ) as reader: __SCREAMING_SNAKE_CASE : Optional[int] = reader.readlines() for index, token in enumerate(lowercase__ ): __SCREAMING_SNAKE_CASE : int = token.rstrip('''\n''' ) __SCREAMING_SNAKE_CASE : Tuple = index return vocab class _lowercase ( A__ ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any]="<unk>" , lowerCAmelCase__ :str=200 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = vocab __SCREAMING_SNAKE_CASE : Union[str, Any] = unk_token __SCREAMING_SNAKE_CASE : Optional[Any] = max_input_chars_per_word def __magic_name__( self :str , lowerCAmelCase__ :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : int = [] while start < len(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = None while start < end: __SCREAMING_SNAKE_CASE : List[str] = ''''''.join(chars[start:end] ) if substr in self.vocab: __SCREAMING_SNAKE_CASE : Optional[int] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = end return sub_tokens class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ : Any = False def __init__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :int="<d>" , lowerCAmelCase__ :int="</d>" , lowerCAmelCase__ :Optional[Any]="<s>" , lowerCAmelCase__ :Optional[Any]="</s>" , lowerCAmelCase__ :Optional[int]="<pad>" , lowerCAmelCase__ :Dict="<unk>" , lowerCAmelCase__ :Any="</n>" , lowerCAmelCase__ :List[str]="</_>" , lowerCAmelCase__ :Optional[Any]="left" , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=lowerCAmelCase__ , eod_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , line_token=lowerCAmelCase__ , space_token=lowerCAmelCase__ , padding_side=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = bod_token __SCREAMING_SNAKE_CASE : List[str] = eod_token __SCREAMING_SNAKE_CASE : Optional[int] = load_vocab(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.encoder[space_token] __SCREAMING_SNAKE_CASE : str = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __SCREAMING_SNAKE_CASE : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase__ : x[1] ) ) __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Any = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __magic_name__( self :List[Any] ) -> int: return self.encoder[self.bod_token] @property def __magic_name__( self :int ) -> List[Any]: return self.encoder[self.eod_token] @property def __magic_name__( self :List[Any] ) -> Union[str, Any]: return self.encoder["\n"] @property def __magic_name__( self :Optional[int] ) -> int: return len(self.encoder ) def __magic_name__( self :int ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__( self :str , lowerCAmelCase__ :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : int = [] for x in jieba.cut(lowerCAmelCase__ , cut_all=lowerCAmelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCAmelCase__ ) ) return output_tokens def __magic_name__( self :str , lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = [i for i in token_ids if i >= 0] __SCREAMING_SNAKE_CASE : int = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :Tuple ) -> List[str]: return token in self.encoder def __magic_name__( self :Tuple , lowerCAmelCase__ :List[str] ) -> str: return "".join(lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[Any] ) -> List[Any]: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__( self :Any , lowerCAmelCase__ :Any ) -> Optional[Any]: return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def __magic_name__( self :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if os.path.isdir(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __SCREAMING_SNAKE_CASE : Optional[int] = 0 if " " in self.encoder: __SCREAMING_SNAKE_CASE : List[str] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __SCREAMING_SNAKE_CASE : Tuple = self.encoder['''\n'''] del self.encoder["\n"] __SCREAMING_SNAKE_CASE : Optional[int] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase__ : x[1] ) ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) __SCREAMING_SNAKE_CASE : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :List[int] = None ) -> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __magic_name__( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) return [1] + ([0] * len(lowerCAmelCase__ ))
9
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''naver-clova-ix/donut-base-finetuned-docvqa''' SCREAMING_SNAKE_CASE__ : Any = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = '''document_qa''' SCREAMING_SNAKE_CASE__ : List[Any] = AutoProcessor SCREAMING_SNAKE_CASE__ : Union[str, Any] = VisionEncoderDecoderModel SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''image''', '''text'''] SCREAMING_SNAKE_CASE__ : str = ['''text'''] def __init__( self :Union[str, Any] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :Tuple ) -> str: if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :"Image" , lowerCAmelCase__ :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __SCREAMING_SNAKE_CASE : Optional[Any] = task_prompt.replace('''{user_input}''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.pre_processor.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE : Optional[int] = self.pre_processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __magic_name__( self :str , lowerCAmelCase__ :Optional[Any] ) -> List[Any]: return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase__ , ).sequences def __magic_name__( self :int , lowerCAmelCase__ :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.pre_processor.batch_decode(lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Optional[int] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) __SCREAMING_SNAKE_CASE : Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) __SCREAMING_SNAKE_CASE : int = re.sub(r'''<.*?>''' , '''''' , lowerCAmelCase__ , count=1 ).strip() # remove first task start token __SCREAMING_SNAKE_CASE : Optional[int] = self.pre_processor.tokenajson(lowerCAmelCase__ ) return sequence["answer"]
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCamelCase ( lowercase__ ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __lowerCAmelCase : Optional[Any] ='\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class _lowercase ( A__ ): '''simple docstring''' @staticmethod def __magic_name__( lowerCAmelCase__ :ArgumentParser ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=lowerCAmelCase__ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :str , *lowerCAmelCase__ :List[Any] , ) -> Dict: __SCREAMING_SNAKE_CASE : str = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(f'''Loading model {model_type}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = model_type __SCREAMING_SNAKE_CASE : str = tf_checkpoint __SCREAMING_SNAKE_CASE : Optional[int] = pytorch_dump_output __SCREAMING_SNAKE_CASE : str = config __SCREAMING_SNAKE_CASE : Optional[int] = finetuning_task_name def __magic_name__( self :int ) -> List[str]: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCAmelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): __SCREAMING_SNAKE_CASE : Dict = self._tf_checkpoint __SCREAMING_SNAKE_CASE : int = '''''' else: __SCREAMING_SNAKE_CASE : int = self._tf_checkpoint __SCREAMING_SNAKE_CASE : List[Any] = '''''' convert_transfo_xl_checkpoint_to_pytorch( lowerCAmelCase__ , self._config , self._pytorch_dump_output , lowerCAmelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
9
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
1
__lowerCAmelCase : int =tuple[float, float, float] __lowerCAmelCase : List[str] =tuple[float, float, float] def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = end_pointa[0] - end_pointa[0] __SCREAMING_SNAKE_CASE : List[Any] = end_pointa[1] - end_pointa[1] __SCREAMING_SNAKE_CASE : Union[str, Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = ab[1] * ac[2] - ab[2] * ac[1] # *i __SCREAMING_SNAKE_CASE : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __SCREAMING_SNAKE_CASE : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCamelCase ( lowercase__ , lowercase__ ): return tuple(round(lowercase__ , lowercase__ ) for x in vector ) == (0, 0, 0) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 10 ): __SCREAMING_SNAKE_CASE : Tuple = create_vector(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = create_vector(lowercase__ , lowercase__ ) return is_zero_vector(get_ad_vectors_cross(lowercase__ , lowercase__ ) , lowercase__ )
9
from __future__ import annotations import bisect def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE : Any = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) - 1 while left <= right: __SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 __SCREAMING_SNAKE_CASE : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE : int = midpoint - 1 else: __SCREAMING_SNAKE_CASE : Dict = midpoint + 1 return None def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None __SCREAMING_SNAKE_CASE : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase : str =sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase : Tuple =int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase : Tuple =binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :Union[str, "sqlalchemy.sql.Selectable"] , lowerCAmelCase__ :Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , **lowerCAmelCase__ :Union[str, Any] , ) -> Optional[int]: super().__init__(features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = Sql( cache_dir=lowerCAmelCase__ , features=lowerCAmelCase__ , sql=lowerCAmelCase__ , con=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , ) # Build dataset for splits __SCREAMING_SNAKE_CASE : List[Any] = self.builder.as_dataset( split='''train''' , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class _lowercase : '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :Dataset , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Union[str, Any] , ) -> int: if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __SCREAMING_SNAKE_CASE : List[Any] = dataset __SCREAMING_SNAKE_CASE : Tuple = name __SCREAMING_SNAKE_CASE : Optional[Any] = con __SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __SCREAMING_SNAKE_CASE : List[Any] = num_proc __SCREAMING_SNAKE_CASE : Optional[int] = to_sql_kwargs def __magic_name__( self :Tuple ) -> int: __SCREAMING_SNAKE_CASE : Optional[int] = self.to_sql_kwargs.pop('''sql''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.to_sql_kwargs.pop('''con''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.to_sql_kwargs.pop('''index''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self._write(index=lowerCAmelCase__ , **self.to_sql_kwargs ) return written def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = args __SCREAMING_SNAKE_CASE : Union[str, Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __SCREAMING_SNAKE_CASE : List[str] = query_table( table=self.dataset.data , key=slice(lowerCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = batch.to_pandas() __SCREAMING_SNAKE_CASE : Union[str, Any] = df.to_sql(self.name , self.con , index=lowerCAmelCase__ , **lowerCAmelCase__ ) return num_rows or len(lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :str , **lowerCAmelCase__ :Tuple ) -> int: __SCREAMING_SNAKE_CASE : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCAmelCase__ , lowerCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
9
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = '''Salesforce/blip-image-captioning-base''' SCREAMING_SNAKE_CASE__ : Optional[int] = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) SCREAMING_SNAKE_CASE__ : Tuple = '''image_captioner''' SCREAMING_SNAKE_CASE__ : Optional[int] = AutoModelForVisionaSeq SCREAMING_SNAKE_CASE__ : List[str] = ['''image'''] SCREAMING_SNAKE_CASE__ : Dict = ['''text'''] def __init__( self :Tuple , *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: requires_backends(self , ['''vision'''] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :"Image" ) -> Optional[Any]: return self.pre_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) -> str: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :List[str] ) -> int: return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0].strip()
9
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Union[str, Any] ={ 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __lowerCAmelCase : List[str] =logging.get_logger(__name__) # General docstring __lowerCAmelCase : int ='PoolFormerConfig' # Base docstring __lowerCAmelCase : Tuple ='sail/poolformer_s12' __lowerCAmelCase : str =[1, 5_1_2, 7, 7] # Image classification docstring __lowerCAmelCase : Any ='sail/poolformer_s12' __lowerCAmelCase : Dict ='tabby, tabby cat' __lowerCAmelCase : int =[ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _UpperCamelCase ( lowercase__ , lowercase__ = 0.0 , lowercase__ = False ): if drop_prob == 0.0 or not training: return input __SCREAMING_SNAKE_CASE : Any = 1 - drop_prob __SCREAMING_SNAKE_CASE : Tuple = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __SCREAMING_SNAKE_CASE : Union[str, Any] = keep_prob + torch.rand(lowercase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __SCREAMING_SNAKE_CASE : Optional[Any] = input.div(lowercase__ ) * random_tensor return output class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Optional[float] = None ) -> None: super().__init__() __SCREAMING_SNAKE_CASE : int = drop_prob def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.Tensor ) -> torch.Tensor: return drop_path(lowerCAmelCase__ , self.drop_prob , self.training ) def __magic_name__( self :Any ) -> str: return "p={}".format(self.drop_prob ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict=None ) -> Any: super().__init__() __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (patch_size, patch_size) __SCREAMING_SNAKE_CASE : Union[str, Any] = stride if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (stride, stride) __SCREAMING_SNAKE_CASE : Any = padding if isinstance(lowerCAmelCase__ , collections.abc.Iterable ) else (padding, padding) __SCREAMING_SNAKE_CASE : Any = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = norm_layer(lowerCAmelCase__ ) if norm_layer else nn.Identity() def __magic_name__( self :Any , lowerCAmelCase__ :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = self.projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = self.norm(lowerCAmelCase__ ) return embeddings class _lowercase ( nn.GroupNorm ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :Optional[int] ) -> Any: super().__init__(1 , lowerCAmelCase__ , **lowerCAmelCase__ ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :Dict ) -> str: super().__init__() __SCREAMING_SNAKE_CASE : List[str] = nn.AvgPoolad(lowerCAmelCase__ , stride=1 , padding=pool_size // 2 , count_include_pad=lowerCAmelCase__ ) def __magic_name__( self :Dict , lowerCAmelCase__ :Tuple ) -> str: return self.pool(lowerCAmelCase__ ) - hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> List[str]: super().__init__() __SCREAMING_SNAKE_CASE : List[str] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE : Dict = PoolFormerDropPath(lowerCAmelCase__ ) if isinstance(config.hidden_act , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ACTaFN[config.hidden_act] else: __SCREAMING_SNAKE_CASE : Optional[int] = config.hidden_act def __magic_name__( self :Any , lowerCAmelCase__ :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = self.conva(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.act_fn(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.drop(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.conva(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.drop(lowerCAmelCase__ ) return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] ) -> Any: super().__init__() __SCREAMING_SNAKE_CASE : Union[str, Any] = PoolFormerPooling(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = PoolFormerOutput(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PoolFormerGroupNorm(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = PoolFormerGroupNorm(lowerCAmelCase__ ) # Useful for training neural nets __SCREAMING_SNAKE_CASE : Optional[Any] = PoolFormerDropPath(lowerCAmelCase__ ) if drop_path > 0.0 else nn.Identity() __SCREAMING_SNAKE_CASE : int = config.use_layer_scale if config.use_layer_scale: __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((lowerCAmelCase__) ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter( config.layer_scale_init_value * torch.ones((lowerCAmelCase__) ) , requires_grad=lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[int] ) -> Optional[Any]: if self.use_layer_scale: __SCREAMING_SNAKE_CASE : int = self.pooling(self.before_norm(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __SCREAMING_SNAKE_CASE : Any = hidden_states + self.drop_path(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = () __SCREAMING_SNAKE_CASE : Dict = self.output(self.after_norm(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Any = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states + self.drop_path(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = (output,) + outputs return outputs else: __SCREAMING_SNAKE_CASE : Tuple = self.drop_path(self.pooling(self.before_norm(lowerCAmelCase__ ) ) ) # First residual connection __SCREAMING_SNAKE_CASE : Dict = pooling_output + hidden_states __SCREAMING_SNAKE_CASE : List[Any] = () # Second residual connection inside the PoolFormerOutput block __SCREAMING_SNAKE_CASE : int = self.drop_path(self.output(self.after_norm(lowerCAmelCase__ ) ) ) __SCREAMING_SNAKE_CASE : str = hidden_states + layer_output __SCREAMING_SNAKE_CASE : str = (output,) + outputs return outputs class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Optional[int]: super().__init__() __SCREAMING_SNAKE_CASE : Optional[int] = config # stochastic depth decay rule __SCREAMING_SNAKE_CASE : List[str] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __SCREAMING_SNAKE_CASE : Dict = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList(lowerCAmelCase__ ) # Transformer blocks __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Any = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __SCREAMING_SNAKE_CASE : int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowerCAmelCase__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList(lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :str=True ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = () if output_hidden_states else None __SCREAMING_SNAKE_CASE : Optional[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = layers # Get patch embeddings from hidden_states __SCREAMING_SNAKE_CASE : Dict = embedding_layer(lowerCAmelCase__ ) # Send the embeddings through the blocks for _, blk in enumerate(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = blk(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_outputs[0] if output_hidden_states: __SCREAMING_SNAKE_CASE : Any = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = PoolFormerConfig SCREAMING_SNAKE_CASE__ : Optional[int] = '''poolformer''' SCREAMING_SNAKE_CASE__ : Any = '''pixel_values''' SCREAMING_SNAKE_CASE__ : Tuple = True def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int ) -> Optional[int]: if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any]=False ) -> str: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = value __lowerCAmelCase : Optional[int] =r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCAmelCase : Dict =r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , A__ , ) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :List[str] ) -> str: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = config __SCREAMING_SNAKE_CASE : Dict = PoolFormerEncoder(lowerCAmelCase__ ) # Initialize weights and apply final processing self.post_init() def __magic_name__( self :Dict ) -> int: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: __SCREAMING_SNAKE_CASE : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __SCREAMING_SNAKE_CASE : str = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :Any ) -> List[str]: super().__init__() __SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , config.hidden_size ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Dict = self.dense(lowerCAmelCase__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , A__ , ) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Any ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = config.num_labels __SCREAMING_SNAKE_CASE : str = PoolFormerModel(lowerCAmelCase__ ) # Final norm __SCREAMING_SNAKE_CASE : Union[str, Any] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __SCREAMING_SNAKE_CASE : int = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: __SCREAMING_SNAKE_CASE : Any = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : Optional[int] = self.poolformer( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = outputs[0] __SCREAMING_SNAKE_CASE : Dict = self.classifier(self.norm(lowerCAmelCase__ ).mean([-2, -1] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __SCREAMING_SNAKE_CASE : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __SCREAMING_SNAKE_CASE : Tuple = '''single_label_classification''' else: __SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": __SCREAMING_SNAKE_CASE : Optional[int] = MSELoss() if self.num_labels == 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __SCREAMING_SNAKE_CASE : int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": __SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss() __SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __SCREAMING_SNAKE_CASE : List[str] = BCEWithLogitsLoss() __SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: __SCREAMING_SNAKE_CASE : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
9
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
1
def _UpperCamelCase ( lowercase__ = 1000 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = 1, 1 __SCREAMING_SNAKE_CASE : List[str] = [] for i in range(1 , n + 1 ): __SCREAMING_SNAKE_CASE : Optional[Any] = prev_numerator + 2 * prev_denominator __SCREAMING_SNAKE_CASE : List[Any] = prev_numerator + prev_denominator if len(str(lowercase__ ) ) > len(str(lowercase__ ) ): result.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = numerator __SCREAMING_SNAKE_CASE : List[Any] = denominator return len(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
9
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
1
from __future__ import annotations import bisect def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE : Any = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) - 1 while left <= right: __SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 __SCREAMING_SNAKE_CASE : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE : int = midpoint - 1 else: __SCREAMING_SNAKE_CASE : Dict = midpoint + 1 return None def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None __SCREAMING_SNAKE_CASE : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase : str =sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase : Tuple =int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase : Tuple =binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=7 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :Dict=30 , lowerCAmelCase__ :Tuple=400 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''shortest_edge''': 18} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def __magic_name__( self :Tuple ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VivitImageProcessor if is_vision_available() else None def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def __magic_name__( self :int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :str ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :Any ) -> List[str]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
1
from __future__ import annotations from statistics import mean def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [0] * no_of_processes __SCREAMING_SNAKE_CASE : Tuple = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = burst_time[i] __SCREAMING_SNAKE_CASE : list[int] = [] __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Any = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Tuple = -1 for i in range(lowercase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowercase__ ) if len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __SCREAMING_SNAKE_CASE : List[str] = i total_time += burst_time[target_process] completed += 1 __SCREAMING_SNAKE_CASE : List[Any] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = [0] * no_of_processes for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') __lowerCAmelCase : Union[str, Any] =4 __lowerCAmelCase : str =[2, 5, 3, 7] __lowerCAmelCase : Optional[int] =[0, 0, 0, 0] __lowerCAmelCase : int =calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : List[Any] =calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : str ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Any ={ 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Tuple ={ 'Salesforce/codegen-350M-mono': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : str = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ : str = CodeGenTokenizer def __init__( self :List[str] , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[int]="<|endoftext|>" , lowerCAmelCase__ :Optional[int]="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Any=False , **lowerCAmelCase__ :Dict , ) -> Union[str, Any]: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) if kwargs.pop('''add_bos_token''' , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Any = add_prefix_space __SCREAMING_SNAKE_CASE : Dict = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = add_prefix_space def __magic_name__( self :Optional[Any] , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :List[Any] ) -> BatchEncoding: __SCREAMING_SNAKE_CASE : str = kwargs.get('''is_split_into_words''' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[Any] , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[Any] ) -> BatchEncoding: __SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , lowerCAmelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : Dict = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[List[str]] = None , **lowerCAmelCase__ :Optional[int] , ) -> str: __SCREAMING_SNAKE_CASE : str = super().decode( token_ids=lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , **lowerCAmelCase__ , ) if truncate_before_pattern is not None and len(lowerCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE : List[str] = self.truncate(lowerCAmelCase__ , lowerCAmelCase__ ) return decoded_text def __magic_name__( self :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> Dict: def find_re(lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int ): __SCREAMING_SNAKE_CASE : List[Any] = pattern.search(lowerCAmelCase__ , lowerCAmelCase__ ) return m.start() if m else -1 __SCREAMING_SNAKE_CASE : Optional[int] = [re.compile(lowerCAmelCase__ , re.MULTILINE ) for pattern in truncate_before_pattern] __SCREAMING_SNAKE_CASE : Union[str, Any] = list(re.finditer('''^print''' , lowerCAmelCase__ , re.MULTILINE ) ) if len(lowerCAmelCase__ ) > 1: __SCREAMING_SNAKE_CASE : Optional[int] = completion[: prints[1].start()] __SCREAMING_SNAKE_CASE : int = list(re.finditer('''^def''' , lowerCAmelCase__ , re.MULTILINE ) ) if len(lowerCAmelCase__ ) > 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = completion[: defs[1].start()] __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = [ pos for pos in [find_re(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for terminal in terminals] if pos != -1 ] if len(lowerCAmelCase__ ) > 0: return completion[: min(lowerCAmelCase__ )] else: return completion
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
import unittest from knapsack import greedy_knapsack as kp class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = [10, 20, 30, 40, 50, 60] __SCREAMING_SNAKE_CASE : int = [2, 4, 6, 8, 10, 12] __SCREAMING_SNAKE_CASE : int = 100 self.assertEqual(kp.calc_profit(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 210 ) def __magic_name__( self :List[Any] ) -> int: self.assertRaisesRegex(lowerCAmelCase__ , '''max_weight must greater than zero.''' ) def __magic_name__( self :List[Any] ) -> Optional[Any]: self.assertRaisesRegex(lowerCAmelCase__ , '''Weight can not be negative.''' ) def __magic_name__( self :Dict ) -> Optional[Any]: self.assertRaisesRegex(lowerCAmelCase__ , '''Profit can not be negative.''' ) def __magic_name__( self :str ) -> Union[str, Any]: self.assertRaisesRegex(lowerCAmelCase__ , '''max_weight must greater than zero.''' ) def __magic_name__( self :str ) -> Dict: self.assertRaisesRegex( lowerCAmelCase__ , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
9
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = len(set_a.intersection(lowercase__ ) ) if alternative_union: __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) + len(lowercase__ ) else: __SCREAMING_SNAKE_CASE : int = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: __SCREAMING_SNAKE_CASE : Tuple = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": __lowerCAmelCase : List[Any] ={'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : Optional[Any] ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
9
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''bert''' def __init__( self :Tuple , lowerCAmelCase__ :str=30_522 , lowerCAmelCase__ :Tuple=768 , lowerCAmelCase__ :Dict=12 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :List[str]=3_072 , lowerCAmelCase__ :Any="gelu" , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :List[str]="absolute" , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Optional[int]=None , **lowerCAmelCase__ :List[Any] , ) -> Optional[int]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : int = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type __SCREAMING_SNAKE_CASE : int = use_cache __SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout class _lowercase ( A__ ): '''simple docstring''' @property def __magic_name__( self :Any ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.normalize(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(lowercase__ ) return torch.mm(lowercase__ , normalized_text_embeds.t() ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig SCREAMING_SNAKE_CASE__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self :str , lowerCAmelCase__ :CLIPConfig ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModel(config.vision_config ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase__ ) @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : List[str] = special_cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Any = self.special_care_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : List[str] = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 __SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = special_care * 0.01 __SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
1
from __future__ import annotations from dataclasses import dataclass @dataclass class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : float SCREAMING_SNAKE_CASE__ : TreeNode | None = None SCREAMING_SNAKE_CASE__ : TreeNode | None = None def _UpperCamelCase ( lowercase__ ): # Validation def is_valid_tree(lowercase__ ) -> bool: if node is None: return True if not isinstance(lowercase__ , lowercase__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowercase__ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( lowercase__ , lowercase__ , lowercase__ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowercase__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowercase__ ) ) return is_binary_search_tree_recursive_check(lowercase__ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[str] =[ 'good first issue', 'feature request', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Any = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Any = g.get_repo('''huggingface/accelerate''' ) __SCREAMING_SNAKE_CASE : int = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = comments[0] if len(lowercase__ ) > 0 else None __SCREAMING_SNAKE_CASE : Tuple = dt.utcnow() __SCREAMING_SNAKE_CASE : Tuple = (current_time - issue.updated_at).days __SCREAMING_SNAKE_CASE : str = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Optional[int] ={'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] =[ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCAmelCase : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : str ={ 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''falcon''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] def __init__( self :Any , lowerCAmelCase__ :Union[str, Any]=65_024 , lowerCAmelCase__ :Optional[Any]=4_544 , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Union[str, Any]=71 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Optional[int]=0.02 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :int=0.0 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :Tuple=11 , lowerCAmelCase__ :List[Any]=11 , **lowerCAmelCase__ :Union[str, Any] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size # Backward compatibility with n_embed kwarg __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''n_embed''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = hidden_size if n_embed is None else n_embed __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : str = layer_norm_epsilon __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = use_cache __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout __SCREAMING_SNAKE_CASE : List[Any] = attention_dropout __SCREAMING_SNAKE_CASE : List[Any] = bos_token_id __SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads if num_kv_heads is None else num_kv_heads __SCREAMING_SNAKE_CASE : Dict = alibi __SCREAMING_SNAKE_CASE : Any = new_decoder_architecture __SCREAMING_SNAKE_CASE : Union[str, Any] = multi_query # Ignored when new_decoder_architecture is True __SCREAMING_SNAKE_CASE : Dict = parallel_attn __SCREAMING_SNAKE_CASE : List[str] = bias super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :Any ) -> Dict: return self.hidden_size // self.num_attention_heads @property def __magic_name__( self :Tuple ) -> List[str]: return not self.alibi
9
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :NestedDataStructureLike[PathLike] , lowerCAmelCase__ :Optional[NamedSplit] = None , lowerCAmelCase__ :Optional[Features] = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :Optional[int] , ) -> Tuple: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[str] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} __SCREAMING_SNAKE_CASE : int = Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Dict ) -> Tuple: # Build iterable dataset if self.streaming: __SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Tuple = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
9
1
class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = name __SCREAMING_SNAKE_CASE : Any = value __SCREAMING_SNAKE_CASE : List[Any] = weight def __repr__( self :List[Any] ) -> List[str]: return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def __magic_name__( self :Union[str, Any] ) -> List[str]: return self.value def __magic_name__( self :Any ) -> Dict: return self.name def __magic_name__( self :str ) -> int: return self.weight def __magic_name__( self :Optional[int] ) -> Tuple: return self.value / self.weight def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(lowercase__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = sorted(lowercase__ , key=lowercase__ , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = 0.0, 0.0 for i in range(len(lowercase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
9
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) return image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 364 if '''coco''' in model_name else 224 __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=lowercase__ , text_config=lowercase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __SCREAMING_SNAKE_CASE : str = tokenizer('''\n''' , add_special_tokens=lowercase__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_blipa_config(lowercase__ , eos_token_id=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : int = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __SCREAMING_SNAKE_CASE : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('''Done!''' ) # update state dict keys __SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) if key.startswith('''Qformer.bert''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5''' , '''language''' ) __SCREAMING_SNAKE_CASE : Tuple = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE : List[str] = load_demo_image() __SCREAMING_SNAKE_CASE : Any = vis_processors['''eval'''](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase__ ) # create processor __SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowercase__ , return_tensors='''pt''' ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __SCREAMING_SNAKE_CASE : Dict = hf_model(lowercase__ , lowercase__ ).logits else: __SCREAMING_SNAKE_CASE : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_model(lowercase__ , lowercase__ , labels=lowercase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase__ ) else: # cast to same type __SCREAMING_SNAKE_CASE : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) , lowercase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowercase__ , return_tensors='''pt''' ).input_ids.to(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate( lowercase__ , lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[1] __SCREAMING_SNAKE_CASE : Any = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() __lowerCAmelCase : Tuple =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
from math import factorial def _UpperCamelCase ( lowercase__ = 20 ): __SCREAMING_SNAKE_CASE : Dict = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __SCREAMING_SNAKE_CASE : str = n // 2 return int(factorial(lowercase__ ) / (factorial(lowercase__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: __lowerCAmelCase : Optional[int] =int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
9
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : str ={ 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =['OwlViTFeatureExtractor'] __lowerCAmelCase : str =['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __lowerCAmelCase : Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' __lowerCAmelCase : Any ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' __lowerCAmelCase : Optional[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = 0.0 for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0 __SCREAMING_SNAKE_CASE : str = n_correct / len(lowerCAmelCase__ ) return { "accuracy": accuracy, }
9
1
import random def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = False ): __SCREAMING_SNAKE_CASE : dict = {i: [] for i in range(lowercase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowercase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if random.random() < probability: graph[i].append(lowercase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowercase__ ) return graph def _UpperCamelCase ( lowercase__ ): return { i: [j for j in range(lowercase__ ) if i != j] for i in range(lowercase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = CTRLTokenizer SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : List[str] = False def __magic_name__( self :List[Any] ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE : Any = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Dict = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __SCREAMING_SNAKE_CASE : Optional[int] = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def __magic_name__( self :List[str] , **lowerCAmelCase__ :int ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[Any] = '''adapt react readapt apt''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''adapt react readapt apt''' return input_text, output_text def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE : Optional[int] = '''adapt react readapt apt''' __SCREAMING_SNAKE_CASE : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __SCREAMING_SNAKE_CASE : str = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ )
9
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCAmelCase : str =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ['''input_features''', '''is_longer'''] def __init__( self :Union[str, Any] , lowerCAmelCase__ :int=64 , lowerCAmelCase__ :Tuple=48_000 , lowerCAmelCase__ :List[str]=480 , lowerCAmelCase__ :Optional[Any]=10 , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :float = 0 , lowerCAmelCase__ :float = 14_000 , lowerCAmelCase__ :int = None , lowerCAmelCase__ :str = "fusion" , lowerCAmelCase__ :str = "repeatpad" , **lowerCAmelCase__ :List[Any] , ) -> Tuple: super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[Any] = top_db __SCREAMING_SNAKE_CASE : Union[str, Any] = truncation __SCREAMING_SNAKE_CASE : List[Any] = padding __SCREAMING_SNAKE_CASE : Any = fft_window_size __SCREAMING_SNAKE_CASE : List[Any] = (fft_window_size >> 1) + 1 __SCREAMING_SNAKE_CASE : Dict = hop_length __SCREAMING_SNAKE_CASE : List[Any] = max_length_s __SCREAMING_SNAKE_CASE : Optional[Any] = max_length_s * sampling_rate __SCREAMING_SNAKE_CASE : Any = sampling_rate __SCREAMING_SNAKE_CASE : Tuple = frequency_min __SCREAMING_SNAKE_CASE : Optional[int] = frequency_max __SCREAMING_SNAKE_CASE : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm=lowerCAmelCase__ , mel_scale='''htk''' , ) __SCREAMING_SNAKE_CASE : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm='''slaney''' , mel_scale='''slaney''' , ) def __magic_name__( self :Any ) -> Dict[str, Any]: __SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :np.array , lowerCAmelCase__ :Optional[np.array] = None ) -> np.ndarray: __SCREAMING_SNAKE_CASE : Optional[Any] = spectrogram( lowerCAmelCase__ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase__ , log_mel='''dB''' , ) return log_mel_spectrogram.T def __magic_name__( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __SCREAMING_SNAKE_CASE : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __SCREAMING_SNAKE_CASE : Tuple = [0] # randomly choose index for each part __SCREAMING_SNAKE_CASE : int = np.random.choice(ranges[0] ) __SCREAMING_SNAKE_CASE : Dict = np.random.choice(ranges[1] ) __SCREAMING_SNAKE_CASE : Tuple = np.random.choice(ranges[2] ) __SCREAMING_SNAKE_CASE : List[str] = mel[idx_front : idx_front + chunk_frames, :] __SCREAMING_SNAKE_CASE : Tuple = mel[idx_middle : idx_middle + chunk_frames, :] __SCREAMING_SNAKE_CASE : List[str] = mel[idx_back : idx_back + chunk_frames, :] __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(mel[None, None, :] ) __SCREAMING_SNAKE_CASE : Tuple = torch.nn.functional.interpolate( lowerCAmelCase__ , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = mel_shrink[0][0].numpy() __SCREAMING_SNAKE_CASE : Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :np.array , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Tuple ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __SCREAMING_SNAKE_CASE : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) - max_length __SCREAMING_SNAKE_CASE : int = np.random.randint(0 , overflow + 1 ) __SCREAMING_SNAKE_CASE : int = waveform[idx : idx + max_length] __SCREAMING_SNAKE_CASE : List[Any] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __SCREAMING_SNAKE_CASE : Union[str, Any] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters ) __SCREAMING_SNAKE_CASE : Tuple = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __SCREAMING_SNAKE_CASE : str = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __SCREAMING_SNAKE_CASE : Dict = np.stack([mel, mel, mel, mel] , axis=0 ) __SCREAMING_SNAKE_CASE : int = False else: __SCREAMING_SNAKE_CASE : List[Any] = self._random_mel_fusion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: __SCREAMING_SNAKE_CASE : List[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __SCREAMING_SNAKE_CASE : Optional[int] = int(max_length / len(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = np.stack(np.tile(lowerCAmelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __SCREAMING_SNAKE_CASE : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = np.stack(np.tile(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : str = np.pad(lowerCAmelCase__ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __SCREAMING_SNAKE_CASE : Optional[Any] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters ) __SCREAMING_SNAKE_CASE : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __SCREAMING_SNAKE_CASE : Dict = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self :Tuple , lowerCAmelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ :str = None , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ :Dict , ) -> BatchFeature: __SCREAMING_SNAKE_CASE : Tuple = truncation if truncation is not None else self.truncation __SCREAMING_SNAKE_CASE : Dict = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : int = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __SCREAMING_SNAKE_CASE : int = [ self._get_input_mel(lowerCAmelCase__ , max_length if max_length else self.nb_max_samples , lowerCAmelCase__ , lowerCAmelCase__ ) for waveform in raw_speech ] __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Tuple = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __SCREAMING_SNAKE_CASE : int = np.random.randint(0 , len(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : str = True if isinstance(input_mel[0] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : int = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __SCREAMING_SNAKE_CASE : str = [[longer] for longer in is_longer] __SCREAMING_SNAKE_CASE : Dict = {'''input_features''': input_mel, '''is_longer''': is_longer} __SCREAMING_SNAKE_CASE : Union[str, Any] = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : Optional[int] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
9
from __future__ import annotations import bisect def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[Any] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): if hi < 0: __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) while lo < hi: __SCREAMING_SNAKE_CASE : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE : Any = mid + 1 else: __SCREAMING_SNAKE_CASE : Optional[int] = mid return lo def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_left(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = -1 ): sorted_collection.insert(bisect_right(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) , lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[Any] = len(lowercase__ ) - 1 while left <= right: __SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 __SCREAMING_SNAKE_CASE : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE : int = midpoint - 1 else: __SCREAMING_SNAKE_CASE : Dict = midpoint + 1 return None def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = bisect.bisect_left(lowercase__ , lowercase__ ) if index != len(lowercase__ ) and sorted_collection[index] == item: return index return None def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if right < left: return None __SCREAMING_SNAKE_CASE : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowercase__ , lowercase__ , lowercase__ , midpoint - 1 ) else: return binary_search_by_recursion(lowercase__ , lowercase__ , midpoint + 1 , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : Dict =input('Enter numbers separated by comma:\n').strip() __lowerCAmelCase : str =sorted(int(item) for item in user_input.split(',')) __lowerCAmelCase : Tuple =int(input('Enter a single number to be found in the list:\n')) __lowerCAmelCase : Tuple =binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
9
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=7 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :Dict=30 , lowerCAmelCase__ :Tuple=400 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''shortest_edge''': 18} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def __magic_name__( self :Tuple ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VivitImageProcessor if is_vision_available() else None def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def __magic_name__( self :int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :str ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :Any ) -> List[str]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''bit''' SCREAMING_SNAKE_CASE__ : Tuple = ['''preactivation''', '''bottleneck'''] SCREAMING_SNAKE_CASE__ : List[str] = ['''SAME''', '''VALID'''] def __init__( self :str , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :str=[256, 512, 1_024, 2_048] , lowerCAmelCase__ :List[str]=[3, 4, 6, 3] , lowerCAmelCase__ :str="preactivation" , lowerCAmelCase__ :str="relu" , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :Union[str, Any]=32 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Optional[int]=None , **lowerCAmelCase__ :Union[str, Any] , ) -> Optional[Any]: super().__init__(**lowerCAmelCase__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __SCREAMING_SNAKE_CASE : Tuple = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) __SCREAMING_SNAKE_CASE : Optional[int] = num_channels __SCREAMING_SNAKE_CASE : str = embedding_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes __SCREAMING_SNAKE_CASE : Union[str, Any] = depths __SCREAMING_SNAKE_CASE : Tuple = layer_type __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = global_padding __SCREAMING_SNAKE_CASE : Optional[int] = num_groups __SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate __SCREAMING_SNAKE_CASE : Tuple = embedding_dynamic_padding __SCREAMING_SNAKE_CASE : Union[str, Any] = output_stride __SCREAMING_SNAKE_CASE : List[str] = width_factor __SCREAMING_SNAKE_CASE : List[Any] = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
9
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
1
from cva import destroyAllWindows, imread, imshow, waitKey def _UpperCamelCase ( lowercase__ ): # getting number of pixels in the image __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowercase__ ): for j in range(lowercase__ ): __SCREAMING_SNAKE_CASE : int = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __lowerCAmelCase : Optional[Any] =imread('image_data/lena.jpg', 1) # convert to its negative __lowerCAmelCase : Union[str, Any] =convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
9
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCAmelCase : List[Any] ='\\n Text data.\n Second line of data.' __lowerCAmelCase : Tuple ='file' @pytest.fixture(scope='''session''' ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __SCREAMING_SNAKE_CASE : Union[str, Any] = bytes(lowercase__ , '''utf-8''' ) with zstd.open(lowercase__ , '''wb''' ) as f: f.write(lowercase__ ) return path @pytest.fixture def _UpperCamelCase ( lowercase__ ): with open(os.path.join(tmpfs.local_root_dir , lowercase__ ) , '''w''' ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __SCREAMING_SNAKE_CASE : str = input_paths[compression_format] __SCREAMING_SNAKE_CASE : Tuple = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE : Any = DownloadConfig(cache_dir=lowercase__ , extract_compressed_file=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = cached_path(lowercase__ , download_config=lowercase__ ) with open(lowercase__ ) as f: __SCREAMING_SNAKE_CASE : Any = f.read() with open(lowercase__ ) as f: __SCREAMING_SNAKE_CASE : int = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = '''custom_cache''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''custom_extracted_dir''' __SCREAMING_SNAKE_CASE : int = tmp_path / '''custom_extracted_path''' if default_extracted: __SCREAMING_SNAKE_CASE : List[Any] = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , lowercase__ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase__ ) ) __SCREAMING_SNAKE_CASE : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __SCREAMING_SNAKE_CASE : int = xz_file __SCREAMING_SNAKE_CASE : int = ( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[int] = cached_path(lowercase__ , download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def _UpperCamelCase ( lowercase__ ): # absolute path __SCREAMING_SNAKE_CASE : Dict = str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path __SCREAMING_SNAKE_CASE : str = str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def _UpperCamelCase ( lowercase__ ): # absolute path __SCREAMING_SNAKE_CASE : int = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path __SCREAMING_SNAKE_CASE : Dict = '''./__missing_file__.txt''' with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowercase__ ) as f: __SCREAMING_SNAKE_CASE : Tuple = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase__ ) def _UpperCamelCase ( ): with pytest.raises(lowercase__ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase__ ): http_get('''https://huggingface.co''' , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase__ ): ftp_get('''ftp://huggingface.co''' , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : str = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase__ ): fsspec_get('''s3://huggingface.co''' , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head('''s3://huggingface.co''' )
9
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __lowerCAmelCase : Union[str, Any] ={ '<': operator.lt, '<=': operator.le, '==': operator.eq, '!=': operator.ne, '>=': operator.ge, '>': operator.gt, } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowercase__ ) , version.parse(lowercase__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def _UpperCamelCase ( lowercase__ , lowercase__ = None ): __SCREAMING_SNAKE_CASE : Union[str, Any] = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , lowercase__ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = requirement, None, None else: __SCREAMING_SNAKE_CASE : List[Any] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : Optional[int] = want_full.split(''',''' ) # there could be multiple requirements __SCREAMING_SNAKE_CASE : Optional[Any] = {} for w in want_range: __SCREAMING_SNAKE_CASE : Any = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , lowercase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = match[0] __SCREAMING_SNAKE_CASE : List[Any] = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE : Optional[Any] = '''.'''.join([str(lowercase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE : Optional[int] = importlib.metadata.version(lowercase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowercase__ , lowercase__ )
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : Union[str, Any] ={ 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =[ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] __lowerCAmelCase : List[str] =[ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] __lowerCAmelCase : str =[ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): __lowerCAmelCase : str =[ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = 0.00 __SCREAMING_SNAKE_CASE : List[str] = 0 for resistor in resistors: if resistor <= 0: __SCREAMING_SNAKE_CASE : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = 0.00 __SCREAMING_SNAKE_CASE : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __SCREAMING_SNAKE_CASE : Tuple = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
9
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=True , lowercase__="pt" ): __SCREAMING_SNAKE_CASE : List[str] = {'''add_prefix_space''': True} if isinstance(lowercase__ , lowercase__ ) and not line.startswith(''' ''' ) else {} __SCREAMING_SNAKE_CASE : str = padding_side return tokenizer( [line] , max_length=lowercase__ , padding='''max_length''' if pad_to_max_length else None , truncation=lowercase__ , return_tensors=lowercase__ , add_special_tokens=lowercase__ , **lowercase__ , ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=None , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(lowercase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any]="train" , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[str]=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[Any]="" , ) -> str: super().__init__() __SCREAMING_SNAKE_CASE : Dict = Path(lowerCAmelCase__ ).joinpath(type_path + '''.source''' ) __SCREAMING_SNAKE_CASE : Dict = Path(lowerCAmelCase__ ).joinpath(type_path + '''.target''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_char_lens(self.src_file ) __SCREAMING_SNAKE_CASE : int = max_source_length __SCREAMING_SNAKE_CASE : Dict = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' __SCREAMING_SNAKE_CASE : Any = tokenizer __SCREAMING_SNAKE_CASE : Dict = prefix if n_obs is not None: __SCREAMING_SNAKE_CASE : List[str] = self.src_lens[:n_obs] __SCREAMING_SNAKE_CASE : Dict = src_lang __SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang def __len__( self :List[Any] ) -> List[str]: return len(self.src_lens ) def __getitem__( self :Union[str, Any] , lowerCAmelCase__ :str ) -> Dict[str, torch.Tensor]: __SCREAMING_SNAKE_CASE : Any = index + 1 # linecache starts at 1 __SCREAMING_SNAKE_CASE : Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip('''\n''' ) __SCREAMING_SNAKE_CASE : str = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __SCREAMING_SNAKE_CASE : List[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer __SCREAMING_SNAKE_CASE : Optional[int] = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , '''right''' ) __SCREAMING_SNAKE_CASE : str = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , '''right''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = source_inputs['''input_ids'''].squeeze() __SCREAMING_SNAKE_CASE : List[str] = target_inputs['''input_ids'''].squeeze() __SCREAMING_SNAKE_CASE : Tuple = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __magic_name__( lowerCAmelCase__ :List[Any] ) -> Optional[int]: return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def __magic_name__( self :Any , lowerCAmelCase__ :Tuple ) -> Dict[str, torch.Tensor]: __SCREAMING_SNAKE_CASE : int = torch.stack([x['''input_ids'''] for x in batch] ) __SCREAMING_SNAKE_CASE : Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) __SCREAMING_SNAKE_CASE : List[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) __SCREAMING_SNAKE_CASE : Any = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __lowerCAmelCase : Optional[int] =getLogger(__name__) def _UpperCamelCase ( lowercase__ ): return list(itertools.chain.from_iterable(lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = get_git_info() save_json(lowercase__ , os.path.join(lowercase__ , '''git_log.json''' ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=4 , **lowercase__ ): with open(lowercase__ , '''w''' ) as f: json.dump(lowercase__ , lowercase__ , indent=lowercase__ , **lowercase__ ) def _UpperCamelCase ( lowercase__ ): with open(lowercase__ ) as f: return json.load(lowercase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = git.Repo(search_parent_directories=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = { '''repo_id''': str(lowercase__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def _UpperCamelCase ( lowercase__ , lowercase__ ): return list(map(lowercase__ , lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ ): with open(lowercase__ , '''wb''' ) as f: return pickle.dump(lowercase__ , lowercase__ ) def _UpperCamelCase ( lowercase__ ): def remove_articles(lowercase__ ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , lowercase__ ) def white_space_fix(lowercase__ ): return " ".join(text.split() ) def remove_punc(lowercase__ ): __SCREAMING_SNAKE_CASE : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase__ ) ) ) ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = normalize_answer(lowercase__ ).split() __SCREAMING_SNAKE_CASE : Optional[int] = normalize_answer(lowercase__ ).split() __SCREAMING_SNAKE_CASE : Union[str, Any] = Counter(lowercase__ ) & Counter(lowercase__ ) __SCREAMING_SNAKE_CASE : str = sum(common.values() ) if num_same == 0: return 0 __SCREAMING_SNAKE_CASE : Tuple = 1.0 * num_same / len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 * num_same / len(lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = (2 * precision * recall) / (precision + recall) return fa def _UpperCamelCase ( lowercase__ , lowercase__ ): return normalize_answer(lowercase__ ) == normalize_answer(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__ ): assert len(lowercase__ ) == len(lowercase__ ) __SCREAMING_SNAKE_CASE : str = 0 for hypo, pred in zip(lowercase__ , lowercase__ ): em += exact_match_score(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: em /= len(lowercase__ ) return {"em": em} def _UpperCamelCase ( lowercase__ ): return model_prefix.startswith('''rag''' ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __SCREAMING_SNAKE_CASE : List[str] = '''dropout_rate''' for p in extra_params: if getattr(lowercase__ , lowercase__ , lowercase__ ): if not hasattr(lowercase__ , lowercase__ ) and not hasattr(lowercase__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowercase__ ) ) delattr(lowercase__ , lowercase__ ) continue __SCREAMING_SNAKE_CASE : int = p if hasattr(lowercase__ , lowercase__ ) else equivalent_param[p] setattr(lowercase__ , lowercase__ , getattr(lowercase__ , lowercase__ ) ) delattr(lowercase__ , lowercase__ ) return hparams, config
9
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=7 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Optional[int]=18 , lowerCAmelCase__ :Dict=30 , lowerCAmelCase__ :Tuple=400 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {'''shortest_edge''': 18} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[Any] = batch_size __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution __SCREAMING_SNAKE_CASE : Any = max_resolution __SCREAMING_SNAKE_CASE : List[Any] = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : List[str] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def __magic_name__( self :Tuple ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VivitImageProcessor if is_vision_available() else None def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def __magic_name__( self :int ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :str ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __magic_name__( self :Any ) -> List[str]: # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for video in video_inputs: self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
9
1
import logging import os import threading import time try: import warnings except ImportError: __lowerCAmelCase : List[str] =None try: import msvcrt except ImportError: __lowerCAmelCase : List[Any] =None try: import fcntl except ImportError: __lowerCAmelCase : str =None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __lowerCAmelCase : int =OSError # Data # ------------------------------------------------ __lowerCAmelCase : List[Any] =[ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] __lowerCAmelCase : Dict ='3.0.12' __lowerCAmelCase : Dict =None def _UpperCamelCase ( ): global _logger __SCREAMING_SNAKE_CASE : Dict = _logger or logging.getLogger(__name__ ) return _logger class _lowercase ( A__ ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = lock_file return None def __str__( self :Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = lock return None def __enter__( self :List[str] ) -> int: return self.lock def __exit__( self :Union[str, Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> str: self.lock.release() return None class _lowercase : '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Any=-1 , lowerCAmelCase__ :List[Any]=None ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __SCREAMING_SNAKE_CASE : Optional[int] = self.hash_filename_if_too_long(lowerCAmelCase__ , lowerCAmelCase__ ) # The path to the lock file. __SCREAMING_SNAKE_CASE : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __SCREAMING_SNAKE_CASE : Any = None # The default timeout value. __SCREAMING_SNAKE_CASE : Union[str, Any] = timeout # We use this lock primarily for the lock counter. __SCREAMING_SNAKE_CASE : Any = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __SCREAMING_SNAKE_CASE : Any = 0 return None @property def __magic_name__( self :Union[str, Any] ) -> Dict: return self._lock_file @property def __magic_name__( self :Union[str, Any] ) -> int: return self._timeout @timeout.setter def __magic_name__( self :Any , lowerCAmelCase__ :str ) -> Any: __SCREAMING_SNAKE_CASE : int = float(lowerCAmelCase__ ) return None def __magic_name__( self :List[Any] ) -> List[str]: raise NotImplementedError() def __magic_name__( self :int ) -> int: raise NotImplementedError() @property def __magic_name__( self :List[Any] ) -> Union[str, Any]: return self._lock_file_fd is not None def __magic_name__( self :str , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :int=0.05 ) -> int: # Use the default timeout, if no timeout is provided. if timeout is None: __SCREAMING_SNAKE_CASE : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __SCREAMING_SNAKE_CASE : Tuple = id(self ) __SCREAMING_SNAKE_CASE : Dict = self._lock_file __SCREAMING_SNAKE_CASE : int = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCAmelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __SCREAMING_SNAKE_CASE : Union[str, Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __magic_name__( self :Dict , lowerCAmelCase__ :Any=False ) -> Tuple: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __SCREAMING_SNAKE_CASE : Any = id(self ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() __SCREAMING_SNAKE_CASE : Any = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self :Tuple ) -> List[Any]: self.acquire() return self def __exit__( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] ) -> int: self.release() return None def __del__( self :Union[str, Any] ) -> Any: self.release(force=lowerCAmelCase__ ) return None def __magic_name__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : str = os.path.basename(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > max_length and max_length > 0: __SCREAMING_SNAKE_CASE : str = os.path.dirname(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = str(hash(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = filename[: max_length - len(lowerCAmelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) else: return path class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :Optional[int]=None ) -> List[Any]: from .file_utils import relative_to_absolute_path super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __SCREAMING_SNAKE_CASE : Dict = os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : List[str] = fd return None def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = self._lock_file_fd __SCREAMING_SNAKE_CASE : int = None msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCAmelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _lowercase ( A__ ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str]=-1 , lowerCAmelCase__ :Optional[Any]=None ) -> Any: __SCREAMING_SNAKE_CASE : Dict = os.statvfs(os.path.dirname(lowerCAmelCase__ ) ).f_namemax super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ ) def __magic_name__( self :Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC __SCREAMING_SNAKE_CASE : Union[str, Any] = os.open(self._lock_file , lowerCAmelCase__ ) try: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : str = fd return None def __magic_name__( self :Tuple ) -> Optional[int]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __SCREAMING_SNAKE_CASE : int = self._lock_file_fd __SCREAMING_SNAKE_CASE : List[str] = None fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) os.close(lowerCAmelCase__ ) return None class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :Tuple ) -> int: __SCREAMING_SNAKE_CASE : List[str] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __SCREAMING_SNAKE_CASE : int = os.open(self._lock_file , lowerCAmelCase__ ) except OSError: pass else: __SCREAMING_SNAKE_CASE : int = fd return None def __magic_name__( self :List[Any] ) -> Optional[int]: os.close(self._lock_file_fd ) __SCREAMING_SNAKE_CASE : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __lowerCAmelCase : Optional[int] =None if msvcrt: __lowerCAmelCase : str =WindowsFileLock elif fcntl: __lowerCAmelCase : Union[str, Any] =UnixFileLock else: __lowerCAmelCase : Union[str, Any] =SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
9
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = parent def __magic_name__( self :List[Any] ) -> Tuple: return {} def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __SCREAMING_SNAKE_CASE : str = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = MarkupLMFeatureExtractionTester(self ) @property def __magic_name__( self :Any ) -> Optional[Any]: return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__( self :Optional[int] ) -> Any: # Initialize feature_extractor __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class() # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = get_html_strings()[0] __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : str = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __SCREAMING_SNAKE_CASE : List[str] = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = get_html_strings() __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ ) # fmt: off __SCREAMING_SNAKE_CASE : int = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __SCREAMING_SNAKE_CASE : str = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
9
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : List[str] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} __lowerCAmelCase : Union[str, Any] ={ 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } __lowerCAmelCase : List[str] ={ 'allenai/longformer-base-4096': 4_0_9_6, 'allenai/longformer-large-4096': 4_0_9_6, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_0_9_6, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_0_9_6, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : Tuple = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ , lowercase__ ) ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = set() __SCREAMING_SNAKE_CASE : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : List[str] = char return pairs class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any]="replace" , lowerCAmelCase__ :Union[str, Any]="<s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :str="</s>" , lowerCAmelCase__ :Any="<s>" , lowerCAmelCase__ :Optional[Any]="<unk>" , lowerCAmelCase__ :Tuple="<pad>" , lowerCAmelCase__ :Optional[Any]="<mask>" , lowerCAmelCase__ :Any=False , **lowerCAmelCase__ :str , ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE : Any = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : List[Any] = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : str = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE : List[Any] = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE : Any = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __magic_name__( self :Tuple ) -> List[Any]: return len(self.encoder ) def __magic_name__( self :Dict ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Any ) -> Dict: if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : str = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = bigram __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : List[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = ''' '''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = word return word def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) return bpe_tokens def __magic_name__( self :Dict , lowerCAmelCase__ :Dict ) -> int: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__( self :int , lowerCAmelCase__ :List[str] ) -> int: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = ''''''.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE : Tuple = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__( self :Any , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__( self :str , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__( self :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str]=False , **lowerCAmelCase__ :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : int = ''' ''' + text return (text, kwargs)
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
from math import factorial def _UpperCamelCase ( lowercase__ = 100 ): return sum(int(lowercase__ ) for x in str(factorial(lowercase__ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
9
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): if isinstance(lowercase__ , lowercase__ ) and isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = len(set_a.intersection(lowercase__ ) ) if alternative_union: __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) + len(lowercase__ ) else: __SCREAMING_SNAKE_CASE : int = len(set_a.union(lowercase__ ) ) return intersection / union if isinstance(lowercase__ , (list, tuple) ) and isinstance(lowercase__ , (list, tuple) ): __SCREAMING_SNAKE_CASE : Dict = [element for element in set_a if element in set_b] if alternative_union: __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) + len(lowercase__ ) return len(lowercase__ ) / union else: __SCREAMING_SNAKE_CASE : Tuple = set_a + [element for element in set_b if element not in set_a] return len(lowercase__ ) / len(lowercase__ ) return len(lowercase__ ) / len(lowercase__ ) return None if __name__ == "__main__": __lowerCAmelCase : List[Any] ={'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : Optional[Any] ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
9
1
from __future__ import annotations from typing import Any def _UpperCamelCase ( lowercase__ ): if not postfix_notation: return 0 __SCREAMING_SNAKE_CASE : Dict = {'''+''', '''-''', '''*''', '''/'''} __SCREAMING_SNAKE_CASE : list[Any] = [] for token in postfix_notation: if token in operations: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowercase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __lowerCAmelCase : Optional[int] ='\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __lowerCAmelCase : Optional[Any] ='\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __lowerCAmelCase : Dict ='\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _UpperCamelCase ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = simple_accuracy(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = np.array(lowercase__ ) __SCREAMING_SNAKE_CASE : str = en_sentvecs.shape[0] # mean centering __SCREAMING_SNAKE_CASE : Tuple = en_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = in_sentvecs - np.mean(lowercase__ , axis=0 ) __SCREAMING_SNAKE_CASE : str = cdist(lowercase__ , lowercase__ , '''cosine''' ) __SCREAMING_SNAKE_CASE : int = np.array(range(lowercase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sim.argsort(axis=1 )[:, :10] __SCREAMING_SNAKE_CASE : str = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Tuple: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> str: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCAmelCase__ , lowerCAmelCase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
9
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _UpperCamelCase ( *lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = list(lowercase__ ) for i in range(len(lowercase__ ) ): __SCREAMING_SNAKE_CASE : str = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(lowercase__ , lowercase__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _UpperCamelCase ( lowercase__ = None , lowercase__ = 128 ): if function is None: return functools.partial(lowercase__ , starting_batch_size=lowercase__ ) __SCREAMING_SNAKE_CASE : str = starting_batch_size def decorator(*lowercase__ , **lowercase__ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : Optional[Any] = list(inspect.signature(lowercase__ ).parameters.keys() ) # Guard against user error if len(lowercase__ ) < (len(lowercase__ ) + 1): __SCREAMING_SNAKE_CASE : List[Any] = ''', '''.join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(lowercase__ , *lowercase__ , **lowercase__ ) except Exception as e: if should_reduce_batch_size(lowercase__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
9
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.normalize(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = nn.functional.normalize(lowercase__ ) return torch.mm(lowercase__ , normalized_text_embeds.t() ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = CLIPConfig SCREAMING_SNAKE_CASE__ : List[str] = ['''CLIPEncoderLayer'''] def __init__( self :str , lowerCAmelCase__ :CLIPConfig ) -> Tuple: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPVisionModel(config.vision_config ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase__ ) @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(lowerCAmelCase__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ).cpu().float().numpy() __SCREAMING_SNAKE_CASE : List[Any] = [] __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : List[str] = special_cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Any = self.special_care_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Union[str, Any] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): __SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() __SCREAMING_SNAKE_CASE : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__ ) result.append(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__( self :Optional[int] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = self.vision_model(lowerCAmelCase__ )[1] # pooled_output __SCREAMING_SNAKE_CASE : List[str] = self.visual_projection(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds ) __SCREAMING_SNAKE_CASE : Optional[int] = cosine_distance(lowerCAmelCase__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __SCREAMING_SNAKE_CASE : List[Any] = 0.0 __SCREAMING_SNAKE_CASE : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) __SCREAMING_SNAKE_CASE : List[str] = special_care * 0.01 __SCREAMING_SNAKE_CASE : int = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __SCREAMING_SNAKE_CASE : Optional[int] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __SCREAMING_SNAKE_CASE : Any = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] =['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowerCAmelCase : Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
1
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowerCAmelCase : List[Any] =datasets.load_iris() __lowerCAmelCase : Tuple =np.array(data['data']) __lowerCAmelCase : Dict =np.array(data['target']) __lowerCAmelCase : List[str] =data['target_names'] __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str =train_test_split(X, y) def _UpperCamelCase ( lowercase__ , lowercase__ ): return np.linalg.norm(np.array(lowercase__ ) - np.array(lowercase__ ) ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ): __SCREAMING_SNAKE_CASE : Optional[int] = zip(lowercase__ , lowercase__ ) # List of distances of all points from the point to be classified __SCREAMING_SNAKE_CASE : Dict = [] for data_point in data: __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __SCREAMING_SNAKE_CASE : int = [i[1] for i in sorted(lowercase__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __SCREAMING_SNAKE_CASE : Any = Counter(lowercase__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1