code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" lowerCamelCase__: Optional[Any] =0 # if input_string is "aba" than new_input_string become "a|b|a" lowerCamelCase__: List[str] ="" lowerCamelCase__: List[str] ="" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowerCamelCase__ , lowerCamelCase__: List[Any] =0, 0 # length[i] shows the length of palindromic substring with center i lowerCamelCase__: Union[str, Any] =[1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string lowerCamelCase__: Tuple =0 for j in range(len(__a ) ): lowerCamelCase__: Tuple =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowerCamelCase__: Union[str, Any] =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowerCamelCase__: Dict =j - k + 1 # noqa: E741 lowerCamelCase__: Union[str, Any] =j + k - 1 # update max_length and start position if max_length < length[j]: lowerCamelCase__: Optional[Any] =length[j] lowerCamelCase__: int =j # create that string lowerCamelCase__: List[str] =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
__A = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "transformers", "onnx"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str) ->Any: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "transformers", "onnx"] def __init__(self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any) ->List[str]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "transformers", "onnx"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->int: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "transformers", "onnx"] def __init__(self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str]) ->int: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "transformers", "onnx"] def __init__(self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]) ->Dict: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int]) ->List[str]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "transformers", "onnx"] def __init__(self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple) ->Dict: '''simple docstring''' requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["torch", "transformers", "onnx"])
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =9 lowerCamelCase__: Union[str, Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: Optional[Any] =kruskal(__a , __a ) lowerCamelCase__: str =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__a ) == sorted(__a )
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( __a = "https://www.worldometers.info/coronavirus" ) -> dict: """simple docstring""" lowerCamelCase__: List[str] =BeautifulSoup(requests.get(__a ).text , "html.parser" ) lowerCamelCase__: List[Any] =soup.findAll("h1" ) lowerCamelCase__: Tuple =soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
from __future__ import annotations __A = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : dict[str, list[str]] , UpperCAmelCase_ : str) ->None: '''simple docstring''' lowerCamelCase__: List[Any] =graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__: dict[str, str | None] ={} lowerCamelCase__: str =source_vertex def SCREAMING_SNAKE_CASE_ (self : Tuple) ->None: '''simple docstring''' lowerCamelCase__: str ={self.source_vertex} lowerCamelCase__: List[Any] =None lowerCamelCase__: Optional[int] =[self.source_vertex] # first in first out queue while queue: lowerCamelCase__: List[Any] =queue.pop(0) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =vertex queue.append(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__: List[Any] =self.parent.get(UpperCAmelCase_) if target_vertex_parent is None: lowerCamelCase__: int =( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(UpperCAmelCase_) return self.shortest_path(UpperCAmelCase_) + F"""->{target_vertex}""" if __name__ == "__main__": __A = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =torch.exp(__a ) lowerCamelCase__: List[Any] =torch.sum(__a , dim=1 ) # sum of exp(x_i) lowerCamelCase__: Union[str, Any] =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__a ) - B / A class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Dict , UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' super().__init__() lowerCamelCase__: Dict =config.output_attentions lowerCamelCase__: Dict =config.output_hidden_states lowerCamelCase__: List[Any] =nn.ModuleList([BertLayer(UpperCAmelCase_) for _ in range(config.num_hidden_layers)]) lowerCamelCase__: str =nn.ModuleList([BertHighway(UpperCAmelCase_) for _ in range(config.num_hidden_layers)]) lowerCamelCase__: int =[-1 for _ in range(config.num_hidden_layers)] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' if (type(UpperCAmelCase_) is float) or (type(UpperCAmelCase_) is int): for i in range(len(self.early_exit_entropy)): lowerCamelCase__: Optional[int] =x else: lowerCamelCase__: int =x def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , ) ->Dict: '''simple docstring''' lowerCamelCase__: Any =() lowerCamelCase__: Optional[int] =() lowerCamelCase__: Optional[int] =() for i, layer_module in enumerate(self.layer): if self.output_hidden_states: lowerCamelCase__: List[str] =all_hidden_states + (hidden_states,) lowerCamelCase__: List[Any] =layer_module( UpperCAmelCase_ , UpperCAmelCase_ , head_mask[i] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =layer_outputs[0] if self.output_attentions: lowerCamelCase__: Any =all_attentions + (layer_outputs[1],) lowerCamelCase__: str =(hidden_states,) if self.output_hidden_states: lowerCamelCase__: int =current_outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase__: List[Any] =current_outputs + (all_attentions,) lowerCamelCase__: List[str] =self.highway[i](UpperCAmelCase_) # logits, pooled_output if not self.training: lowerCamelCase__: List[Any] =highway_exit[0] lowerCamelCase__: List[str] =entropy(UpperCAmelCase_) lowerCamelCase__: str =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCamelCase__: int =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCamelCase__: Dict =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase_ , i + 1) else: lowerCamelCase__: Optional[int] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCamelCase__: Union[str, Any] =all_hidden_states + (hidden_states,) lowerCamelCase__: List[str] =(hidden_states,) if self.output_hidden_states: lowerCamelCase__: str =outputs + (all_hidden_states,) if self.output_attentions: lowerCamelCase__: Dict =outputs + (all_attentions,) lowerCamelCase__: Any =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: Any =config lowerCamelCase__: Tuple =BertEmbeddings(UpperCAmelCase_) lowerCamelCase__: str =DeeBertEncoder(UpperCAmelCase_) lowerCamelCase__: int =BertPooler(UpperCAmelCase_) self.init_weights() def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' return self.embeddings.word_embeddings def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[str]) ->List[str]: '''simple docstring''' lowerCamelCase__: str =value def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str]) ->List[Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase_) @add_start_docstrings_to_model_forward(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=None , ) ->Optional[Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: lowerCamelCase__: Union[str, Any] =input_ids.size() elif inputs_embeds is not None: lowerCamelCase__: Optional[int] =inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") lowerCamelCase__: Optional[Any] =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCamelCase__: int =torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_) if encoder_attention_mask is None: lowerCamelCase__: List[Any] =torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_) if token_type_ids is None: lowerCamelCase__: Dict =torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCamelCase__: torch.Tensor =self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCamelCase__: Dict =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCamelCase__: Optional[int] =encoder_attention_mask[:, None, None, :] lowerCamelCase__: List[str] =encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility lowerCamelCase__: List[str] =(1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCamelCase__: Optional[Any] =self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers) lowerCamelCase__: int =self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_) lowerCamelCase__: List[Any] =self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) lowerCamelCase__: List[str] =encoder_outputs[0] lowerCamelCase__: Optional[Any] =self.pooler(UpperCAmelCase_) lowerCamelCase__: Optional[int] =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any =message lowerCamelCase__: int =exit_layer # start from 1! class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : int) ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =BertPooler(UpperCAmelCase_) lowerCamelCase__: Optional[int] =nn.Dropout(config.hidden_dropout_prob) lowerCamelCase__: int =nn.Linear(config.hidden_size , config.num_labels) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =encoder_outputs[0] lowerCamelCase__: Optional[int] =self.pooler(UpperCAmelCase_) # "return" pooler_output # BertModel lowerCamelCase__: Union[str, Any] =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCamelCase__: int =bmodel_output[1] lowerCamelCase__: Union[str, Any] =self.dropout(UpperCAmelCase_) lowerCamelCase__: int =self.classifier(UpperCAmelCase_) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =config.num_labels lowerCamelCase__: Tuple =config.num_hidden_layers lowerCamelCase__: Dict =DeeBertModel(UpperCAmelCase_) lowerCamelCase__: Any =nn.Dropout(config.hidden_dropout_prob) lowerCamelCase__: List[Any] =nn.Linear(config.hidden_size , self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=-1 , UpperCAmelCase_ : Optional[int]=False , ) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.num_layers try: lowerCamelCase__: str =self.bert( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCamelCase__: Union[str, Any] =outputs[1] lowerCamelCase__: List[Any] =self.dropout(UpperCAmelCase_) lowerCamelCase__: Dict =self.classifier(UpperCAmelCase_) lowerCamelCase__: int =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCamelCase__: Any =e.message lowerCamelCase__: Dict =e.exit_layer lowerCamelCase__: List[str] =outputs[0] if not self.training: lowerCamelCase__: Optional[Any] =entropy(UpperCAmelCase_) lowerCamelCase__: str =[] lowerCamelCase__: List[str] =[] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCamelCase__: Optional[Any] =MSELoss() lowerCamelCase__: Any =loss_fct(logits.view(-1) , labels.view(-1)) else: lowerCamelCase__: str =CrossEntropyLoss() lowerCamelCase__: Union[str, Any] =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits lowerCamelCase__: Tuple =[] for highway_exit in outputs[-1]: lowerCamelCase__: Optional[Any] =highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase_) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression lowerCamelCase__: int =MSELoss() lowerCamelCase__: int =loss_fct(highway_logits.view(-1) , labels.view(-1)) else: lowerCamelCase__: List[str] =CrossEntropyLoss() lowerCamelCase__: Optional[int] =loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(UpperCAmelCase_) if train_highway: lowerCamelCase__: Optional[int] =(sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: lowerCamelCase__: Any =(loss,) + outputs if not self.training: lowerCamelCase__: List[str] =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCamelCase__: Optional[int] =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' lowerCamelCase__: list[list[Edge]] =[[] for _ in range(UpperCAmelCase_)] lowerCamelCase__: List[Any] =size def __getitem__(self : List[str] , UpperCAmelCase_ : int) ->Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex]) @property def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' return self._size def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1.") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size).") self._graph[from_vertex].append(Edge(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->int | None: '''simple docstring''' lowerCamelCase__: Any =deque([start_vertex]) lowerCamelCase__: list[int | None] =[None] * self.size lowerCamelCase__: List[Any] =0 while queue: lowerCamelCase__: int =queue.popleft() lowerCamelCase__: Dict =distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase__: Optional[Any] =current_distance + edge.weight lowerCamelCase__: Tuple =distances[edge.destination_vertex] if ( isinstance(UpperCAmelCase_ , UpperCAmelCase_) and new_distance >= dest_vertex_distance ): continue lowerCamelCase__: str =new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex.") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" if "model" in orig_key: lowerCamelCase__: Tuple =orig_key.replace("model." , "" ) if "norm1" in orig_key: lowerCamelCase__: Any =orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: lowerCamelCase__: Optional[int] =orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: lowerCamelCase__: Dict =orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: lowerCamelCase__: int =orig_key.split("." )[0].split("_" )[-1] lowerCamelCase__: Dict =orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowerCamelCase__: List[Any] =orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: lowerCamelCase__: str =orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: lowerCamelCase__: int =orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: lowerCamelCase__: Union[str, Any] =orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: lowerCamelCase__: Optional[Any] =orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: lowerCamelCase__: Union[str, Any] =orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: lowerCamelCase__: Tuple =orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: lowerCamelCase__: Union[str, Any] =orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: lowerCamelCase__: Optional[int] =orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: lowerCamelCase__: Any =orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: lowerCamelCase__: Dict ="yoso." + orig_key return orig_key def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Dict =orig_state_dict.pop(__a ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__: Union[str, Any] =val lowerCamelCase__: Optional[Any] =orig_state_dict["cls.predictions.decoder.bias"] lowerCamelCase__: Dict =torch.arange(__a ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =torch.load(__a , map_location="cpu" )["model_state_dict"] lowerCamelCase__: Any =YosoConfig.from_json_file(__a ) lowerCamelCase__: Optional[int] =YosoForMaskedLM(__a ) lowerCamelCase__: Dict =convert_checkpoint_helper(config.max_position_embeddings , __a ) print(model.load_state_dict(__a ) ) model.eval() model.save_pretrained(__a ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CLIPTokenizer lowercase_ = CLIPTokenizerFast lowercase_ = True lowercase_ = {} lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' super().setUp() # fmt: off lowerCamelCase__: str =["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase__: Optional[int] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Dict =["#version: 0.2", "l o", "lo w</w>", "e r</w>"] lowerCamelCase__: List[str] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase_) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : List[str]) ->List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: Optional[Any] ="lower newer" lowerCamelCase__: Optional[Any] ="lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowerCamelCase__: Any ="lower newer" lowerCamelCase__: List[str] =["lo", "w", "er</w>", "n", "e", "w", "er</w>"] lowerCamelCase__: List[str] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[str] =[10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) @require_ftfy def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: Tuple =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: int =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] ="A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." lowerCamelCase__: str =tokenizer_s.tokenize(UpperCAmelCase_) lowerCamelCase__: int =tokenizer_r.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCamelCase__: Optional[int] ="xa\u0303y" + " " + "x\xe3y" lowerCamelCase__: Union[str, Any] =tokenizer_s.tokenize(UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer_r.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # Test that the tokenization is identical on unicode of space type lowerCamelCase__: Tuple =[ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCamelCase__: int =tokenizer_s.tokenize(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer_r.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # Test that the tokenization is identical on unicode of line break type lowerCamelCase__: Tuple =[ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCamelCase__: List[str] =tokenizer_s.tokenize(UpperCAmelCase_) lowerCamelCase__: str =tokenizer_r.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: List[str] ="hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase__: str =F"""{text_of_1_token} {text_of_1_token}""" lowerCamelCase__: int =self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , ) lowerCamelCase__: str =tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) lowerCamelCase__: str =F""" {text}""" lowerCamelCase__: Optional[Any] =self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , ) lowerCamelCase__: Tuple =tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_) + 1, 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' with self.assertRaises(UpperCAmelCase_) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer") self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format.")) @require_ftfy def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' pass
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __A = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __A = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __A = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __A = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __A = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __A = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__(self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Any , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) elif titles is None or texts is None: lowerCamelCase__: Optional[int] =titles if texts is None else texts return super().__call__( UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[str] =titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [titles] lowerCamelCase__: List[str] =texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [texts] lowerCamelCase__: int =len(UpperCAmelCase_) lowerCamelCase__: List[str] =questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [questions] * n_passages if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( F"""There should be as many titles than texts but got {len(UpperCAmelCase_)} titles and {len(UpperCAmelCase_)} texts.""") lowerCamelCase__: int =super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_)["input_ids"] lowerCamelCase__: List[Any] =super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_)["input_ids"] lowerCamelCase__: Any ={ "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_) ] } if return_attention_mask is not False: lowerCamelCase__: Any =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowerCamelCase__: Dict =attention_mask return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : BatchEncoding , UpperCAmelCase_ : DPRReaderOutput , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' lowerCamelCase__: Any =reader_input["input_ids"] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =reader_output[:3] lowerCamelCase__: Optional[int] =len(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =sorted(range(UpperCAmelCase_) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__) lowerCamelCase__: List[DPRReaderOutput] =[] for doc_id in sorted_docs: lowerCamelCase__: Optional[Any] =list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowerCamelCase__: List[str] =sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase__: Optional[Any] =sequence_ids.index(self.pad_token_id) else: lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase_) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' lowerCamelCase__: str =[] for start_index, start_score in enumerate(UpperCAmelCase_): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x[1] , reverse=UpperCAmelCase_) lowerCamelCase__: List[str] =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""") lowerCamelCase__: int =end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""") if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase_) == top_spans: break return chosen_span_intervals @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowercase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = READER_PRETRAINED_INIT_CONFIGURATION lowercase_ = ["input_ids", "attention_mask"]
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) lowercase_ = "CIDAS/clipseg-rd64-refined" lowercase_ = "image_segmenter" lowercase_ = CLIPSegForImageSegmentation lowercase_ = ["image", "text"] lowercase_ = ["image"] def __init__(self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int) ->List[Any]: '''simple docstring''' requires_backends(self , ["vision"]) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str) ->Any: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors="pt") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Any) ->Any: '''simple docstring''' with torch.no_grad(): lowerCamelCase__: List[Any] =self.model(**UpperCAmelCase_).logits return logits def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =outputs.cpu().detach().numpy() lowerCamelCase__: str =0 lowerCamelCase__: Dict =1 return Image.fromarray((array * 255).astype(np.uinta))
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "M-CLIP" def __init__(self : Optional[Any] , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : int=768 , **UpperCAmelCase_ : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =transformerDimSize lowerCamelCase__: Tuple =imageDimSize super().__init__(**UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MCLIPConfig def __init__(self : List[str] , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str =XLMRobertaModel(UpperCAmelCase_) lowerCamelCase__: Any =torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__: str =self.transformer(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)[0] lowerCamelCase__: Optional[int] =(embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(UpperCAmelCase_), embs
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
import os # Precomputes a list of the 100 first triangular numbers __A = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: List[Any] =os.path.dirname(os.path.realpath(__a ) ) lowerCamelCase__: str =os.path.join(__a , "words.txt" ) lowerCamelCase__: List[str] ="" with open(__a ) as f: lowerCamelCase__: Any =f.readline() lowerCamelCase__: List[str] =[word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowerCamelCase__: List[str] =[ word for word in [sum(ord(__a ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__a ) if __name__ == "__main__": print(solution())
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "segformer" def __init__(self : str , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Any=[2, 2, 2, 2] , UpperCAmelCase_ : Dict=[8, 4, 2, 1] , UpperCAmelCase_ : Any=[32, 64, 160, 256] , UpperCAmelCase_ : Dict=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : str=[1, 2, 5, 8] , UpperCAmelCase_ : Optional[Any]=[4, 4, 4, 4] , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=1E-6 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : Union[str, Any]=255 , **UpperCAmelCase_ : Any , ) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCAmelCase_ , ) lowerCamelCase__: List[str] =num_channels lowerCamelCase__: int =num_encoder_blocks lowerCamelCase__: Union[str, Any] =depths lowerCamelCase__: List[Any] =sr_ratios lowerCamelCase__: Union[str, Any] =hidden_sizes lowerCamelCase__: Optional[int] =patch_sizes lowerCamelCase__: str =strides lowerCamelCase__: List[str] =mlp_ratios lowerCamelCase__: Tuple =num_attention_heads lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: List[str] =classifier_dropout_prob lowerCamelCase__: Tuple =initializer_range lowerCamelCase__: List[str] =drop_path_rate lowerCamelCase__: Optional[int] =layer_norm_eps lowerCamelCase__: Optional[int] =decoder_hidden_size lowerCamelCase__: List[Any] =kwargs.get("reshape_last_stage" , UpperCAmelCase_) lowerCamelCase__: List[Any] =semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ (self : int) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->float: '''simple docstring''' return 1E-4 @property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' return 12
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_vision_model" def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=1_408 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Any=39 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Union[str, Any]=224 , UpperCAmelCase_ : Union[str, Any]=14 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Any=0.0_0001 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Dict=1E-1_0 , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : int , ) ->Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Tuple =hidden_size lowerCamelCase__: Tuple =intermediate_size lowerCamelCase__: Optional[Any] =num_hidden_layers lowerCamelCase__: int =num_attention_heads lowerCamelCase__: Any =patch_size lowerCamelCase__: Dict =image_size lowerCamelCase__: int =initializer_range lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: List[str] =layer_norm_eps lowerCamelCase__: Union[str, Any] =hidden_act lowerCamelCase__: str =qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Dict =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Optional[int] =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_qformer" def __init__(self : Union[str, Any] , UpperCAmelCase_ : str=30_522 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[int]=1E-1_2 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[Any]=1_408 , **UpperCAmelCase_ : Any , ) ->str: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =vocab_size lowerCamelCase__: Optional[int] =hidden_size lowerCamelCase__: Any =num_hidden_layers lowerCamelCase__: Optional[int] =num_attention_heads lowerCamelCase__: str =hidden_act lowerCamelCase__: List[Any] =intermediate_size lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: int =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Any =initializer_range lowerCamelCase__: str =layer_norm_eps lowerCamelCase__: Any =position_embedding_type lowerCamelCase__: List[Any] =cross_attention_frequency lowerCamelCase__: Union[str, Any] =encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Tuple =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip-2" lowercase_ = True def __init__(self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=32 , **UpperCAmelCase_ : str) ->int: '''simple docstring''' super().__init__(**UpperCAmelCase_) if vision_config is None: lowerCamelCase__: Any ={} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: lowerCamelCase__: str ={} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: lowerCamelCase__: Union[str, Any] ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") lowerCamelCase__: Dict =BlipaVisionConfig(**UpperCAmelCase_) lowerCamelCase__: List[str] =BlipaQFormerConfig(**UpperCAmelCase_) lowerCamelCase__: Dict =text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase__: List[str] =CONFIG_MAPPING[text_model_type](**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.text_config.tie_word_embeddings lowerCamelCase__: Optional[Any] =self.text_config.is_encoder_decoder lowerCamelCase__: Any =num_query_tokens lowerCamelCase__: List[Any] =self.vision_config.hidden_size lowerCamelCase__: Optional[Any] =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__: List[Any] =1.0 lowerCamelCase__: Dict =0.02 @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[str] , UpperCAmelCase_ : BlipaVisionConfig , UpperCAmelCase_ : BlipaQFormerConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Dict , ) ->int: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =copy.deepcopy(self.__dict__) lowerCamelCase__: Optional[int] =self.vision_config.to_dict() lowerCamelCase__: List[Any] =self.qformer_config.to_dict() lowerCamelCase__: Any =self.text_config.to_dict() lowerCamelCase__: Union[str, Any] =self.__class__.model_type return output
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" while second != 0: lowerCamelCase__: Union[str, Any] =first & second first ^= second lowerCamelCase__: str =c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Enter the first number: ").strip()) __A = int(input("Enter the second number: ").strip()) print(f'{add(first, second) = }')
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: str =[ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: Tuple =emb.weight.shape lowerCamelCase__: Tuple =nn.Linear(__a , __a , bias=__a ) lowerCamelCase__: int =emb.weight.data return lin_layer def lowerCAmelCase_ ( __a , __a=None ) -> Tuple: """simple docstring""" lowerCamelCase__: Optional[Any] ={} for old_key in state_dict.keys(): lowerCamelCase__: List[Any] =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase__: int =key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" ) else: lowerCamelCase__: Optional[Any] =key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: lowerCamelCase__: int =key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: lowerCamelCase__: Tuple =key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: lowerCamelCase__: Tuple =key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: lowerCamelCase__: int =key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: lowerCamelCase__: Optional[int] =key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: lowerCamelCase__: List[str] =key.replace("final_layer_norm" , "ff_layer_norm" ) lowerCamelCase__: List[str] =state_dict[old_key] return new_dict def lowerCAmelCase_ ( __a , __a , __a , __a , __a = WEIGHTS_NAME ) -> List[str]: """simple docstring""" lowerCamelCase__: List[str] =[] lowerCamelCase__: Any =0 os.makedirs(__a , exist_ok=__a ) for expert in range(__a ): lowerCamelCase__: Any =switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(__a ): lowerCamelCase__: Union[str, Any] =torch.load(__a )["model"] remove_ignore_keys_(__a ) lowerCamelCase__: int =rename_fairseq_keys(__a , __a ) lowerCamelCase__: Any =os.path.join( __a , weights_name.replace(".bin" , F"""-{len(__a )+1:05d}-of-???.bin""" ) ) torch.save(__a , __a ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__a )[0]].dtype ) # Add the last block lowerCamelCase__: Optional[int] =os.path.join(__a , weights_name.replace(".bin" , F"""-{len(__a )+1:05d}-of-???.bin""" ) ) lowerCamelCase__: str =torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__a ) lowerCamelCase__: Any =rename_fairseq_keys(__a , __a ) lowerCamelCase__: Optional[Any] =shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__a ) == 1: lowerCamelCase__: Optional[int] =os.path.join(__a , __a ) torch.save(__a , __a ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__a , __a ) # Otherwise, let's build the index lowerCamelCase__: Dict ={} for idx, shard in enumerate(__a ): lowerCamelCase__: str =weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" ) lowerCamelCase__: Optional[Any] =os.path.join(__a , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__a , os.path.join(__a , __a ) ) for key in shard: lowerCamelCase__: List[str] =shard_file # Add the metadata lowerCamelCase__: List[str] ={"total_size": total_size} lowerCamelCase__: List[Any] ={"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__a , __a ) , "w" , encoding="utf-8" ) as f: lowerCamelCase__: str =json.dumps(__a , indent=2 , sort_keys=__a ) + "\n" f.write(__a ) return metadata, index if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) __A = parser.parse_args() __A , __A = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __A = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __A = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __A = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__(self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 8 , **UpperCAmelCase_ : Optional[int] , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Dict =do_rescale lowerCamelCase__: Any =rescale_factor lowerCamelCase__: List[str] =do_pad lowerCamelCase__: List[Any] =pad_size def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str]) ->np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Tuple =get_image_size(UpperCAmelCase_) lowerCamelCase__: Any =(old_height // size + 1) * size - old_height lowerCamelCase__: Optional[int] =(old_width // size + 1) * size - old_width return pad(UpperCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[Any] , ) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: Dict =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: int =do_pad if do_pad is not None else self.do_pad lowerCamelCase__: Dict =pad_size if pad_size is not None else self.pad_size lowerCamelCase__: Any =make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") # All transformations expect numpy arrays. lowerCamelCase__: Dict =[to_numpy_array(UpperCAmelCase_) for image in images] if do_rescale: lowerCamelCase__: str =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_pad: lowerCamelCase__: Tuple =[self.pad(UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] lowerCamelCase__: Tuple =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] lowerCamelCase__: Union[str, Any] ={"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = XGLMConfig lowercase_ = {} lowercase_ = "gelu" def __init__(self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : List[str]=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =parent lowerCamelCase__: int =batch_size lowerCamelCase__: List[str] =seq_length lowerCamelCase__: int =is_training lowerCamelCase__: int =use_input_mask lowerCamelCase__: Tuple =use_labels lowerCamelCase__: Any =vocab_size lowerCamelCase__: Dict =d_model lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Tuple =num_attention_heads lowerCamelCase__: Dict =ffn_dim lowerCamelCase__: Optional[int] =activation_function lowerCamelCase__: str =activation_dropout lowerCamelCase__: int =attention_dropout lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: str =None lowerCamelCase__: List[Any] =0 lowerCamelCase__: str =2 lowerCamelCase__: Union[str, Any] =1 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' return XGLMConfig.from_pretrained("facebook/xglm-564M") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' lowerCamelCase__: Dict =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) lowerCamelCase__: str =None if self.use_input_mask: lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: Dict =self.get_config() lowerCamelCase__: Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: str =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Union[str, Any] =config_and_inputs lowerCamelCase__: str ={ "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowercase_ = (TFXGLMForCausalLM,) if is_tf_available() else () lowercase_ = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =TFXGLMModelTester(self) lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Dict =TFXGLMModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str=True) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Optional[int] =tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCamelCase__: Union[str, Any] =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on lowerCamelCase__: List[str] =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =XGLMTokenizer.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Tuple =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") tf.random.set_seed(0) lowerCamelCase__: Union[str, Any] =tokenizer("Today is a nice day and" , return_tensors="tf") lowerCamelCase__: Dict =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0"): lowerCamelCase__: str =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , seed=[7, 0]) lowerCamelCase__: str =tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M") lowerCamelCase__: Tuple =XGLMTokenizer.from_pretrained("facebook/xglm-564M") lowerCamelCase__: str ="left" # use different length sentences to test batching lowerCamelCase__: List[Any] =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] lowerCamelCase__: Optional[Any] =tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_) lowerCamelCase__: Optional[int] =inputs["input_ids"] lowerCamelCase__: str =model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12) lowerCamelCase__: Tuple =tokenizer(sentences[0] , return_tensors="tf").input_ids lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12) lowerCamelCase__: Optional[Any] =tokenizer(sentences[1] , return_tensors="tf").input_ids lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12) lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =[ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence])
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
def lowerCAmelCase_ ( __a = 1000 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =XLMRobertaModel.from_pretrained("xlm-roberta-base") lowerCamelCase__: int =torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]]) # The dog is cute and lives in the garden house lowerCamelCase__: Optional[Any] =torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase__: str =torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_)["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3)) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =XLMRobertaModel.from_pretrained("xlm-roberta-large") lowerCamelCase__: Tuple =torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]]) # The dog is cute and lives in the garden house lowerCamelCase__: Union[str, Any] =torch.Size((1, 12, 1_024)) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase__: Union[str, Any] =torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCamelCase__: List[Any] =model(UpperCAmelCase_)["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3))
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "philschmid/bart-large-cnn-samsum" lowercase_ = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowercase_ = "summarizer" lowercase_ = AutoTokenizer lowercase_ = AutoModelForSeqaSeqLM lowercase_ = ["text"] lowercase_ = ["text"] def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int) ->Dict: '''simple docstring''' return self.pre_processor(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' return self.model.generate(**UpperCAmelCase_)[0] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' return self.pre_processor.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_)
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if any(not isinstance(__a , __a ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__a ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__a , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A = direct_transformers_import(PATH_TO_TRANSFORMERS) __A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: List[Any] =None # source code of `config_class` lowerCamelCase__: List[str] =inspect.getsource(__a ) lowerCamelCase__: List[Any] =_re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): lowerCamelCase__: int =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCamelCase__: List[str] =F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCamelCase__: str =ckpt_name break return checkpoint def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCamelCase__: List[Any] =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCamelCase__: Union[str, Any] =get_checkpoint_from_config_class(__a ) lowerCamelCase__: Tuple =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: lowerCamelCase__: Tuple ="\n".join(sorted(__a ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __A = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["PerceiverFeatureExtractor"] __A = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any ="ZinengTang/tvlt-base" lowerCamelCase__: Dict =tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ (self : Tuple , **UpperCAmelCase_ : int) ->int: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , **UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_image_processor() lowerCamelCase__: Any =self.get_feature_extractor() lowerCamelCase__: Tuple =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) lowerCamelCase__: Any =TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_image_processor() lowerCamelCase__: Tuple =self.get_feature_extractor() lowerCamelCase__: int =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) lowerCamelCase__: List[Any] =np.ones([12_000]) lowerCamelCase__: Optional[Any] =feature_extractor(UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Dict =processor(audio=UpperCAmelCase_ , return_tensors="np") for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: List[Any] =self.get_feature_extractor() lowerCamelCase__: Any =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) lowerCamelCase__: str =np.ones([3, 224, 224]) lowerCamelCase__: Optional[int] =image_processor(UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Union[str, Any] =processor(images=UpperCAmelCase_ , return_tensors="np") for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Union[str, Any] =self.get_feature_extractor() lowerCamelCase__: Union[str, Any] =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) lowerCamelCase__: Any =np.ones([12_000]) lowerCamelCase__: Any =np.ones([3, 224, 224]) lowerCamelCase__: Union[str, Any] =processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"]) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Dict =self.get_image_processor() lowerCamelCase__: Any =self.get_feature_extractor() lowerCamelCase__: Tuple =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "open-llama" def __init__(self : Dict , UpperCAmelCase_ : Optional[Any]=100_000 , UpperCAmelCase_ : Union[str, Any]=4_096 , UpperCAmelCase_ : Union[str, Any]=11_008 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : str="silu" , UpperCAmelCase_ : Any=2_048 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : int=1E-6 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : int , ) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: int =vocab_size lowerCamelCase__: Dict =max_position_embeddings lowerCamelCase__: str =hidden_size lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Any =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: List[str] =hidden_act lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: str =rms_norm_eps lowerCamelCase__: Tuple =use_cache lowerCamelCase__: str =kwargs.pop( "use_memorry_efficient_attention" , UpperCAmelCase_) lowerCamelCase__: str =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_dropout_prob lowerCamelCase__: Dict =use_stable_embedding lowerCamelCase__: int =shared_input_output_embedding lowerCamelCase__: Dict =rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""") lowerCamelCase__: Any =self.rope_scaling.get("type" , UpperCAmelCase_) lowerCamelCase__: Tuple =self.rope_scaling.get("factor" , UpperCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""") if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
from __future__ import annotations __A = "#" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : str) ->None: '''simple docstring''' lowerCamelCase__: dict ={} def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : str) ->None: '''simple docstring''' lowerCamelCase__: List[Any] =self._trie for char in text: if char not in trie: lowerCamelCase__: Optional[int] ={} lowerCamelCase__: str =trie[char] lowerCamelCase__: Optional[int] =True def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str) ->tuple | list: '''simple docstring''' lowerCamelCase__: Tuple =self._trie for char in prefix: if char in trie: lowerCamelCase__: int =trie[char] else: return [] return self._elements(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : dict) ->tuple: '''simple docstring''' lowerCamelCase__: List[Any] =[] for c, v in d.items(): lowerCamelCase__: int =[" "] if c == END else [(c + s) for s in self._elements(UpperCAmelCase_)] result.extend(UpperCAmelCase_) return tuple(UpperCAmelCase_) __A = Trie() __A = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def lowerCAmelCase_ ( __a ) -> tuple: """simple docstring""" lowerCamelCase__: Tuple =trie.find_word(__a ) return tuple(string + word for word in suffixes ) def lowerCAmelCase_ ( ) -> None: """simple docstring""" print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["pixel_values"] def __init__(self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =size if size is not None else {"shortest_edge": 224} lowerCamelCase__: Optional[Any] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) lowerCamelCase__: Optional[int] =crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase__: Tuple =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ , param_name="crop_size") lowerCamelCase__: Union[str, Any] =do_resize lowerCamelCase__: Union[str, Any] =size lowerCamelCase__: Any =resample lowerCamelCase__: List[str] =do_center_crop lowerCamelCase__: List[Any] =crop_size lowerCamelCase__: List[str] =do_rescale lowerCamelCase__: List[str] =rescale_factor lowerCamelCase__: str =do_normalize lowerCamelCase__: Tuple =image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__: List[Any] =image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__: int =do_convert_rgb def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: List[str] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") lowerCamelCase__: Optional[int] =get_resize_output_image_size(UpperCAmelCase_ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase_) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ) ->np.ndarray: '''simple docstring''' lowerCamelCase__: int =get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(UpperCAmelCase_ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->int: '''simple docstring''' return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ) ->np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ) ->PIL.Image.Image: '''simple docstring''' lowerCamelCase__: Tuple =do_resize if do_resize is not None else self.do_resize lowerCamelCase__: List[Any] =size if size is not None else self.size lowerCamelCase__: List[Any] =get_size_dict(UpperCAmelCase_ , param_name="size" , default_to_square=UpperCAmelCase_) lowerCamelCase__: Any =resample if resample is not None else self.resample lowerCamelCase__: Any =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__: Any =crop_size if crop_size is not None else self.crop_size lowerCamelCase__: Union[str, Any] =get_size_dict(UpperCAmelCase_ , param_name="crop_size" , default_to_square=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__: List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__: int =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__: Optional[Any] =image_mean if image_mean is not None else self.image_mean lowerCamelCase__: Optional[int] =image_std if image_std is not None else self.image_std lowerCamelCase__: Dict =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__: Dict =make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__: List[Any] =[convert_to_rgb(UpperCAmelCase_) for image in images] # All transformations expect numpy arrays. lowerCamelCase__: str =[to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: lowerCamelCase__: Union[str, Any] =[self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_center_crop: lowerCamelCase__: Optional[Any] =[self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images] if do_rescale: lowerCamelCase__: Any =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images] if do_normalize: lowerCamelCase__: List[str] =[self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images] lowerCamelCase__: List[str] =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] lowerCamelCase__: str ={"pixel_values": images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure)
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : CLIPSegForImageSegmentation , UpperCAmelCase_ : CLIPSegProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ) ->List[Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , "steps_offset") and scheduler.config.steps_offset != 1: lowerCamelCase__: List[str] =( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_) lowerCamelCase__: Tuple =dict(scheduler.config) lowerCamelCase__: List[str] =1 lowerCamelCase__: Optional[int] =FrozenDict(UpperCAmelCase_) if hasattr(scheduler.config , "skip_prk_steps") and scheduler.config.skip_prk_steps is False: lowerCamelCase__: Tuple =( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_) lowerCamelCase__: Optional[int] =dict(scheduler.config) lowerCamelCase__: str =True lowerCamelCase__: Optional[Any] =FrozenDict(UpperCAmelCase_) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( segmentation_model=UpperCAmelCase_ , segmentation_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Union[str, int]] = "auto") ->List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__: Dict =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") lowerCamelCase__: Dict =torch.device("cuda") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' if self.device != torch.device("meta") or not hasattr(self.unet , "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , "_hf_hook") and hasattr(module._hf_hook , "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__(self : int , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : str , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt").to(self.device) lowerCamelCase__: Dict =self.segmentation_model(**UpperCAmelCase_) lowerCamelCase__: Tuple =torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() lowerCamelCase__: List[Any] =self.numpy_to_pil(UpperCAmelCase_)[0].resize(image.size) # Run inpainting pipeline with the generated mask lowerCamelCase__: int =StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , )
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = MobileBertTokenizer lowercase_ = MobileBertTokenizerFast lowercase_ = True lowercase_ = True lowercase_ = filter_non_english lowercase_ = "google/mobilebert-uncased" def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' super().setUp() lowerCamelCase__: Any =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) lowerCamelCase__: str =[ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] ="UNwant\u00E9d,running" lowerCamelCase__: Dict ="unwanted, running" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =self.tokenizer_class(self.vocab_file) lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [9, 6, 7, 12, 10, 11]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__: Tuple =self.get_tokenizer() lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: List[Any] ="UNwant\u00E9d,running" lowerCamelCase__: Optional[Any] =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) # With lower casing lowerCamelCase__: Dict =self.get_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: List[str] =self.get_rust_tokenizer(do_lower_case=UpperCAmelCase_) lowerCamelCase__: Optional[int] ="UNwant\u00E9d,running" lowerCamelCase__: Tuple =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Tuple =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer() lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' lowerCamelCase__: str =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__: Optional[int] ={} for i, token in enumerate(UpperCAmelCase_): lowerCamelCase__: List[str] =i lowerCamelCase__: Optional[int] =WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.get_tokenizer() lowerCamelCase__: Optional[Any] =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: Dict =self.tokenizer_class.from_pretrained("google/mobilebert-uncased") lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: List[str] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[Any] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase__: Any =tokenizer_r.encode_plus( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , ) lowerCamelCase__: Optional[int] =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False lowerCamelCase__: Optional[Any] =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: str =["的", "人", "有"] lowerCamelCase__: Optional[Any] ="".join(UpperCAmelCase_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: str =True lowerCamelCase__: List[str] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[str] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =False lowerCamelCase__: List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__: str =[ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_) ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" if collection == []: return [] # get some information about the collection lowerCamelCase__: List[Any] =len(__a ) lowerCamelCase__: List[str] =max(__a ) lowerCamelCase__: Dict =min(__a ) # create the counting array lowerCamelCase__: Tuple =coll_max + 1 - coll_min lowerCamelCase__: Optional[int] =[0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __a ): lowerCamelCase__: int =counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCamelCase__: Dict =[0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __a ) ): lowerCamelCase__: int =collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" return "".join([chr(__a ) for i in counting_sort([ord(__a ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A = random.Random() def lowerCAmelCase_ ( __a , __a=1.0 , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if rng is None: lowerCamelCase__: Union[str, Any] =global_rng lowerCamelCase__: List[Any] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Dict=2_000 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=16_000 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=True , ) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =parent lowerCamelCase__: int =batch_size lowerCamelCase__: Tuple =min_seq_length lowerCamelCase__: Dict =max_seq_length lowerCamelCase__: Optional[int] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__: Any =feature_size lowerCamelCase__: List[str] =padding_value lowerCamelCase__: Union[str, Any] =sampling_rate lowerCamelCase__: Dict =return_attention_mask lowerCamelCase__: Optional[Any] =do_normalize def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False) ->List[Any]: '''simple docstring''' def _flatten(UpperCAmelCase_ : Optional[int]): return list(itertools.chain(*UpperCAmelCase_)) if equal_length: lowerCamelCase__: List[Any] =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size lowerCamelCase__: Dict =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCamelCase__: List[str] =[np.asarray(UpperCAmelCase_) for x in speech_inputs] return speech_inputs class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = WavaVecaFeatureExtractor def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Any =WavaVecaFeatureExtractionTester(self) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1E-3)) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Any =[np.asarray(UpperCAmelCase_) for speech_input in speech_inputs] # Test not batched input lowerCamelCase__: str =feat_extract(speech_inputs[0] , return_tensors="np").input_values lowerCamelCase__: int =feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test batched lowerCamelCase__: List[str] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test 2-D numpy arrays are batched. lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in (800, 800, 800)] lowerCamelCase__: Union[str, Any] =np.asarray(UpperCAmelCase_) lowerCamelCase__: Optional[int] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: List[Any] =["longest", "max_length", "do_not_pad"] lowerCamelCase__: Optional[Any] =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =feat_extract(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Tuple =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self.assertTrue(input_values[0][800:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self.assertTrue(input_values[0][1_000:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =range(800 , 1_400 , 200) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in lengths] lowerCamelCase__: Any =["longest", "max_length", "do_not_pad"] lowerCamelCase__: int =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =feat_extract(UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_) lowerCamelCase__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Tuple =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="max_length" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Any =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000)) lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=2_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200)) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' import torch lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: int =np.random.rand(100).astype(np.floataa) lowerCamelCase__: Any =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__: str =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) lowerCamelCase__: Any =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCamelCase__: Optional[int] =WavaVecaConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer")
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
import string import numpy def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , __a ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase_ = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 ) lowercase_ = numpy.vectorize(__SCREAMING_SNAKE_CASE ) def __init__(self : Union[str, Any] , UpperCAmelCase_ : numpy.ndarray) ->None: '''simple docstring''' lowerCamelCase__: int =self.modulus(UpperCAmelCase_) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCamelCase__: Dict =encrypt_key.shape[0] def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : str) ->int: '''simple docstring''' return self.key_string.index(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int) ->str: '''simple docstring''' return self.key_string[round(UpperCAmelCase_)] def SCREAMING_SNAKE_CASE_ (self : int) ->None: '''simple docstring''' lowerCamelCase__: str =round(numpy.linalg.det(self.encrypt_key)) if det < 0: lowerCamelCase__: str =det % len(self.key_string) lowerCamelCase__: Optional[int] =len(self.key_string) if greatest_common_divisor(UpperCAmelCase_ , len(self.key_string)) != 1: lowerCamelCase__: Tuple =( F"""determinant modular {req_l} of encryption key({det}) """ F"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: int =[char for char in text.upper() if char in self.key_string] lowerCamelCase__: List[str] =chars[-1] while len(UpperCAmelCase_) % self.break_key != 0: chars.append(UpperCAmelCase_) return "".join(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: Any =self.process_text(text.upper()) lowerCamelCase__: List[str] ="" for i in range(0 , len(UpperCAmelCase_) - self.break_key + 1 , self.break_key): lowerCamelCase__: Union[str, Any] =text[i : i + self.break_key] lowerCamelCase__: Optional[int] =[self.replace_letters(UpperCAmelCase_) for char in batch] lowerCamelCase__: Any =numpy.array([vec]).T lowerCamelCase__: Union[str, Any] =self.modulus(self.encrypt_key.dot(UpperCAmelCase_)).T.tolist()[ 0 ] lowerCamelCase__: Dict ="".join( self.replace_digits(UpperCAmelCase_) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def SCREAMING_SNAKE_CASE_ (self : List[str]) ->numpy.ndarray: '''simple docstring''' lowerCamelCase__: Tuple =round(numpy.linalg.det(self.encrypt_key)) if det < 0: lowerCamelCase__: str =det % len(self.key_string) lowerCamelCase__: Optional[int] =None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: lowerCamelCase__: Optional[int] =i break lowerCamelCase__: str =( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: Any =self.make_decrypt_key() lowerCamelCase__: Any =self.process_text(text.upper()) lowerCamelCase__: Dict ="" for i in range(0 , len(UpperCAmelCase_) - self.break_key + 1 , self.break_key): lowerCamelCase__: List[str] =text[i : i + self.break_key] lowerCamelCase__: List[str] =[self.replace_letters(UpperCAmelCase_) for char in batch] lowerCamelCase__: Dict =numpy.array([vec]).T lowerCamelCase__: Any =self.modulus(decrypt_key.dot(UpperCAmelCase_)).T.tolist()[0] lowerCamelCase__: int ="".join( self.replace_digits(UpperCAmelCase_) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Optional[Any] =int(input("Enter the order of the encryption key: " ) ) lowerCamelCase__: str =[] print("Enter each row of the encryption key with space separated integers" ) for _ in range(__a ): lowerCamelCase__: List[Any] =[int(__a ) for x in input().split()] hill_matrix.append(__a ) lowerCamelCase__: Dict =HillCipher(numpy.array(__a ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowerCamelCase__: List[str] =input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowerCamelCase__: Union[str, Any] =input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(__a ) ) elif option == "2": lowerCamelCase__: Optional[int] =input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(__a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=19 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=None , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Union[str, Any] =seq_length lowerCamelCase__: List[str] =is_training lowerCamelCase__: Optional[int] =use_input_mask lowerCamelCase__: int =use_token_type_ids lowerCamelCase__: int =use_labels lowerCamelCase__: Any =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: Optional[Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: List[Any] =attention_probs_dropout_prob lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: str =type_vocab_size lowerCamelCase__: List[str] =type_sequence_label_size lowerCamelCase__: Dict =initializer_range lowerCamelCase__: Any =num_labels lowerCamelCase__: int =num_choices lowerCamelCase__: Tuple =scope def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: Optional[Any] =None if self.use_input_mask: lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length]) lowerCamelCase__: Optional[int] =None lowerCamelCase__: Optional[int] =None lowerCamelCase__: Any =None if self.use_labels: lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCamelCase__: List[str] =ids_tensor([self.batch_size] , self.num_choices) lowerCamelCase__: Optional[Any] =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCAmelCase_ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =EsmForProteinFolding(config=UpperCAmelCase_).float() model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: str =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(UpperCAmelCase_) lowerCamelCase__: Any =model(UpperCAmelCase_) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3)) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2)) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Optional[Any] =config_and_inputs lowerCamelCase__: Any ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = False lowercase_ = (EsmForProteinFolding,) if is_torch_available() else () lowercase_ = () lowercase_ = {} if is_torch_available() else {} lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =EsmFoldModelTester(self) lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) @unittest.skip("Does not support attention outputs") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' pass @unittest.skip def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing") def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing") def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning.") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning.") def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning.") def SCREAMING_SNAKE_CASE_ (self : Any) ->Any: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning.") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning.") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way.") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way.") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' pass @unittest.skip("ESMFold only has one output format.") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality") def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking.") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.") def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation.") def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation.") def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation.") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' pass @unittest.skip("ESMFold doesn't support data parallel.") def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' pass @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =EsmForProteinFolding.from_pretrained("facebook/esmfold_v1").float() model.eval() lowerCamelCase__: Any =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) lowerCamelCase__: int =model(UpperCAmelCase_)["positions"] lowerCamelCase__: Tuple =torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCAmelCase_ , atol=1E-4))
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ShapEImgaImgPipeline lowercase_ = ["image"] lowercase_ = ["image"] lowercase_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowercase_ = False @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: List[str] =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowerCamelCase__: int =CLIPVisionModel(UpperCAmelCase_) return model @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_resize=UpperCAmelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Union[str, Any] ={ "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowerCamelCase__: Tuple =PriorTransformer(**UpperCAmelCase_) return model @property def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' torch.manual_seed(0) lowerCamelCase__: Any ={ "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowerCamelCase__: Optional[Any] =ShapERenderer(**UpperCAmelCase_) return model def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.dummy_prior lowerCamelCase__: Optional[Any] =self.dummy_image_encoder lowerCamelCase__: Optional[int] =self.dummy_image_processor lowerCamelCase__: Tuple =self.dummy_renderer lowerCamelCase__: Any =HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=UpperCAmelCase_ , clip_sample=UpperCAmelCase_ , clip_sample_range=1.0 , ) lowerCamelCase__: str ={ "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=0) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_) if str(UpperCAmelCase_).startswith("mps"): lowerCamelCase__: int =torch.manual_seed(UpperCAmelCase_) else: lowerCamelCase__: int =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) lowerCamelCase__: str ={ "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] ="cpu" lowerCamelCase__: int =self.get_dummy_components() lowerCamelCase__: int =self.pipeline_class(**UpperCAmelCase_) lowerCamelCase__: List[str] =pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: int =pipe(**self.get_dummy_inputs(UpperCAmelCase_)) lowerCamelCase__: int =output.images[0] lowerCamelCase__: Tuple =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase__: Dict =np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =torch_device == "cpu" lowerCamelCase__: List[str] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.get_dummy_components() lowerCamelCase__: List[Any] =self.pipeline_class(**UpperCAmelCase_) lowerCamelCase__: List[str] =pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: List[Any] =1 lowerCamelCase__: int =2 lowerCamelCase__: Tuple =self.get_dummy_inputs(UpperCAmelCase_) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase__: Dict =batch_size * [inputs[key]] lowerCamelCase__: Dict =pipe(**UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png") lowerCamelCase__: Tuple =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy") lowerCamelCase__: str =ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img") lowerCamelCase__: int =pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) lowerCamelCase__: int =torch.Generator(device=UpperCAmelCase_).manual_seed(0) lowerCamelCase__: Any =pipe( UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_)
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = MODEL_FOR_MASKED_LM_MAPPING lowercase_ = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf") lowerCamelCase__: List[Any] =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser"}, ] , ) lowerCamelCase__: List[str] =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser", }, ] , ) lowerCamelCase__: List[str] =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt") lowerCamelCase__: Tuple =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"}, ] , ) lowerCamelCase__: str =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"}, ] , ) lowerCamelCase__: str =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-0_5, "token": 2_941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"}, ] , ) lowerCamelCase__: Dict =unmasker("My name is <mask> <mask>" , top_k=2) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ [ { "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt") # convert model to fp16 pipe.model.half() lowerCamelCase__: str =pipe("Paris is the [MASK] of France.") # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Any =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt") self.run_large_test(UpperCAmelCase_) @slow @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf") self.run_large_test(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1_573, "token_str": " Chris"}, ] , ) lowerCamelCase__: Tuple =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2_201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12_790, "token_str": " Lyon", }, ] , ) lowerCamelCase__: int =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt") lowerCamelCase__: Dict =None lowerCamelCase__: Dict =None self.run_pipeline_test(UpperCAmelCase_ , []) @require_tf def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf") lowerCamelCase__: Any =None lowerCamelCase__: Optional[int] =None self.run_pipeline_test(UpperCAmelCase_ , []) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)") lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Optional[int] =[ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =fill_masker.tokenizer lowerCamelCase__: str =fill_masker.model lowerCamelCase__: Optional[int] =fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: List[Any] =fill_masker([F"""This is a {tokenizer.mask_token}"""]) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Optional[Any] =fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""]) self.assertEqual( UpperCAmelCase_ , [ [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], ] , ) with self.assertRaises(UpperCAmelCase_): fill_masker([None]) # No mask_token is not supported with self.assertRaises(UpperCAmelCase_): fill_masker("This is") self.run_test_top_k(UpperCAmelCase_ , UpperCAmelCase_) self.run_test_targets(UpperCAmelCase_ , UpperCAmelCase_) self.run_test_top_k_targets(UpperCAmelCase_ , UpperCAmelCase_) self.fill_mask_with_duplicate_targets_and_top_k(UpperCAmelCase_ , UpperCAmelCase_) self.fill_mask_with_multiple_masks(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =tokenizer.get_vocab() lowerCamelCase__: Optional[int] =sorted(vocab.keys())[:2] # Pipeline argument lowerCamelCase__: Tuple =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , targets=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""") self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Tuple ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_) lowerCamelCase__: List[str] =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_)) # Call argument lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Optional[int] ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_) lowerCamelCase__: str =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_)) # Score equivalence lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) lowerCamelCase__: str =[top_mask["token_str"] for top_mask in outputs] lowerCamelCase__: Dict =[top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_) == set(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) lowerCamelCase__: Any =[top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) # Raises with invalid with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Optional[int] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[]) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""]) with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , top_k=2) lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""") self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Dict =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =tokenizer.get_vocab() lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) # top_k=2, ntargets=3 lowerCamelCase__: List[str] =sorted(vocab.keys())[:3] lowerCamelCase__: List[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=UpperCAmelCase_) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase__: Union[str, Any] =[el["token_str"] for el in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_).issubset(UpperCAmelCase_): lowerCamelCase__: int =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=UpperCAmelCase_) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase__: Optional[Any] =sorted(vocab.keys())[:3] lowerCamelCase__: Optional[Any] =[targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase__: Union[str, Any] =fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=UpperCAmelCase_ , top_k=10) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCAmelCase_) , 3) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2) self.assertEqual( UpperCAmelCase_ , [ [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], ] , )
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =len(__a ), len(grid[0] ) if ( min(__a , __a ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowerCamelCase__: Dict =0 count += depth_first_search(__a , row + 1 , __a , __a ) count += depth_first_search(__a , row - 1 , __a , __a ) count += depth_first_search(__a , __a , col + 1 , __a ) count += depth_first_search(__a , __a , col - 1 , __a ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __A = None __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __A = { "google/pegasus-xsum": 512, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PegasusTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : int="<mask_2>" , UpperCAmelCase_ : Any="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int=103 , **UpperCAmelCase_ : Dict , ) ->Any: '''simple docstring''' lowerCamelCase__: Dict =offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError( F"""additional_special_tokens should be of type {type(UpperCAmelCase_)}, but is""" F""" {type(UpperCAmelCase_)}""") lowerCamelCase__: Any =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(UpperCAmelCase_) , self.offset - 1) ] if len(set(UpperCAmelCase_)) != len(UpperCAmelCase_): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") lowerCamelCase__: Optional[int] =additional_special_tokens_extended else: lowerCamelCase__: Union[str, Any] =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset)] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =vocab_file lowerCamelCase__: Tuple =False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple) ->int: '''simple docstring''' lowerCamelCase__: Dict =set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens) + 3)): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F""" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}""") return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_): copyfile(self.vocab_file , UpperCAmelCase_) return (out_vocab_file,)
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A = ["text", "image", "audio"] def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Dict =[] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Any =[] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append("text" ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _SCREAMING_SNAKE_CASE : '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs")) self.assertTrue(hasattr(self.tool , "outputs")) lowerCamelCase__: List[Any] =self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) lowerCamelCase__: List[str] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =create_inputs(self.tool.inputs) lowerCamelCase__: Tuple =self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: lowerCamelCase__: Tuple =[outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description")) self.assertTrue(hasattr(self.tool , "default_checkpoint")) self.assertTrue(self.tool.description.startswith("This is a tool that")) def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =create_inputs(self.tool.inputs) lowerCamelCase__: Tuple =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): lowerCamelCase__: Optional[Any] =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =create_inputs(self.tool.inputs) lowerCamelCase__: Union[str, Any] =[] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error lowerCamelCase__: Optional[int] =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
from collections import defaultdict def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" lowerCamelCase__: Union[str, Any] =first_str.lower().strip() lowerCamelCase__: Optional[Any] =second_str.lower().strip() # Remove whitespace lowerCamelCase__: int =first_str.replace(" " , "" ) lowerCamelCase__: int =second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 lowerCamelCase__: defaultdict[str, int] =defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __A = input("Enter the first string ").strip() __A = input("Enter the second string ").strip() __A = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "" lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs def __init__(self : List[str] , UpperCAmelCase_ : Optional[DatasetInfo] = None , UpperCAmelCase_ : Optional[str] = None , **UpperCAmelCase_ : Optional[Any] , ) ->int: '''simple docstring''' super().__init__(self , **UpperCAmelCase_) lowerCamelCase__: List[str] =repo_info lowerCamelCase__: Optional[Any] =token lowerCamelCase__: Optional[Any] =None def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' if self.dir_cache is None: lowerCamelCase__: Any ={} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase__: int ={ "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(UpperCAmelCase_): {"name": str(UpperCAmelCase_), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , **UpperCAmelCase_ : int , ) ->Optional[int]: '''simple docstring''' if not isinstance(self.repo_info , UpperCAmelCase_): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""") lowerCamelCase__: Any =hf_hub_url(self.repo_info.id , UpperCAmelCase_ , revision=self.repo_info.sha) return fsspec.open( UpperCAmelCase_ , mode=UpperCAmelCase_ , headers=get_authentication_headers_for_url(UpperCAmelCase_ , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' self._get_dirs() lowerCamelCase__: List[str] =self._strip_protocol(UpperCAmelCase_) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' self._get_dirs() lowerCamelCase__: List[str] =PurePosixPath(path.strip("/")) lowerCamelCase__: Union[str, Any] ={} for p, f in self.dir_cache.items(): lowerCamelCase__: List[str] =PurePosixPath(p.strip("/")) lowerCamelCase__: List[Any] =p.parent if root == path: lowerCamelCase__: Tuple =f lowerCamelCase__: int =list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __A = HfArgumentParser(InitializationArguments) __A = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __A = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __A = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __A = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __A = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=None , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: List[str] =decoder_seq_length # For common tests lowerCamelCase__: Any =self.decoder_seq_length lowerCamelCase__: Optional[int] =is_training lowerCamelCase__: str =use_attention_mask lowerCamelCase__: Optional[int] =use_labels lowerCamelCase__: int =vocab_size lowerCamelCase__: Optional[int] =d_model lowerCamelCase__: str =d_model lowerCamelCase__: Union[str, Any] =decoder_layers lowerCamelCase__: str =decoder_layers lowerCamelCase__: List[Any] =decoder_ffn_dim lowerCamelCase__: Dict =decoder_attention_heads lowerCamelCase__: Dict =decoder_attention_heads lowerCamelCase__: List[Any] =eos_token_id lowerCamelCase__: Optional[int] =bos_token_id lowerCamelCase__: List[Any] =pad_token_id lowerCamelCase__: Dict =decoder_start_token_id lowerCamelCase__: List[str] =use_cache lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: List[Any] =None lowerCamelCase__: str =decoder_seq_length lowerCamelCase__: int =2 lowerCamelCase__: Dict =1 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: Any =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) lowerCamelCase__: Union[str, Any] =None if self.use_attention_mask: lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2) lowerCamelCase__: int =None if self.use_labels: lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) lowerCamelCase__: Any =TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =True lowerCamelCase__: Optional[int] =TrOCRDecoder(config=UpperCAmelCase_).to(UpperCAmelCase_).eval() lowerCamelCase__: str =input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , use_cache=UpperCAmelCase_) lowerCamelCase__: int =model(UpperCAmelCase_) lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , use_cache=UpperCAmelCase_) self.parent.assertTrue(len(UpperCAmelCase_) == len(UpperCAmelCase_)) self.parent.assertTrue(len(UpperCAmelCase_) == len(UpperCAmelCase_) + 1) lowerCamelCase__: Optional[int] =outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids lowerCamelCase__: List[str] =ids_tensor((2, 1) , config.vocab_size - 1) + 1 # append to next input_ids and lowerCamelCase__: str =torch.cat([input_ids, next_tokens] , dim=-1) lowerCamelCase__: List[Any] =model(UpperCAmelCase_)["last_hidden_state"] lowerCamelCase__: Dict =model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_)["last_hidden_state"] # select random slice lowerCamelCase__: Union[str, Any] =ids_tensor((1,) , output_from_past.shape[-1]).item() lowerCamelCase__: Tuple =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCamelCase__: Dict =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =config_and_inputs lowerCamelCase__: int ={"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowercase_ = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} lowercase_ = True lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase_) lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' pass
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
import os import string import sys __A = 1 << 8 __A = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __A = KEYMAP["up"] __A = KEYMAP["left"] if sys.platform == "win32": __A = [] __A = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __A = ord(str(i)) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" if os.name == "nt": import msvcrt lowerCamelCase__: Dict ="mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__a ) == 0: # Read the keystroke lowerCamelCase__: Any =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase__: Any =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase__: int =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__a ) if ord(__a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase__: Any =chr(KEYMAP["esc"] ) except KeyError: lowerCamelCase__: Optional[Any] =cha[1] else: lowerCamelCase__: Dict =ch.decode(__a ) else: lowerCamelCase__: Tuple =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase__: List[Any] =sys.stdin.fileno() lowerCamelCase__: Dict =termios.tcgetattr(__a ) try: tty.setraw(__a ) lowerCamelCase__: str =sys.stdin.read(1 ) finally: termios.tcsetattr(__a , termios.TCSADRAIN , __a ) return ch def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =get_raw_chars() if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__a ) == KEYMAP["esc"]: lowerCamelCase__: Optional[int] =get_raw_chars() if ord(__a ) == KEYMAP["mod_int"]: lowerCamelCase__: Any =get_raw_chars() if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __A = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowercase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "The input training data file (a text file)."} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' if self.train_file is not None: lowerCamelCase__: int =self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase__: Dict =self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = True lowercase_ = None lowercase_ = None def __call__(self : Union[str, Any] , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' lowerCamelCase__: int ="label" if "label" in features[0].keys() else "labels" lowerCamelCase__: List[Any] =[feature.pop(UpperCAmelCase_) for feature in features] lowerCamelCase__: Any =len(UpperCAmelCase_) lowerCamelCase__: str =len(features[0]["input_ids"]) lowerCamelCase__: int =[ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase_)] for feature in features ] lowerCamelCase__: List[Any] =list(chain(*UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =self.tokenizer.pad( UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten lowerCamelCase__: Optional[Any] ={k: v.view(UpperCAmelCase_ , UpperCAmelCase_ , -1) for k, v in batch.items()} # Add back labels lowerCamelCase__: List[str] =torch.tensor(UpperCAmelCase_ , dtype=torch.intaa) return batch def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , __a , __a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__: int =training_args.get_process_log_level() logger.setLevel(__a ) datasets.utils.logging.set_verbosity(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__: List[str] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__: Optional[Any] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase__: List[Any] ={} if data_args.train_file is not None: lowerCamelCase__: List[Any] =data_args.train_file if data_args.validation_file is not None: lowerCamelCase__: List[Any] =data_args.validation_file lowerCamelCase__: Any =data_args.train_file.split("." )[-1] lowerCamelCase__: Dict =load_dataset( __a , data_files=__a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase__: List[Any] =load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__: Dict =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__: Any =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__: int =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase__: Tuple =[F"""ending{i}""" for i in range(4 )] lowerCamelCase__: Optional[int] ="sent1" lowerCamelCase__: int ="sent2" if data_args.max_seq_length is None: lowerCamelCase__: List[Any] =tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) lowerCamelCase__: Optional[Any] =1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__: int =min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__a ): lowerCamelCase__: str =[[context] * 4 for context in examples[context_name]] lowerCamelCase__: Union[str, Any] =examples[question_header_name] lowerCamelCase__: Any =[ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__a ) ] # Flatten out lowerCamelCase__: Any =list(chain(*__a ) ) lowerCamelCase__: Optional[Any] =list(chain(*__a ) ) # Tokenize lowerCamelCase__: int =tokenizer( __a , __a , truncation=__a , max_length=__a , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__a ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowerCamelCase__: Optional[Any] =raw_datasets["train"] if data_args.max_train_samples is not None: lowerCamelCase__: List[Any] =min(len(__a ) , data_args.max_train_samples ) lowerCamelCase__: List[Any] =train_dataset.select(range(__a ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase__: Union[str, Any] =train_dataset.map( __a , batched=__a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowerCamelCase__: List[str] =raw_datasets["validation"] if data_args.max_eval_samples is not None: lowerCamelCase__: List[Any] =min(len(__a ) , data_args.max_eval_samples ) lowerCamelCase__: List[str] =eval_dataset.select(range(__a ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase__: str =eval_dataset.map( __a , batched=__a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase__: Dict =( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__a , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__a ): lowerCamelCase__ , lowerCamelCase__: str =eval_predictions lowerCamelCase__: Optional[Any] =np.argmax(__a , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase__: List[str] =Trainer( model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__a , data_collator=__a , compute_metrics=__a , ) # Training if training_args.do_train: lowerCamelCase__: Tuple =None if training_args.resume_from_checkpoint is not None: lowerCamelCase__: Any =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__: Optional[Any] =last_checkpoint lowerCamelCase__: List[str] =trainer.train(resume_from_checkpoint=__a ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase__: Any =train_result.metrics lowerCamelCase__: str =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__a ) ) lowerCamelCase__: str =min(__a , len(__a ) ) trainer.log_metrics("train" , __a ) trainer.save_metrics("train" , __a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase__: List[str] =trainer.evaluate() lowerCamelCase__: List[str] =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a ) lowerCamelCase__: List[Any] =min(__a , len(__a ) ) trainer.log_metrics("eval" , __a ) trainer.save_metrics("eval" , __a ) lowerCamelCase__: List[str] ={ "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BioGptTokenizer lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__: Union[str, Any] =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCamelCase__: Dict =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: Tuple =["l o 123", "lo w 1456", "e r</w> 1789", ""] lowerCamelCase__: List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w") as fp: fp.write(json.dumps(UpperCAmelCase_)) with open(self.merges_file , "w") as fp: fp.write("\n".join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] ="lower newer" lowerCamelCase__: Any ="lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =BioGptTokenizer(self.vocab_file , self.merges_file) lowerCamelCase__: Dict ="lower" lowerCamelCase__: Dict =["low", "er</w>"] lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =tokens + ["<unk>"] lowerCamelCase__: Optional[int] =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =BioGptTokenizer.from_pretrained("microsoft/biogpt") lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: int =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "spiece.model"} __A = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } __A = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[Any] , ) ->None: '''simple docstring''' lowerCamelCase__: Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__: Tuple =kwargs.get("name_or_path") if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored") lowerCamelCase__: List[str] ="None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__: str ="<|endoftext|>" if eos_token is None else eos_token lowerCamelCase__: List[str] ="<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__: Optional[Any] =unk_token if pad_token is None else pad_token lowerCamelCase__: Tuple =eos_token if bos_token is None else bos_token else: lowerCamelCase__: List[Any] ="<pad>" if pad_token is None else pad_token lowerCamelCase__: Union[str, Any] ="<s>" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) lowerCamelCase__: Dict =do_lower_case lowerCamelCase__: Optional[Any] =remove_space lowerCamelCase__: Dict =keep_accents lowerCamelCase__: str =vocab_file lowerCamelCase__: str =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase_) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__: Union[str, Any] ={" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__: Optional[int] =re.compile( F"""[{"".join(map(UpperCAmelCase_ , list(range(0 , 9)) + list(range(11 , 32)) + list(range(127 , 160)) + [160, 173, 8_203]))}]""") def __getstate__(self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: str =self.__dict__.copy() lowerCamelCase__: List[Any] =None return state def __setstate__(self : Any , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' lowerCamelCase__: Tuple =d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Optional[int] ={} lowerCamelCase__: List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' return len(self.sp_model) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.non_printing_characters_re.sub("" , UpperCAmelCase_) # Normalize whitespaces lowerCamelCase__: int ="".join([char if char not in self.whitespaces else " " for char in text]) # NFC Unicode normalization lowerCamelCase__: Optional[Any] =unicodedata.normalize("NFC" , UpperCAmelCase_) return text def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , **UpperCAmelCase_ : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =self.preprocess_text(UpperCAmelCase_) return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str) ->int: '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int) ->str: '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase_) @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : str) ->str: '''simple docstring''' return out_string def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Dict =[] lowerCamelCase__: Union[str, Any] ="" lowerCamelCase__: Any =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_) + token lowerCamelCase__: List[Any] =True lowerCamelCase__: Tuple =[] else: current_sub_tokens.append(UpperCAmelCase_) lowerCamelCase__: str =False out_string += self.sp_model.decode(UpperCAmelCase_) return out_string def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict[str, int]: '''simple docstring''' lowerCamelCase__: List[str] ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: int =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Any =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[str, bool] = False) ->Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =self.preprocess_text(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =self.sp_model.encode(UpperCAmelCase_) else: lowerCamelCase__: Any =[self.preprocess_text(UpperCAmelCase_) for t in text] lowerCamelCase__: Tuple =self.sp_model.encode(UpperCAmelCase_) if return_tensors is True or return_tensors == "pt": lowerCamelCase__: List[str] =torch.tensor(UpperCAmelCase_) return token_ids def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[int, List[int]]) ->str: '''simple docstring''' return self.sp_model.decode(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : "Conversation") ->List[int]: '''simple docstring''' lowerCamelCase__: List[Any] =[F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowerCamelCase__: List[str] =( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCAmelCase_) + F"""{self.bos_token}Bot:""" ) return self.encode(text=UpperCAmelCase_)
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "new-model" if is_tf_available(): class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = NewModelConfig @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] ="bert-base-cased" lowerCamelCase__: Tuple =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =TFAutoModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any ="bert-base-cased" lowerCamelCase__: Tuple =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Optional[int] =TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: List[Any] =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Any =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->int: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: Optional[int] =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Dict =TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: List[str] =TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: str =TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: List[str] =TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCamelCase__: Dict =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Dict =TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any: '''simple docstring''' for model_name in ["bert-base-uncased"]: lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_tensorflow_probability def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: lowerCamelCase__: Tuple =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: List[str] =TFAutoModelForTableQuestionAnswering.from_pretrained( UpperCAmelCase_ , output_loading_info=UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: Dict =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(model.num_parameters() , 14_410) self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str: '''simple docstring''' lowerCamelCase__: Tuple =TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: str =copy.deepcopy(model.config) lowerCamelCase__: Dict =["FunnelBaseModel"] lowerCamelCase__: List[Any] =TFAutoModel.from_config(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_) lowerCamelCase__: List[Any] =TFAutoModel.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' try: AutoConfig.register("new-model" , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(UpperCAmelCase_): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_): auto_class.register(UpperCAmelCase_ , UpperCAmelCase_) # Now that the config is registered, it can be used as any other config with the auto-API lowerCamelCase__: Tuple =BertModelTester(self).get_config() lowerCamelCase__: List[str] =NewModelConfig(**tiny_config.to_dict()) lowerCamelCase__: List[Any] =auto_class.from_config(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase_) lowerCamelCase__: Tuple =auto_class.from_pretrained(UpperCAmelCase_) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier"): lowerCamelCase__: Optional[Any] =TFAutoModel.from_pretrained("bert-base") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): lowerCamelCase__: Optional[int] =TFAutoModel.from_pretrained(UpperCAmelCase_ , revision="aaaaaa") def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): lowerCamelCase__: Union[str, Any] =TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' with self.assertRaisesRegex(UpperCAmelCase_ , "Use `from_pt=True` to load this model"): lowerCamelCase__: List[Any] =TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: lowerCamelCase__: List[str] =TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint lowerCamelCase__: Optional[int] =TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") with RequestCounter() as counter: lowerCamelCase__: List[Any] =TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __A = logging.get_logger(__name__) # General docstring __A = "MobileNetV1Config" # Base docstring __A = "google/mobilenet_v1_1.0_224" __A = [1, 1024, 7, 7] # Image classification docstring __A = "google/mobilenet_v1_1.0_224" __A = "tabby, tabby cat" __A = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase_ ( __a , __a , __a=None ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: List[str] ={} if isinstance(__a , __a ): lowerCamelCase__: Tuple =model.mobilenet_va else: lowerCamelCase__: List[str] =model lowerCamelCase__: Union[str, Any] ="MobilenetV1/Conv2d_0/" lowerCamelCase__: Tuple =backbone.conv_stem.convolution.weight lowerCamelCase__: List[Any] =backbone.conv_stem.normalization.bias lowerCamelCase__: Union[str, Any] =backbone.conv_stem.normalization.weight lowerCamelCase__: Optional[Any] =backbone.conv_stem.normalization.running_mean lowerCamelCase__: Optional[Any] =backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCamelCase__: str =i + 1 lowerCamelCase__: List[Any] =i * 2 lowerCamelCase__: Dict =backbone.layer[pt_index] lowerCamelCase__: Union[str, Any] =F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowerCamelCase__: Union[str, Any] =pointer.convolution.weight lowerCamelCase__: Union[str, Any] =pointer.normalization.bias lowerCamelCase__: Dict =pointer.normalization.weight lowerCamelCase__: Tuple =pointer.normalization.running_mean lowerCamelCase__: Optional[Any] =pointer.normalization.running_var lowerCamelCase__: Optional[Any] =backbone.layer[pt_index + 1] lowerCamelCase__: Tuple =F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowerCamelCase__: Tuple =pointer.convolution.weight lowerCamelCase__: str =pointer.normalization.bias lowerCamelCase__: int =pointer.normalization.weight lowerCamelCase__: Optional[int] =pointer.normalization.running_mean lowerCamelCase__: Union[str, Any] =pointer.normalization.running_var if isinstance(__a , __a ): lowerCamelCase__: Tuple ="MobilenetV1/Logits/Conv2d_1c_1x1/" lowerCamelCase__: List[Any] =model.classifier.weight lowerCamelCase__: int =model.classifier.bias return tf_to_pt_map def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowerCamelCase__: Optional[Any] =tf.train.list_variables(__a ) lowerCamelCase__: Optional[int] ={} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) lowerCamelCase__: Optional[Any] =tf.train.load_variable(__a , __a ) lowerCamelCase__: List[str] =array # Build TF to PyTorch weights loading map lowerCamelCase__: Dict =_build_tf_to_pytorch_map(__a , __a , __a ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue lowerCamelCase__: Optional[int] =tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowerCamelCase__: Dict =np.transpose(__a , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase__: Optional[Any] =array.squeeze().transpose() else: lowerCamelCase__: Dict =np.transpose(__a , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) lowerCamelCase__: str =torch.from_numpy(__a ) tf_weights.pop(__a , __a ) tf_weights.pop(name + "/RMSProp" , __a ) tf_weights.pop(name + "/RMSProp_1" , __a ) tf_weights.pop(name + "/ExponentialMovingAverage" , __a ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def lowerCAmelCase_ ( __a , __a ) -> torch.Tensor: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =features.shape[-2:] lowerCamelCase__ , lowerCamelCase__: List[str] =conv_layer.stride lowerCamelCase__ , lowerCamelCase__: Dict =conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase__: Optional[int] =max(kernel_height - stride_height , 0 ) else: lowerCamelCase__: Dict =max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCamelCase__: int =max(kernel_width - stride_width , 0 ) else: lowerCamelCase__: str =max(kernel_width - (in_width % stride_width) , 0 ) lowerCamelCase__: Tuple =pad_along_width // 2 lowerCamelCase__: Optional[int] =pad_along_width - pad_left lowerCamelCase__: Dict =pad_along_height // 2 lowerCamelCase__: int =pad_along_height - pad_top lowerCamelCase__: List[str] =(pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__a , __a , "constant" , 0.0 ) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool or str] = True , ) ->None: '''simple docstring''' super().__init__() lowerCamelCase__: Any =config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""") if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""") lowerCamelCase__: Optional[int] =0 if config.tf_padding else int((kernel_size - 1) / 2) lowerCamelCase__: Any =nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="zeros" , ) if use_normalization: lowerCamelCase__: Optional[Any] =nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: lowerCamelCase__: Any =None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_): lowerCamelCase__: Dict =ACTaFN[config.hidden_act] else: lowerCamelCase__: List[str] =config.hidden_act else: lowerCamelCase__: Optional[int] =None def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : torch.Tensor) ->torch.Tensor: '''simple docstring''' if self.config.tf_padding: lowerCamelCase__: Union[str, Any] =apply_tf_padding(UpperCAmelCase_ , self.convolution) lowerCamelCase__: str =self.convolution(UpperCAmelCase_) if self.normalization is not None: lowerCamelCase__: Optional[int] =self.normalization(UpperCAmelCase_) if self.activation is not None: lowerCamelCase__: Any =self.activation(UpperCAmelCase_) return features class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = MobileNetVaConfig lowercase_ = load_tf_weights_in_mobilenet_va lowercase_ = "mobilenet_v1" lowercase_ = "pixel_values" lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[nn.Linear, nn.Convad]) ->None: '''simple docstring''' if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) __A = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : bool = True) ->str: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: Optional[int] =config lowerCamelCase__: Optional[int] =32 lowerCamelCase__: Optional[int] =max(int(depth * config.depth_multiplier) , config.min_depth) lowerCamelCase__: Optional[Any] =MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) lowerCamelCase__: int =[1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase__: Tuple =nn.ModuleList() for i in range(13): lowerCamelCase__: Dict =out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase__: Tuple =max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , )) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , )) lowerCamelCase__: str =nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int) ->Any: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' lowerCamelCase__: Optional[int] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase__: str =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") lowerCamelCase__: str =self.conv_stem(UpperCAmelCase_) lowerCamelCase__: str =() if output_hidden_states else None for i, layer_module in enumerate(self.layer): lowerCamelCase__: int =layer_module(UpperCAmelCase_) if output_hidden_states: lowerCamelCase__: str =all_hidden_states + (hidden_states,) lowerCamelCase__: Tuple =hidden_states if self.pooler is not None: lowerCamelCase__: List[Any] =torch.flatten(self.pooler(UpperCAmelCase_) , start_dim=1) else: lowerCamelCase__: Optional[Any] =None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : MobileNetVaConfig) ->None: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: List[str] =config.num_labels lowerCamelCase__: List[Any] =MobileNetVaModel(UpperCAmelCase_) lowerCamelCase__: List[Any] =self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase__: Any =nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =nn.Linear(UpperCAmelCase_ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' lowerCamelCase__: Any =return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase__: Optional[Any] =self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =outputs.pooler_output if return_dict else outputs[1] lowerCamelCase__: Optional[int] =self.classifier(self.dropout(UpperCAmelCase_)) lowerCamelCase__: Any =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase__: Optional[int] ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase__: Any ="single_label_classification" else: lowerCamelCase__: Any ="multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase__: List[str] =MSELoss() if self.num_labels == 1: lowerCamelCase__: Union[str, Any] =loss_fct(logits.squeeze() , labels.squeeze()) else: lowerCamelCase__: Union[str, Any] =loss_fct(UpperCAmelCase_ , UpperCAmelCase_) elif self.config.problem_type == "single_label_classification": lowerCamelCase__: Optional[Any] =CrossEntropyLoss() lowerCamelCase__: List[Any] =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": lowerCamelCase__: str =BCEWithLogitsLoss() lowerCamelCase__: int =loss_fct(UpperCAmelCase_ , UpperCAmelCase_) if not return_dict: lowerCamelCase__: List[Any] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =[[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase__: Any =DisjunctiveConstraint(UpperCAmelCase_) self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase_)) with self.assertRaises(UpperCAmelCase_): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(UpperCAmelCase_): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: str =[[1, 2], [1, 2, 3, 4]] with self.assertRaises(UpperCAmelCase_): DisjunctiveConstraint(UpperCAmelCase_) # fails here def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =[[1, 2, 3], [1, 2, 4]] lowerCamelCase__: List[Any] =DisjunctiveConstraint(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(1) lowerCamelCase__: str =stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase_) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =dc.update(2) lowerCamelCase__: Optional[Any] =stepped is True and completed is False and reset is False self.assertTrue(UpperCAmelCase_) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =dc.update(3) lowerCamelCase__: Tuple =stepped is True and completed is True and reset is False self.assertTrue(UpperCAmelCase_) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' lowerCamelCase__: List[str] =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase__: Dict =DisjunctiveConstraint(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" lowerCamelCase__: Any =math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__a ) def lowerCAmelCase_ ( __a = 1 / 12345 ) -> int: """simple docstring""" lowerCamelCase__: Union[str, Any] =0 lowerCamelCase__: List[Any] =0 lowerCamelCase__: str =3 while True: lowerCamelCase__: Optional[int] =(integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__a ): lowerCamelCase__: List[Any] =int(__a ) total_partitions += 1 if check_partition_perfect(__a ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__a ) integer += 1 if __name__ == "__main__": print(f'{solution() = }')
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if n == 1 or not isinstance(__a , __a ): return 0 elif n == 2: return 1 else: lowerCamelCase__: Optional[int] =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Any =0 lowerCamelCase__: List[str] =2 while digits < n: index += 1 lowerCamelCase__: Union[str, Any] =len(str(fibonacci(__a ) ) ) return index def lowerCAmelCase_ ( __a = 1000 ) -> int: """simple docstring""" return fibonacci_digits_index(__a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
def lowerCAmelCase_ ( __a ) -> list[list]: """simple docstring""" lowerCamelCase__: str =current_set.copy() for row_index, row in enumerate(__a ): lowerCamelCase__: Tuple =row[0] for column_index, column in enumerate(__a ): if magnitude == 0: lowerCamelCase__: Optional[int] =column continue lowerCamelCase__: Any =column / magnitude # Subtract to cancel term lowerCamelCase__: List[str] =current_set[0] lowerCamelCase__: str =[first_row] lowerCamelCase__: Optional[Any] =current_set[1::] for row in current_set: lowerCamelCase__: Dict =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__a ) continue for column_index in range(len(__a ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__a ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowerCamelCase__: int =final_set[0] lowerCamelCase__: List[Any] =[] lowerCamelCase__: Optional[int] =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowerCamelCase__: int =simplify(__a ) for i in range(len(__a ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __a ) lowerCamelCase__: int =resultant return final_set def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if len(__a ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) lowerCamelCase__: Dict =len(__a ) + 1 if any(len(__a ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(__a , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(__a ) == 1: return [equations[0][-1] / equations[0][0]] lowerCamelCase__: Optional[Any] =equations.copy() if any(0 in row for row in data_set ): lowerCamelCase__: Tuple =data_set.copy() lowerCamelCase__: Optional[Any] =[] for row_index, row in enumerate(__a ): if 0 not in row: lowerCamelCase__: Optional[int] =data_set.pop(__a ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , __a ) lowerCamelCase__: str =data_set.copy() lowerCamelCase__: List[str] =simplify(__a ) lowerCamelCase__: Union[str, Any] =simplified[::-1] lowerCamelCase__: list =[] for row in simplified: lowerCamelCase__: Tuple =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowerCamelCase__: List[str] =row.copy()[: len(__a ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__a ) == 0: solutions.append(0 ) continue lowerCamelCase__: List[str] =temp_row[1::] lowerCamelCase__: int =temp_row[::-1] for column_index, column in enumerate(__a ): current_solution -= column * solutions[column_index] solutions.append(__a ) lowerCamelCase__: int =[] for item in solutions: final.append(float(round(__a , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __A = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Optional[Any] =argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=__a , default=__a , required=__a , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=__a , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=__a , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=__a , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=__a , default=0 , help="cuda_id." , ) lowerCamelCase__: Union[str, Any] =parser.parse_args() return args def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" if not len(__a ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) lowerCamelCase__ , lowerCamelCase__: Optional[int] =imgs[0].size lowerCamelCase__: Tuple =Image.new("RGB" , size=(cols * w, rows * h) ) lowerCamelCase__ , lowerCamelCase__: Tuple =grid.size for i, img in enumerate(__a ): grid.paste(__a , box=(i % cols * w, i // cols * h) ) return grid def lowerCAmelCase_ ( __a , __a="robotic cat with wings" , __a=7.5 , __a=50 , __a=1 , __a=42 , ) -> str: """simple docstring""" lowerCamelCase__: List[str] =torch.Generator(pipeline.device ).manual_seed(__a ) lowerCamelCase__: List[Any] =pipeline( __a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images lowerCamelCase__: List[str] =int(math.sqrt(__a ) ) lowerCamelCase__: Dict =image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __A = parse_args() # Load models and create wrapper for stable diffusion __A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") __A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") __A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") __A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") __A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): __A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: __A = unet.to(torch.device("cuda", args.cuda_id)) __A = pipeline.to(unet.device) __A , __A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) __A = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[Any]=6 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=1_000 , ) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Any =is_training lowerCamelCase__: Any =use_input_mask lowerCamelCase__: Optional[Any] =use_token_type_ids lowerCamelCase__: Optional[int] =use_labels lowerCamelCase__: str =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: str =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Any =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: List[Any] =attention_probs_dropout_prob lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: int =type_vocab_size lowerCamelCase__: int =type_sequence_label_size lowerCamelCase__: int =initializer_range lowerCamelCase__: Optional[int] =num_labels lowerCamelCase__: Optional[int] =scope lowerCamelCase__: Dict =range_bbox def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__: Any =bbox[i, j, 3] lowerCamelCase__: Any =bbox[i, j, 1] lowerCamelCase__: List[str] =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__: Dict =bbox[i, j, 2] lowerCamelCase__: Any =bbox[i, j, 0] lowerCamelCase__: Any =t lowerCamelCase__: List[Any] =None if self.use_input_mask: lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) lowerCamelCase__: List[str] =None if self.use_token_type_ids: lowerCamelCase__: List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowerCamelCase__: Dict =None lowerCamelCase__: List[Any] =None if self.use_labels: lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCamelCase__: List[Any] =self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , ) ->Dict: '''simple docstring''' lowerCamelCase__: Any =LiltModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , ) ->Any: '''simple docstring''' lowerCamelCase__: str =self.num_labels lowerCamelCase__: Optional[int] =LiltForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , ) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =LiltForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Optional[int] =config_and_inputs lowerCamelCase__: str ={ "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int) ->Optional[Any]: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =LiltModelTester(self) lowerCamelCase__: int =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]: '''simple docstring''' lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__: int =type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: int =LiltModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @require_torch @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: str =LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.tensor([[1, 2]] , device=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_) # forward pass with torch.no_grad(): lowerCamelCase__: Optional[Any] =model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =torch.Size([1, 2, 768]) lowerCamelCase__: List[str] =torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3))
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if not isinstance(__a , __a ): raise TypeError("only integers accepted as input" ) else: lowerCamelCase__: Tuple =str(abs(__a ) ) lowerCamelCase__: Union[str, Any] =[list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int("".join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __A = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def lowerCAmelCase_ ( __a=True ) -> int: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__SCREAMING_SNAKE_CASE ) ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = None lowercase_ = None def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: lowerCamelCase__: List[str] =dataset_module_factory(UpperCAmelCase_ , cache_dir=UpperCAmelCase_) lowerCamelCase__: List[Any] =import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_) lowerCamelCase__: DatasetBuilder =builder_cls( cache_dir=UpperCAmelCase_ , config_name=UpperCAmelCase_ , hash=dataset_module.hash , ) lowerCamelCase__: int ="/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCAmelCase_).replace(os.sep , "/"), config.DATASET_INFO_FILENAME, ]) lowerCamelCase__: str =cached_path(UpperCAmelCase_ , cache_dir=UpperCAmelCase_) self.assertTrue(os.path.exists(UpperCAmelCase_)) @pytest.mark.integration def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: int =tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" lowerCamelCase__: List[str] =dataset_module_factory("wikipedia" , cache_dir=__a ) lowerCamelCase__: Optional[Any] =import_main_class(dataset_module.module_path ) lowerCamelCase__: DatasetBuilder =builder_cls( cache_dir=__a , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCamelCase__: Union[str, Any] =None builder_instance.download_and_prepare() lowerCamelCase__: int =builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: int =dataset_module_factory("wikipedia" , cache_dir=__a ) lowerCamelCase__: Dict =import_main_class(dataset_module.module_path , dataset=__a ) lowerCamelCase__: DatasetBuilder =builder_cls( cache_dir=__a , config_name="20220301.frr" , hash=dataset_module.hash , ) lowerCamelCase__: Tuple =builder_instance.as_streaming_dataset() assert ds assert isinstance(__a , __a ) assert "train" in ds assert isinstance(ds["train"] , __a ) assert next(iter(ds["train"] ) )
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
import sys from collections import defaultdict class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Dict) ->int: '''simple docstring''' lowerCamelCase__: Optional[Any] =[] def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' return self.node_position[vertex] def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =pos def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]) ->Any: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCamelCase__: Any =2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCamelCase__: List[Any] =2 * start + 1 else: lowerCamelCase__: Optional[int] =2 * start + 2 if heap[smallest_child] < heap[start]: lowerCamelCase__ , lowerCamelCase__: Tuple =heap[smallest_child], positions[smallest_child] lowerCamelCase__ , lowerCamelCase__: Tuple =( heap[start], positions[start], ) lowerCamelCase__ , lowerCamelCase__: Dict =temp, tempa lowerCamelCase__: Union[str, Any] =self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , UpperCAmelCase_) self.top_to_bottom(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =position[index] while index != 0: lowerCamelCase__: Tuple =int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: lowerCamelCase__: List[Any] =heap[parent] lowerCamelCase__: Dict =position[parent] self.set_position(position[parent] , UpperCAmelCase_) else: lowerCamelCase__: Tuple =val lowerCamelCase__: List[str] =temp self.set_position(UpperCAmelCase_ , UpperCAmelCase_) break lowerCamelCase__: str =parent else: lowerCamelCase__: int =val lowerCamelCase__: Tuple =temp self.set_position(UpperCAmelCase_ , 0) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: List[str] =len(UpperCAmelCase_) // 2 - 1 for i in range(UpperCAmelCase_ , -1 , -1): self.top_to_bottom(UpperCAmelCase_ , UpperCAmelCase_ , len(UpperCAmelCase_) , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: int =positions[0] lowerCamelCase__: List[str] =sys.maxsize self.top_to_bottom(UpperCAmelCase_ , 0 , len(UpperCAmelCase_) , UpperCAmelCase_) return temp def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: Dict =Heap() lowerCamelCase__: List[str] =[0] * len(__a ) lowerCamelCase__: List[Any] =[-1] * len(__a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCamelCase__: List[Any] =[] # Heap of Distance of vertices from their neighboring vertex lowerCamelCase__: int =[] for vertex in range(len(__a ) ): distance_tv.append(sys.maxsize ) positions.append(__a ) heap.node_position.append(__a ) lowerCamelCase__: Dict =[] lowerCamelCase__: List[Any] =1 lowerCamelCase__: Optional[Any] =sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCamelCase__: Union[str, Any] =0 lowerCamelCase__: Optional[Any] =distance heap.heapify(__a , __a ) for _ in range(1 , len(__a ) ): lowerCamelCase__: Optional[int] =heap.delete_minimum(__a , __a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCamelCase__: str =1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__a )] ): lowerCamelCase__: str =distance heap.bottom_to_top( __a , heap.get_position(__a ) , __a , __a ) lowerCamelCase__: Union[str, Any] =vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) lowerCamelCase__: Dict =str(bin(__a ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) lowerCamelCase__: str =str(bin(__a ) )[2:] if shift_amount >= len(__a ): return "0b0" lowerCamelCase__: str =binary_number[: len(__a ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number lowerCamelCase__: Any ="0" + str(bin(__a ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number lowerCamelCase__: Dict =len(bin(__a )[3:] ) # Find 2's complement of number lowerCamelCase__: Any =bin(abs(__a ) - (1 << binary_number_length) )[3:] lowerCamelCase__: str =( "1" + "0" * (binary_number_length - len(__a )) + binary_number ) if shift_amount >= len(__a ): return "0b" + binary_number[0] * len(__a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if len(__a ) <= 1: return [tuple(__a )] lowerCamelCase__: Dict =[] def generate(__a , __a ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , __a ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCamelCase__ , lowerCamelCase__: Tuple =arr[k - 1], arr[i] else: # k is odd lowerCamelCase__ , lowerCamelCase__: str =arr[k - 1], arr[0] generate(k - 1 , __a ) generate(len(__a ) , __a ) return res if __name__ == "__main__": __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(heaps(arr))
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __A = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : int , UpperCAmelCase_ : int = 14) ->None: '''simple docstring''' if group not in primes: raise ValueError("Unsupported Group") lowerCamelCase__: Union[str, Any] =primes[group]["prime"] lowerCamelCase__: Optional[int] =primes[group]["generator"] lowerCamelCase__: Dict =int(hexlify(urandom(32)) , base=16) def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' return hex(self.__private_key)[2:] def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str: '''simple docstring''' lowerCamelCase__: str =pow(self.generator , self.__private_key , self.prime) return hex(UpperCAmelCase_)[2:] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int) ->bool: '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(UpperCAmelCase_ , (self.prime - 1) // 2 , self.prime) == 1 ) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->str: '''simple docstring''' lowerCamelCase__: int =int(UpperCAmelCase_ , base=16) if not self.is_valid_public_key(UpperCAmelCase_): raise ValueError("Invalid public key") lowerCamelCase__: Dict =pow(UpperCAmelCase_ , self.__private_key , self.prime) return shaaaa(str(UpperCAmelCase_).encode()).hexdigest() @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->bool: '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCAmelCase_ , (prime - 1) // 2 , UpperCAmelCase_) == 1 ) @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 14) ->str: '''simple docstring''' lowerCamelCase__: Dict =int(UpperCAmelCase_ , base=16) lowerCamelCase__: str =int(UpperCAmelCase_ , base=16) lowerCamelCase__: Union[str, Any] =primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError("Invalid public key") lowerCamelCase__: List[Any] =pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return shaaaa(str(UpperCAmelCase_).encode()).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" def is_in_circle(__a , __a ) -> bool: lowerCamelCase__: Tuple =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCamelCase__: List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__a ) ) # The ratio of the area for circle to square is pi/4. lowerCamelCase__: Dict =proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def lowerCAmelCase_ ( __a , __a , __a = 0.0 , __a = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(__a , __a ) ) for _ in range(__a ) ) * (max_value - min_value) def lowerCAmelCase_ ( __a , __a = 0.0 , __a = 1.0 ) -> None: """simple docstring""" def identity_function(__a ) -> float: return x lowerCamelCase__: Dict =area_under_curve_estimator( __a , __a , __a , __a ) lowerCamelCase__: Union[str, Any] =(max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def lowerCAmelCase_ ( __a ) -> None: """simple docstring""" def function_to_integrate(__a ) -> float: return sqrt(4.0 - x * x ) lowerCamelCase__: List[Any] =area_under_curve_estimator( __a , __a , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False) ->None: '''simple docstring''' lowerCamelCase__: dict[str, RadixNode] ={} # A node will be a leaf if the tree contains its word lowerCamelCase__: Any =is_leaf lowerCamelCase__: List[str] =prefix def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->tuple[str, str, str]: '''simple docstring''' lowerCamelCase__: Any =0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : list[str]) ->None: '''simple docstring''' for word in words: self.insert(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->None: '''simple docstring''' if self.prefix == word: lowerCamelCase__: Optional[int] =True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCamelCase__: Any =RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: lowerCamelCase__: Union[str, Any] =self.nodes[word[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCamelCase__: Union[str, Any] =remaining_prefix lowerCamelCase__: Optional[int] =self.nodes[matching_string[0]] lowerCamelCase__: Dict =RadixNode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =aux_node if remaining_word == "": lowerCamelCase__: Dict =True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : str) ->bool: '''simple docstring''' lowerCamelCase__: Dict =self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str) ->bool: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[Any] =incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: lowerCamelCase__: int =list(self.nodes.values())[0] lowerCamelCase__: Any =merging_node.is_leaf self.prefix += merging_node.prefix lowerCamelCase__: Tuple =merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: lowerCamelCase__: Dict =False # If there is 1 edge, we merge it with its child else: lowerCamelCase__: str =list(incoming_node.nodes.values())[0] lowerCamelCase__: Any =merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCamelCase__: Optional[Any] =merging_node.nodes return True def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int = 0) ->None: '''simple docstring''' if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "") for value in self.nodes.values(): value.print_tree(height + 1) def lowerCAmelCase_ ( ) -> bool: """simple docstring""" lowerCamelCase__: str ="banana bananas bandana band apple all beast".split() lowerCamelCase__: List[Any] =RadixNode() root.insert_many(__a ) assert all(root.find(__a ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCAmelCase_ ( ) -> None: """simple docstring""" assert test_trie() def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Optional[int] =RadixNode() lowerCamelCase__: Optional[int] ="banana bananas bandanas bandana band apple all beast".split() root.insert_many(__a ) print("Words:" , __a ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") lowerCamelCase__: Optional[int] =AutoTokenizer.from_pretrained("google/mt5-small") lowerCamelCase__: List[Any] =tokenizer("Hello there" , return_tensors="np").input_ids lowerCamelCase__: Dict =tokenizer("Hi I am" , return_tensors="np").input_ids lowerCamelCase__: Tuple =shift_tokens_right(UpperCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id) lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_).logits lowerCamelCase__: Optional[Any] =optax.softmax_cross_entropy(UpperCAmelCase_ , onehot(UpperCAmelCase_ , logits.shape[-1])).mean() lowerCamelCase__: Dict =-(labels.shape[-1] * loss.item()) lowerCamelCase__: List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" lowerCamelCase__: Any =[0 for i in range(r + 1 )] # nc0 = 1 lowerCamelCase__: List[str] =1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCamelCase__: List[str] =min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "vit_mae" def __init__(self : int , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : int=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[Any]=1E-1_2 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : List[str]=2_048 , UpperCAmelCase_ : Dict=0.75 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : str , ) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: str =num_attention_heads lowerCamelCase__: int =intermediate_size lowerCamelCase__: str =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: int =attention_probs_dropout_prob lowerCamelCase__: Dict =initializer_range lowerCamelCase__: int =layer_norm_eps lowerCamelCase__: List[str] =image_size lowerCamelCase__: Optional[Any] =patch_size lowerCamelCase__: Any =num_channels lowerCamelCase__: Optional[Any] =qkv_bias lowerCamelCase__: List[str] =decoder_num_attention_heads lowerCamelCase__: List[Any] =decoder_hidden_size lowerCamelCase__: str =decoder_num_hidden_layers lowerCamelCase__: List[Any] =decoder_intermediate_size lowerCamelCase__: Optional[int] =mask_ratio lowerCamelCase__: Optional[int] =norm_pix_loss
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import os from distutils.util import strtobool def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" for e in env_keys: lowerCamelCase__: List[Any] =int(os.environ.get(__a , -1 ) ) if val >= 0: return val return default def lowerCAmelCase_ ( __a , __a=False ) -> List[Any]: """simple docstring""" lowerCamelCase__: str =os.environ.get(__a , str(__a ) ) return strtobool(__a ) == 1 # As its name indicates `strtobool` actually returns an int... def lowerCAmelCase_ ( __a , __a="no" ) -> List[str]: """simple docstring""" lowerCamelCase__: List[Any] =os.environ.get(__a , str(__a ) ) return value
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Dict =MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) lowerCamelCase__: Dict =re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , __a ) if matches: lowerCamelCase__: Optional[int] =float(matches[1] ) lowerCamelCase__: str =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCamelCase__: List[str] =1001 lowerCamelCase__: str ="imagenet-1k-id2label.json" lowerCamelCase__: List[Any] ="huggingface/label-files" lowerCamelCase__: Optional[Any] =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: List[str] ={int(__a ) + 1: v for k, v in idalabel.items()} lowerCamelCase__: str ="background" lowerCamelCase__: int =idalabel lowerCamelCase__: List[Any] ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Optional[Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Tuple =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a=False ) -> str: """simple docstring""" lowerCamelCase__: Optional[Any] =get_mobilenet_va_config(__a ) # Load 🤗 model lowerCamelCase__: Optional[int] =MobileNetVaForImageClassification(__a ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__a , __a , __a ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCamelCase__: Optional[int] =MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) lowerCamelCase__: Union[str, Any] =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Dict =model(**__a ) lowerCamelCase__: List[str] =outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowerCamelCase__: Tuple =torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowerCamelCase__: Tuple =torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowerCamelCase__: Optional[int] =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: print("Pushing to the hub..." ) lowerCamelCase__: Optional[Any] ="google/" + model_name image_processor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
10
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase_ = Features({"image": Image()} ) lowercase_ = Features({"labels": ClassLabel} ) lowercase_ = "image" lowercase_ = "labels" def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""") if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""") lowerCamelCase__: List[Any] =copy.deepcopy(self) lowerCamelCase__: Optional[int] =self.label_schema.copy() lowerCamelCase__: int =features[self.label_column] lowerCamelCase__: int =label_schema return task_template @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
10
1
def lowerCAmelCase_ ( __a ) -> float: """simple docstring""" return 10 - x * x def lowerCAmelCase_ ( __a , __a ) -> float: """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError("Wrong space!" ) lowerCamelCase__: Dict =a while (b - a) >= 0.0_1: # Find middle point lowerCamelCase__: Union[str, Any] =(a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: lowerCamelCase__: List[str] =c else: lowerCamelCase__: Optional[Any] =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __A = { "gpt-neox-20b": 2048, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]="<|endoftext|>" , UpperCAmelCase_ : Dict="<|endoftext|>" , UpperCAmelCase_ : Any="<|endoftext|>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Dict , ) ->Any: '''simple docstring''' super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_) != add_prefix_space: lowerCamelCase__: Union[str, Any] =getattr(UpperCAmelCase_ , pre_tok_state.pop("type")) lowerCamelCase__: Any =add_prefix_space lowerCamelCase__: Optional[int] =pre_tok_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =add_prefix_space def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: List[Any] =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : "Conversation") ->List[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id]) if len(UpperCAmelCase_) > self.model_max_length: lowerCamelCase__: List[str] =input_ids[-self.model_max_length :] return input_ids
10
class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =n lowerCamelCase__: Tuple =[None] * self.n lowerCamelCase__: str =0 # index of the first element lowerCamelCase__: Tuple =0 lowerCamelCase__: Optional[Any] =0 def __len__(self : str) ->int: '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE_ (self : int) ->bool: '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str: '''simple docstring''' if self.size >= self.n: raise Exception("QUEUE IS FULL") lowerCamelCase__: List[Any] =data lowerCamelCase__: Dict =(self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.size == 0: raise Exception("UNDERFLOW") lowerCamelCase__: Optional[Any] =self.array[self.front] lowerCamelCase__: Optional[int] =None lowerCamelCase__: Dict =(self.front + 1) % self.n self.size -= 1 return temp
10
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCamelCase__: Optional[Any] =k.replace(__a , __a ) if k.startswith("encoder" ): lowerCamelCase__: Optional[Any] =k.replace(".attn" , ".self_attn" ) lowerCamelCase__: Union[str, Any] =k.replace("norm1" , "self_attn_layer_norm" ) lowerCamelCase__: Any =k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): lowerCamelCase__: List[str] =k.replace("norm1" , "self_attn_layer_norm" ) lowerCamelCase__: Dict =k.replace("norm2" , "encoder_attn_layer_norm" ) lowerCamelCase__: Union[str, Any] =k.replace("norm3" , "final_layer_norm" ) return k def lowerCAmelCase_ ( __a ) -> List[str]: """simple docstring""" lowerCamelCase__: Any =[ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: lowerCamelCase__: List[Any] =sd.pop(__a ) lowerCamelCase__: Union[str, Any] =k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd lowerCamelCase__: Optional[Any] =v __A = ["START"] @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: List[Any] =torch.load(__a , map_location="cpu" ) lowerCamelCase__: int =model["model"] lowerCamelCase__: int =BlenderbotConfig.from_json_file(__a ) lowerCamelCase__: List[Any] =BlenderbotForConditionalGeneration(__a ) lowerCamelCase__: List[str] =m.model.state_dict().keys() lowerCamelCase__: Dict =[] lowerCamelCase__: List[str] ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCamelCase__: Union[str, Any] =rename_state_dict_key(__a ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCamelCase__: Any =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__a ) m.model.load_state_dict(__a , strict=__a ) m.half() m.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __A = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
10
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> YolosConfig: """simple docstring""" lowerCamelCase__: str =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase__: int =192 lowerCamelCase__: Optional[int] =768 lowerCamelCase__: Any =12 lowerCamelCase__: str =3 lowerCamelCase__: Optional[int] =[800, 1333] lowerCamelCase__: Union[str, Any] =False elif yolos_name == "yolos_s_dWr": lowerCamelCase__: int =330 lowerCamelCase__: Optional[Any] =14 lowerCamelCase__: Any =6 lowerCamelCase__: List[str] =1320 elif "yolos_s" in yolos_name: lowerCamelCase__: List[str] =384 lowerCamelCase__: Union[str, Any] =1536 lowerCamelCase__: List[Any] =12 lowerCamelCase__: Any =6 elif "yolos_b" in yolos_name: lowerCamelCase__: str =[800, 1344] lowerCamelCase__: int =91 lowerCamelCase__: str ="huggingface/label-files" lowerCamelCase__: List[str] ="coco-detection-id2label.json" lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()} lowerCamelCase__: List[str] =idalabel lowerCamelCase__: int ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :] lowerCamelCase__: str =in_proj_bias[: config.hidden_size] lowerCamelCase__: str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__: str =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :] lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if "backbone" in name: lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCAmelCase_ ( __a , __a ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__: Any =orig_state_dict.pop(__a ) if "qkv" in key: lowerCamelCase__: Tuple =key.split("." ) lowerCamelCase__: List[str] =int(key_split[2] ) lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase__: int =val[:dim, :] lowerCamelCase__: str =val[ dim : dim * 2, : ] lowerCamelCase__: Any =val[-dim:, :] else: lowerCamelCase__: Tuple =val[:dim] lowerCamelCase__: Optional[Any] =val[dim : dim * 2] lowerCamelCase__: str =val[-dim:] else: lowerCamelCase__: Dict =val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: """simple docstring""" lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]: """simple docstring""" lowerCamelCase__: int =get_yolos_config(__a ) # load original state_dict lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase__: int =YolosForObjectDetection(__a ) model.eval() lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a ) model.load_state_dict(__a ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512 lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a ) lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase__: Tuple =model(**__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes lowerCamelCase__ , lowerCamelCase__: Any =None, None if yolos_name == "yolos_ti": lowerCamelCase__: Optional[Any] =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCamelCase__: List[Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase__: Optional[int] =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCamelCase__: Any =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase__: str =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCamelCase__: Optional[Any] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase__: str =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCamelCase__: Union[str, Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCamelCase__: Tuple =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCamelCase__: Optional[int] =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 ) Path(__a ).mkdir(exist_ok=__a ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: lowerCamelCase__: Any ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase__: Optional[int] =model_mapping[yolos_name] image_processor.push_to_hub(__a , organization="hustvl" ) model.push_to_hub(__a , organization="hustvl" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
10
1
def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" lowerCamelCase__: set[int] =set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase__: set[int] =set() return any( node not in visited and depth_first_search(__a , __a , __a , __a ) for node in graph ) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" visited.add(__a ) rec_stk.add(__a ) for node in graph[vertex]: if node not in visited: if depth_first_search(__a , __a , __a , __a ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__a ) return False if __name__ == "__main__": from doctest import testmod testmod()
10
from math import ceil, sqrt def lowerCAmelCase_ ( __a = 1000000 ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowerCamelCase__: str =1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'{solution() = }')
10
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: List[Any] =nn.functional.normalize(__a ) lowerCamelCase__: Optional[Any] =nn.functional.normalize(__a ) return torch.mm(__a , normalized_text_embeds.t() ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = CLIPConfig lowercase_ = ["CLIPEncoderLayer"] def __init__(self : Dict , UpperCAmelCase_ : CLIPConfig) ->Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase_) lowerCamelCase__: str =CLIPVisionModel(config.vision_config) lowerCamelCase__: Tuple =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCAmelCase_) lowerCamelCase__: Optional[int] =nn.Parameter(torch.ones(17 , config.projection_dim) , requires_grad=UpperCAmelCase_) lowerCamelCase__: Dict =nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=UpperCAmelCase_) lowerCamelCase__: Any =nn.Parameter(torch.ones(17) , requires_grad=UpperCAmelCase_) lowerCamelCase__: List[str] =nn.Parameter(torch.ones(3) , requires_grad=UpperCAmelCase_) @torch.no_grad() def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' lowerCamelCase__: List[str] =self.vision_model(UpperCAmelCase_)[1] # pooled_output lowerCamelCase__: Dict =self.visual_projection(UpperCAmelCase_) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__: Dict =cosine_distance(UpperCAmelCase_ , self.special_care_embeds).cpu().float().numpy() lowerCamelCase__: List[str] =cosine_distance(UpperCAmelCase_ , self.concept_embeds).cpu().float().numpy() lowerCamelCase__: Tuple =[] lowerCamelCase__: str =image_embeds.shape[0] for i in range(UpperCAmelCase_): lowerCamelCase__: List[str] ={"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__: List[str] =0.0 for concept_idx in range(len(special_cos_dist[0])): lowerCamelCase__: int =special_cos_dist[i][concept_idx] lowerCamelCase__: Optional[Any] =self.special_care_embeds_weights[concept_idx].item() lowerCamelCase__: Any =round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) lowerCamelCase__: Any =0.01 for concept_idx in range(len(cos_dist[0])): lowerCamelCase__: Tuple =cos_dist[i][concept_idx] lowerCamelCase__: List[str] =self.concept_embeds_weights[concept_idx].item() lowerCamelCase__: List[Any] =round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCAmelCase_) result.append(UpperCAmelCase_) lowerCamelCase__: Any =[len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.vision_model(UpperCAmelCase_)[1] # pooled_output lowerCamelCase__: Optional[int] =self.visual_projection(UpperCAmelCase_) lowerCamelCase__: List[Any] =cosine_distance(UpperCAmelCase_ , self.special_care_embeds) lowerCamelCase__: str =cosine_distance(UpperCAmelCase_ , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__: List[str] =0.0 lowerCamelCase__: Optional[Any] =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase__: Optional[Any] =torch.any(special_scores > 0 , dim=1) lowerCamelCase__: Optional[int] =special_care * 0.01 lowerCamelCase__: Optional[int] =special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) lowerCamelCase__: List[str] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase__: List[Any] =torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
10
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: Union[str, Any] =tmp_path / "cache" lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( __a , __a , __a ) -> Dict: """simple docstring""" if issubclass(__a , __a ): lowerCamelCase__: str =parquet_path elif issubclass(__a , __a ): lowerCamelCase__: str =[parquet_path] lowerCamelCase__: Optional[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]: """simple docstring""" assert isinstance(__a , __a ) for split in splits: lowerCamelCase__: Optional[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Any =tmp_path / "cache" lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase__: List[str] =ParquetDatasetReader( {"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[Any] =tmp_path / "cache" lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: int =features.copy() if features else default_expected_features lowerCamelCase__: Union[str, Any] =( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]: """simple docstring""" if split: lowerCamelCase__: Union[str, Any] ={split: parquet_path} else: lowerCamelCase__: int ="train" lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path} lowerCamelCase__: int =tmp_path / "cache" lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCamelCase__: Optional[int] =pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" ) lowerCamelCase__: Union[str, Any] ={"image": [image_path]} lowerCamelCase__: int =Features({"image": Image()} ) lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a ) lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( __a , __a ) -> Any: """simple docstring""" assert get_writer_batch_size(__a ) == expected
10
1
from random import randint, random def lowerCAmelCase_ ( __a , __a , __a , __a = False , __a = False , __a = 5 , ) -> list: """simple docstring""" lowerCamelCase__: Tuple =[[-1] * number_of_cells] # Create a highway without any car lowerCamelCase__: Dict =0 lowerCamelCase__: Any =max(__a , 0 ) while i < number_of_cells: lowerCamelCase__: str =( randint(0 , __a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[int] =0 lowerCamelCase__: Optional[int] =highway_now[car_index + 1 :] for cell in range(len(__a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__a , -1 ) def lowerCAmelCase_ ( __a , __a , __a ) -> list: """simple docstring""" lowerCamelCase__: Optional[int] =len(__a ) # Beforce calculations, the highway is empty lowerCamelCase__: Dict =[-1] * number_of_cells for car_index in range(__a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowerCamelCase__: int =min(highway_now[car_index] + 1 , __a ) # Number of empty cell before the next car lowerCamelCase__: Union[str, Any] =get_distance(__a , __a ) - 1 # We can't have the car causing an accident lowerCamelCase__: Dict =min(next_highway[car_index] , __a ) if random() < probability: # Randomly, a driver will slow down lowerCamelCase__: int =max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCAmelCase_ ( __a , __a , __a , __a ) -> list: """simple docstring""" lowerCamelCase__: Dict =len(highway[0] ) for i in range(__a ): lowerCamelCase__: Dict =update(highway[i] , __a , __a ) lowerCamelCase__: List[str] =[-1] * number_of_cells for car_index in range(__a ): lowerCamelCase__: Any =next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowerCamelCase__: Dict =(car_index + speed) % number_of_cells # Commit the change of position lowerCamelCase__: Optional[Any] =speed highway.append(__a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
10
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
1
import math def lowerCAmelCase_ ( __a , __a = 0 , __a = 0 ) -> list: """simple docstring""" lowerCamelCase__: Optional[int] =end or len(__a ) for i in range(__a , __a ): lowerCamelCase__: Dict =i lowerCamelCase__: Union[str, Any] =array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase__: Dict =array[temp_index - 1] temp_index -= 1 lowerCamelCase__: Dict =temp_index_value return array def lowerCAmelCase_ ( __a , __a , __a ) -> None: # Max Heap """simple docstring""" lowerCamelCase__: Dict =index lowerCamelCase__: Union[str, Any] =2 * index + 1 # Left Node lowerCamelCase__: List[str] =2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase__: List[Any] =left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase__: str =right_index if largest != index: lowerCamelCase__ , lowerCamelCase__: Any =array[largest], array[index] heapify(__a , __a , __a ) def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" lowerCamelCase__: Union[str, Any] =len(__a ) for i in range(n // 2 , -1 , -1 ): heapify(__a , __a , __a ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase__ , lowerCamelCase__: List[Any] =array[0], array[i] heapify(__a , 0 , __a ) return array def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =low lowerCamelCase__: Tuple =high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase__ , lowerCamelCase__: Tuple =array[j], array[i] i += 1 def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if len(__a ) == 0: return array lowerCamelCase__: int =2 * math.ceil(math.loga(len(__a ) ) ) lowerCamelCase__: Union[str, Any] =16 return intro_sort(__a , 0 , len(__a ) , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(__a ) max_depth -= 1 lowerCamelCase__: Any =median_of_a(__a , __a , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase__: Optional[int] =partition(__a , __a , __a , __a ) intro_sort(__a , __a , __a , __a , __a ) lowerCamelCase__: Tuple =p return insertion_sort(__a , __a , __a ) if __name__ == "__main__": import doctest doctest.testmod() __A = input("Enter numbers separated by a comma : ").strip() __A = [float(item) for item in user_input.split(",")] print(sort(unsorted))
10
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any: '''simple docstring''' lowerCamelCase__: Any ={ "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_) return config def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase_) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5 def SCREAMING_SNAKE_CASE_ (self : Any) ->str: '''simple docstring''' lowerCamelCase__: int =self.scheduler_classes[0] lowerCamelCase__: Tuple =self.get_scheduler_config() lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.dummy_model() lowerCamelCase__: int =self.dummy_sample_deter lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1 lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1 lowerCamelCase__: Optional[Any] =samplea.shape[0] lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0) lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 1153.1833) < 1E-2 assert abs(result_mean.item() - 0.5005) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Any =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =self.dummy_model() lowerCamelCase__: List[Any] =self.dummy_sample_deter lowerCamelCase__: int =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: Any =pred_prev_sample lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 258.9606) < 1E-2 assert abs(result_mean.item() - 0.3372) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction") lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: str =len(UpperCAmelCase_) lowerCamelCase__: str =self.dummy_model() lowerCamelCase__: str =self.dummy_sample_deter lowerCamelCase__: Dict =torch.manual_seed(0) for t in reversed(range(UpperCAmelCase_)): # 1. predict noise residual lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_) # 2. predict previous mean of sample x_t-1 lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample lowerCamelCase__: List[str] =pred_prev_sample lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_)) lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_sum.item() - 202.0296) < 1E-2 assert abs(result_mean.item() - 0.2631) < 1E-3 def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =self.scheduler_classes[0] lowerCamelCase__: Union[str, Any] =self.get_scheduler_config() lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_): if i == len(UpperCAmelCase_) - 1: lowerCamelCase__: Dict =-1 else: lowerCamelCase__: Union[str, Any] =timesteps[i + 1] lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_) lowerCamelCase__: str =prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: List[Any] =self.get_scheduler_config() lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.scheduler_classes[0] lowerCamelCase__: Any =self.get_scheduler_config() lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0] lowerCamelCase__: int =len(UpperCAmelCase_) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Tuple =self.scheduler_classes[0] lowerCamelCase__: Optional[Any] =self.get_scheduler_config() lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_) lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_)
10
1
def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" def update_area_of_max_square(__a , __a ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowerCamelCase__: Union[str, Any] =update_area_of_max_square(__a , col + 1 ) lowerCamelCase__: Dict =update_area_of_max_square(row + 1 , col + 1 ) lowerCamelCase__: List[str] =update_area_of_max_square(row + 1 , __a ) if mat[row][col]: lowerCamelCase__: Tuple =1 + min([right, diagonal, down] ) lowerCamelCase__: str =max(largest_square_area[0] , __a ) return sub_problem_sol else: return 0 lowerCamelCase__: Dict =[0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" def update_area_of_max_square_using_dp_array( __a , __a , __a ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowerCamelCase__: str =update_area_of_max_square_using_dp_array(__a , col + 1 , __a ) lowerCamelCase__: str =update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __a ) lowerCamelCase__: Dict =update_area_of_max_square_using_dp_array(row + 1 , __a , __a ) if mat[row][col]: lowerCamelCase__: List[Any] =1 + min([right, diagonal, down] ) lowerCamelCase__: Optional[int] =max(largest_square_area[0] , __a ) lowerCamelCase__: Tuple =sub_problem_sol return sub_problem_sol else: return 0 lowerCamelCase__: Union[str, Any] =[0] lowerCamelCase__: Optional[int] =[[-1] * cols for _ in range(__a )] update_area_of_max_square_using_dp_array(0 , 0 , __a ) return largest_square_area[0] def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =[[0] * (cols + 1) for _ in range(rows + 1 )] lowerCamelCase__: Tuple =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__: int =dp_array[row][col + 1] lowerCamelCase__: Union[str, Any] =dp_array[row + 1][col + 1] lowerCamelCase__: Any =dp_array[row + 1][col] if mat[row][col] == 1: lowerCamelCase__: str =1 + min(__a , __a , __a ) lowerCamelCase__: Tuple =max(dp_array[row][col] , __a ) else: lowerCamelCase__: Tuple =0 return largest_square_area def lowerCAmelCase_ ( __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: Union[str, Any] =[0] * (cols + 1) lowerCamelCase__: Dict =[0] * (cols + 1) lowerCamelCase__: List[Any] =0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowerCamelCase__: Optional[int] =current_row[col + 1] lowerCamelCase__: int =next_row[col + 1] lowerCamelCase__: Optional[int] =next_row[col] if mat[row][col] == 1: lowerCamelCase__: Dict =1 + min(__a , __a , __a ) lowerCamelCase__: Dict =max(current_row[col] , __a ) else: lowerCamelCase__: Tuple =0 lowerCamelCase__: List[Any] =current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
10
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841 lowerCamelCase__: List[Any] =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCamelCase__: List[str] =defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) lowerCamelCase__: List[str] =mst(__a ) lowerCamelCase__: Union[str, Any] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: lowerCamelCase__: Optional[int] =tuple(answer[:2] ) lowerCamelCase__: List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
10
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __A = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __A = "main" # Default branch name __A = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) __A = "aaaaaaa" # This commit does not exist, so we should 404. __A = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes __A = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def lowerCAmelCase_ ( ) -> int: """simple docstring""" print("Bonjour!" ) yield print("Au revoir!" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers") is not None class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' with ContextManagers([]): print("Transformers are awesome!") # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n") @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str]) ->Any: '''simple docstring''' with ContextManagers([context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n") @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' with ContextManagers([context_fr(), context_en()]): print("Transformers are awesome!") # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n") @require_torch def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["labels", "next_sentence_label"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["start_positions", "end_positions"]) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) @require_tf def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["labels", "next_sentence_label"]) self.assertEqual(find_labels(UpperCAmelCase_) , ["start_positions", "end_positions"]) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"]) @require_flax def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' self.assertEqual(find_labels(UpperCAmelCase_) , []) self.assertEqual(find_labels(UpperCAmelCase_) , []) self.assertEqual(find_labels(UpperCAmelCase_) , []) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCAmelCase_) , [])
10
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = BartphoTokenizer lowercase_ = False lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple: '''simple docstring''' super().setUp() lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"] lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) lowerCamelCase__: List[Any] ={"unk_token": "<unk>"} lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""") lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] ="This is a là test" lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test" return input_text, output_text def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map) lowerCamelCase__: List[Any] ="This is a là test" lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split() lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token] lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
10
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __A = "." if __name__ == "__main__": __A = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __A = [] __A = [] with open(doctest_file_path) as fp: for line in fp: __A = line.strip() __A = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __A = "\n".join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
10
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } __A = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCamelCase__: Optional[int] ="lm_head" lowerCamelCase__: Dict =getattr(__a , __a ) if weight_type is not None: lowerCamelCase__: str =getattr(__a , __a ).shape else: lowerCamelCase__: int =hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase__: Dict =value elif weight_type == "weight_g": lowerCamelCase__: Optional[Any] =value elif weight_type == "weight_v": lowerCamelCase__: int =value elif weight_type == "bias": lowerCamelCase__: List[str] =value else: lowerCamelCase__: Union[str, Any] =value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: List[Any] =[] lowerCamelCase__: List[str] =fairseq_model.state_dict() lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase__: int =False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , ) lowerCamelCase__: str =True else: for key, mapped_key in MAPPING.items(): lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCamelCase__: Optional[Any] =True if "*" in mapped_key: lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2] lowerCamelCase__: List[str] =mapped_key.replace("*" , __a ) if "weight_g" in name: lowerCamelCase__: List[str] ="weight_g" elif "weight_v" in name: lowerCamelCase__: Union[str, Any] ="weight_v" elif "bias" in name: lowerCamelCase__: Dict ="bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase__: Tuple ="weight" else: lowerCamelCase__: List[Any] =None set_recursively(__a , __a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1] lowerCamelCase__: List[str] =name.split("." ) lowerCamelCase__: str =int(items[0] ) lowerCamelCase__: Union[str, Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase__: Dict =value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCamelCase__: List[Any] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase__: List[str] =value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__a ) @torch.no_grad() def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int: """simple docstring""" if config_path is not None: lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a ) else: lowerCamelCase__: List[Any] =UniSpeechConfig() if is_finetuned: if dict_path: lowerCamelCase__: str =Dictionary.load_from_json(__a ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCamelCase__: Any =target_dict.pad_index lowerCamelCase__: int =target_dict.bos_index lowerCamelCase__: Any =target_dict.eos_index lowerCamelCase__: Dict =len(target_dict.symbols ) lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" ) if not os.path.isdir(__a ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) ) return os.makedirs(__a , exist_ok=__a ) lowerCamelCase__: Optional[Any] =target_dict.indices # fairseq has the <pad> and <s> switched lowerCamelCase__: Optional[Any] =42 lowerCamelCase__: List[Any] =43 with open(__a , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__a , __a ) lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , ) lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False lowerCamelCase__: Tuple =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a ) processor.save_pretrained(__a ) lowerCamelCase__: int =UniSpeechForCTC(__a ) else: lowerCamelCase__: int =UniSpeechForPreTraining(__a ) if is_finetuned: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCamelCase__: List[str] =model[0].eval() recursively_load_weights(__a , __a , __a ) hf_unispeech.save_pretrained(__a ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
10
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCAmelCase_ ( __a ) -> Tuple: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCAmelCase_ ( __a , __a ) -> List[str]: """simple docstring""" if args.student_type == "roberta": lowerCamelCase__: int =False elif args.student_type == "gpt2": lowerCamelCase__: Optional[int] =False def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" if args.student_type == "roberta": lowerCamelCase__: str =False def lowerCAmelCase_ ( ) -> int: """simple docstring""" lowerCamelCase__: int =argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__a , required=__a , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__a , required=__a , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__a , choices=["distilbert", "roberta", "gpt2"] , required=__a , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__a , required=__a , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__a , type=__a , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__a , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__a , required=__a , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__a , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__a , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__a , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__a , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__a , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__a , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.1_5 , type=__a , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__a , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__a , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__a , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__a , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__a , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__a , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__a , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__a , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.0_5 , type=__a , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__a , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=__a , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=__a , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__a , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.0_2 , type=__a , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__a , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__a , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__a , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__a , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__a , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__a , default=4000 , help="Checkpoint interval." ) lowerCamelCase__: int =parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =MODEL_CLASSES[args.student_type] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCamelCase__: Tuple =teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCamelCase__: int ={} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCamelCase__: str =tokenizer.all_special_tokens.index(__a ) lowerCamelCase__: Optional[int] =tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) lowerCamelCase__: Tuple =special_tok_ids lowerCamelCase__: List[Any] =tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , "rb" ) as fp: lowerCamelCase__: int =pickle.load(__a ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , "rb" ) as fp: lowerCamelCase__: Union[str, Any] =pickle.load(__a ) lowerCamelCase__: List[Any] =np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCamelCase__: Optional[Any] =0.0 # do not predict special tokens lowerCamelCase__: Optional[Any] =torch.from_numpy(__a ) else: lowerCamelCase__: int =None lowerCamelCase__: Tuple =LmSeqsDataset(params=__a , data=__a ) logger.info("Data loader created." ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) lowerCamelCase__: Optional[Any] =student_config_class.from_pretrained(args.student_config ) lowerCamelCase__: Any =True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) lowerCamelCase__: Optional[Any] =student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: lowerCamelCase__: int =student_model_class(__a ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # lowerCamelCase__: Tuple =teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCamelCase__: List[Any] =Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __A = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.0_1), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: Tuple =TOKEN HfFolder.save_token(UpperCAmelCase_) @classmethod def SCREAMING_SNAKE_CASE_ (cls : List[str]) ->str: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-config") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org") except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config") except HTTPError: pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub("test-config" , use_auth_token=self._token) lowerCamelCase__: Dict =BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="test-config") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: Optional[int] =BertConfig.from_pretrained(F"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token) lowerCamelCase__: Optional[int] =BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token) lowerCamelCase__: List[str] =BertConfig.from_pretrained("valid_org/test-config-org") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__: Optional[Any] =CustomConfig(attribute=42) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"}) lowerCamelCase__: List[str] =AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCAmelCase_) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig") self.assertEqual(new_config.attribute , 42) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__: Tuple =c.n_embd + 1 # int lowerCamelCase__: Optional[int] =c.resid_pdrop + 1.0 # float lowerCamelCase__: Dict =not c.scale_attn_weights # bool lowerCamelCase__: Any =c.summary_type + "foo" # str c.update_from_string( F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd") self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop") self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights") self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =PretrainedConfig() lowerCamelCase__: str =[key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]) lowerCamelCase__: int =[key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_)] if len(UpperCAmelCase_) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F""" {", ".join(UpperCAmelCase_)}.""") def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' with self.assertRaises(UpperCAmelCase_): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__: Tuple =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder") lowerCamelCase__: Union[str, Any] =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert") self.assertIsNotNone(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Tuple =mock.Mock() lowerCamelCase__: Tuple =500 lowerCamelCase__: Union[str, Any] ={} lowerCamelCase__: str =HTTPError lowerCamelCase__: Tuple ={} # Download this model to make sure it's in the cache. lowerCamelCase__: str =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_) as mock_head: lowerCamelCase__: List[str] =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json") def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =AutoConfig.from_pretrained("bert-base-cased") lowerCamelCase__: Any =["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_) lowerCamelCase__: List[Any] =2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json") , "w")) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__: Optional[Any] =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__: Any =["config.42.0.0.json"] lowerCamelCase__: List[Any] =768 configuration.save_pretrained(UpperCAmelCase_) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json") , os.path.join(UpperCAmelCase_ , "config.42.0.0.json")) lowerCamelCase__: Optional[int] =AutoConfig.from_pretrained(UpperCAmelCase_) self.assertEqual(new_configuration.hidden_size , 768) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: List[str] ="hf-internal-testing/test-two-configs" import transformers as new_transformers lowerCamelCase__: Dict ="v4.0.0" lowerCamelCase__ , lowerCamelCase__: Optional[int] =new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__: str ="v3.0.0" lowerCamelCase__: Tuple =old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_) self.assertEqual(old_configuration.hidden_size , 768)
10
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "unispeech" def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =feat_extract_norm lowerCamelCase__: Dict =feat_extract_activation lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_) lowerCamelCase__: Any =list(UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_) lowerCamelCase__: Dict =conv_bias lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings lowerCamelCase__: Dict =num_conv_pos_embedding_groups lowerCamelCase__: int =len(self.conv_dim) lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Dict =hidden_dropout lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: Tuple =feat_proj_dropout lowerCamelCase__: int =final_dropout lowerCamelCase__: Optional[Any] =layerdrop lowerCamelCase__: Dict =layer_norm_eps lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: int =num_ctc_classes lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Dict =do_stable_layer_norm lowerCamelCase__: List[Any] =use_weighted_layer_sum lowerCamelCase__: Dict =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__: int =apply_spec_augment lowerCamelCase__: List[str] =mask_time_prob lowerCamelCase__: Union[str, Any] =mask_time_length lowerCamelCase__: List[Any] =mask_time_min_masks lowerCamelCase__: Any =mask_feature_prob lowerCamelCase__: Optional[Any] =mask_feature_length lowerCamelCase__: List[str] =mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__: Optional[Any] =num_codevectors_per_group lowerCamelCase__: str =num_codevector_groups lowerCamelCase__: Tuple =contrastive_logits_temperature lowerCamelCase__: int =feat_quantizer_dropout lowerCamelCase__: Any =num_negatives lowerCamelCase__: List[str] =codevector_dim lowerCamelCase__: Union[str, Any] =proj_codevector_dim lowerCamelCase__: Any =diversity_loss_weight # ctc loss lowerCamelCase__: Any =ctc_loss_reduction lowerCamelCase__: Dict =ctc_zero_infinity # pretraining loss lowerCamelCase__: Dict =replace_prob @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
10
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""") requires_backends(self , "vision") self.check_model_type(UpperCAmelCase_) def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]: '''simple docstring''' if "text_queries" in kwargs: lowerCamelCase__: Any =kwargs.pop("text_queries") if isinstance(UpperCAmelCase_ , (str, Image.Image)): lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels} else: lowerCamelCase__: Any =image lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) return results def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[str] ={} if "threshold" in kwargs: lowerCamelCase__: List[Any] =kwargs["threshold"] if "top_k" in kwargs: lowerCamelCase__: Any =kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =load_image(inputs["image"]) lowerCamelCase__: Dict =inputs["candidate_labels"] if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =candidate_labels.split(",") lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(UpperCAmelCase_): lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework) lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework) yield { "is_last": i == len(UpperCAmelCase_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model_inputs.pop("target_size") lowerCamelCase__: Dict =model_inputs.pop("candidate_label") lowerCamelCase__: Dict =model_inputs.pop("is_last") lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_) lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] =[] for model_output in model_outputs: lowerCamelCase__: Optional[Any] =model_output["candidate_label"] lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_) lowerCamelCase__: Dict =self.image_processor.post_process_object_detection( outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): lowerCamelCase__: Dict =outputs["scores"][index].item() lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0]) lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box} results.append(UpperCAmelCase_) lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_) if top_k: lowerCamelCase__: Dict =results[:top_k] return results def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist() lowerCamelCase__: Optional[int] ={ "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
10
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float: """simple docstring""" lowerCamelCase__: str =a while True: lowerCamelCase__: Optional[Any] =Decimal(__a ) - ( Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__a ) ) < precision: # noqa: S307 return float(__a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
10
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=18 , UpperCAmelCase_ : Any=30 , UpperCAmelCase_ : int=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=[0.4814_5466, 0.457_8275, 0.4082_1073] , UpperCAmelCase_ : str=[0.2686_2954, 0.2613_0258, 0.2757_7711] , UpperCAmelCase_ : int=True , ) ->int: '''simple docstring''' lowerCamelCase__: Tuple =size if size is not None else {"height": 224, "width": 224} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCamelCase__: Dict =parent lowerCamelCase__: Union[str, Any] =batch_size lowerCamelCase__: Any =num_channels lowerCamelCase__: Any =image_size lowerCamelCase__: Dict =min_resolution lowerCamelCase__: int =max_resolution lowerCamelCase__: Union[str, Any] =do_resize lowerCamelCase__: Any =size lowerCamelCase__: Union[str, Any] =do_center_crop lowerCamelCase__: Optional[int] =crop_size lowerCamelCase__: Dict =do_normalize lowerCamelCase__: Optional[int] =image_mean lowerCamelCase__: int =image_std lowerCamelCase__: int =do_convert_rgb def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Union[str, Any]=False) ->Optional[int]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase__: str =[] for i in range(self.batch_size): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: lowerCamelCase__: int =[] for i in range(self.batch_size): lowerCamelCase__ , lowerCamelCase__: Tuple =np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase__: List[str] =[Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] if torchify: lowerCamelCase__: Any =[torch.from_numpy(UpperCAmelCase_) for x in image_inputs] return image_inputs @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple: '''simple docstring''' lowerCamelCase__: List[Any] =ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_convert_rgb")) def SCREAMING_SNAKE_CASE_ (self : int) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: List[Any] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' lowerCamelCase__: int =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: List[str] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Optional[int] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: Optional[int] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Union[str, Any] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[Any] =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCAmelCase_) lowerCamelCase__: Dict =3 @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Tuple =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_convert_rgb")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: str =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: str =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: Optional[int] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
import itertools import math def lowerCAmelCase_ ( __a ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> str: """simple docstring""" lowerCamelCase__: Optional[int] =2 while True: if is_prime(__a ): yield num num += 1 def lowerCAmelCase_ ( __a = 10001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __a ) ) if __name__ == "__main__": print(f'{solution() = }')
10
1
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCamelCase__: Any =cst_fwd.get(__a , np.inf ) lowerCamelCase__: Any =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCamelCase__: Optional[int] =new_cost_f lowerCamelCase__: Optional[Any] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCamelCase__: List[Any] =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int: """simple docstring""" lowerCamelCase__: int =-1 lowerCamelCase__: Optional[int] =set() lowerCamelCase__: Optional[Any] =set() lowerCamelCase__: int ={source: 0} lowerCamelCase__: Optional[Any] ={destination: 0} lowerCamelCase__: Union[str, Any] ={source: None} lowerCamelCase__: Any ={destination: None} lowerCamelCase__: PriorityQueue[Any] =PriorityQueue() lowerCamelCase__: PriorityQueue[Any] =PriorityQueue() lowerCamelCase__: Any =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCamelCase__ , lowerCamelCase__: Tuple =queue_forward.get() visited_forward.add(__a ) lowerCamelCase__ , lowerCamelCase__: Optional[int] =queue_backward.get() visited_backward.add(__a ) lowerCamelCase__: Optional[Any] =pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) lowerCamelCase__: Tuple =pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCamelCase__: Tuple =shortest_distance return shortest_path_distance __A = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __A = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
10
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str: '''simple docstring''' lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30} lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30} lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Optional[Any] =num_channels lowerCamelCase__: Tuple =min_resolution lowerCamelCase__: Union[str, Any] =max_resolution lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop lowerCamelCase__: Optional[int] =size lowerCamelCase__: str =crop_pct lowerCamelCase__: Any =crop_size lowerCamelCase__: List[str] =do_normalize lowerCamelCase__: List[str] =image_mean lowerCamelCase__: Tuple =image_std def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ (self : str) ->int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop")) self.assertTrue(hasattr(UpperCAmelCase_ , "size")) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct")) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean")) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std")) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30}) lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84}) def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random PIL images lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) # Test not batched input lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
10
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") __A = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowercase_ = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) lowercase_ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the training data."} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} ) lowercase_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the test data."} ) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") else: lowerCamelCase__: Tuple =self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase__: Dict =self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowercase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase__: Dict =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCamelCase__: Any =training_args.get_process_log_level() logger.setLevel(__a ) datasets.utils.logging.set_verbosity(__a ) transformers.utils.logging.set_verbosity(__a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__: Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__: str =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__: List[Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase__: str ={"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase__: Any =data_args.train_file.split("." )[-1] lowerCamelCase__: Any =data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase__: Tuple =data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files lowerCamelCase__: int =load_dataset("csv" , data_files=__a , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase__: str =load_dataset("json" , data_files=__a , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase__: Union[str, Any] =raw_datasets["train"].features["label"].names lowerCamelCase__: int =len(__a ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__: Union[str, Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowerCamelCase__: Any =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__a , ) lowerCamelCase__: Union[str, Any] =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase__: Optional[Any] ="max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase__: str =False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase__: List[Any] ={"Refused": 0, "Entailed": 1} lowerCamelCase__: int ={0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__: Optional[Any] =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(__a ): # Tokenize the texts def _convert_table_text_to_pandas(__a ): lowerCamelCase__: int =[_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] lowerCamelCase__: Dict =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowerCamelCase__: List[str] =examples["statement"] lowerCamelCase__: Any =list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) lowerCamelCase__: int =tokenizer(__a , __a , padding=__a , max_length=__a , truncation=__a ) lowerCamelCase__: Tuple =examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): lowerCamelCase__: Any =raw_datasets.map( __a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowerCamelCase__: Optional[Any] =raw_datasets["train"] if data_args.max_train_samples is not None: lowerCamelCase__: List[str] =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowerCamelCase__: str =raw_datasets["validation"] if data_args.max_eval_samples is not None: lowerCamelCase__: Dict =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) lowerCamelCase__: Optional[int] =raw_datasets["test"] if data_args.max_predict_samples is not None: lowerCamelCase__: str =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(__a ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__a ): lowerCamelCase__: List[str] =p.predictions[0] if isinstance(p.predictions , __a ) else p.predictions lowerCamelCase__: Tuple =np.argmax(__a , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase__: Optional[int] =default_data_collator elif training_args.fpaa: lowerCamelCase__: Optional[Any] =DataCollatorWithPadding(__a , pad_to_multiple_of=8 ) else: lowerCamelCase__: List[Any] =None # Initialize our Trainer lowerCamelCase__: Optional[int] =Trainer( model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , data_collator=__a , ) # Training if training_args.do_train: lowerCamelCase__: Union[str, Any] =None if training_args.resume_from_checkpoint is not None: lowerCamelCase__: Any =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__: Union[str, Any] =last_checkpoint lowerCamelCase__: Optional[int] =trainer.train(resume_from_checkpoint=__a ) lowerCamelCase__: int =train_result.metrics lowerCamelCase__: Optional[int] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__a ) ) lowerCamelCase__: List[str] =min(__a , len(__a ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __a ) trainer.save_metrics("train" , __a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase__: Tuple =trainer.evaluate(eval_dataset=__a ) lowerCamelCase__: List[Any] =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a ) lowerCamelCase__: Union[str, Any] =min(__a , len(__a ) ) trainer.log_metrics("eval" , __a ) trainer.save_metrics("eval" , __a ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase__: Dict =predict_dataset.remove_columns("label" ) lowerCamelCase__: int =trainer.predict(__a , metric_key_prefix="predict" ).predictions lowerCamelCase__: List[str] =np.argmax(__a , axis=1 ) lowerCamelCase__: List[str] =os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(__a , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(__a ): lowerCamelCase__: Dict =label_list[item] writer.write(F"""{index}\t{item}\n""" ) lowerCamelCase__: List[str] ={"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**__a ) else: trainer.create_model_card(**__a ) def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
10
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } __A = { "yjernite/retribert-base-uncased": 512, } __A = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = RetriBertTokenizer lowercase_ = ["input_ids", "attention_mask"] def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]: '''simple docstring''' super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars ): lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type")) lowerCamelCase__: int =do_lower_case lowerCamelCase__: int =strip_accents lowerCamelCase__: List[str] =tokenize_chinese_chars lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_) lowerCamelCase__: Any =do_lower_case def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Tuple =[self.sep_token_id] lowerCamelCase__: Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
10
1
import re def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" if len(re.findall("[ATCG]" , __a ) ) != len(__a ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
10
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any: """simple docstring""" if attention_mask is None: lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =parent lowerCamelCase__: List[str] =batch_size lowerCamelCase__: Optional[int] =seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: str =use_labels lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: str =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: Tuple =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: int =eos_token_id lowerCamelCase__: Union[str, Any] =pad_token_id lowerCamelCase__: List[str] =bos_token_id lowerCamelCase__: int =initializer_range def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: Dict =BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , ) lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =20 lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_) lowerCamelCase__: str =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: List[Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: Union[str, Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: Dict =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[str] =20 lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_) lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"]) lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__: Optional[int] =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__: List[Any] =model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") lowerCamelCase__: str =model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , ) lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_) lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""") @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def SCREAMING_SNAKE_CASE_ (self : Any) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__: Optional[Any] =input_ids.shape[0] lowerCamelCase__: List[str] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data() lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_) lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_) lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_) lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2) lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase_ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_) @jax.jit def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]): return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_) with self.subTest("JIT Enabled"): lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_) lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) lowerCamelCase__: int ={ "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return model.decode( decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , ) with self.subTest("JIT Enabled"): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_)) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id lowerCamelCase__: str =model(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict: '''simple docstring''' lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_) lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") lowerCamelCase__: Any =["Sam"] lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax") lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_) assert generated_txt[0].strip() == tgt_text
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "audio-spectrogram-transformer" def __init__(self : Optional[Any] , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : int=1_024 , UpperCAmelCase_ : str=128 , **UpperCAmelCase_ : Optional[Any] , ) ->Any: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: int =hidden_size lowerCamelCase__: Dict =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: Union[str, Any] =intermediate_size lowerCamelCase__: Tuple =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: Tuple =layer_norm_eps lowerCamelCase__: Dict =patch_size lowerCamelCase__: List[str] =qkv_bias lowerCamelCase__: Optional[Any] =frequency_stride lowerCamelCase__: int =time_stride lowerCamelCase__: Optional[Any] =max_length lowerCamelCase__: Union[str, Any] =num_mel_bins
10
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) __A = "▁" __A = {"vocab_file": "prophetnet.tokenizer"} __A = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } __A = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } __A = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Optional[Any] =collections.OrderedDict() with open(__a , "r" , encoding="utf-8" ) as reader: lowerCamelCase__: int =reader.readlines() for index, token in enumerate(__a ): lowerCamelCase__: List[str] =token.rstrip("\n" ) lowerCamelCase__: List[Any] =index return vocab class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None: '''simple docstring''' lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(UpperCAmelCase_)) lowerCamelCase__: Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): lowerCamelCase__: Optional[int] =F"""[unused{i}]""" lowerCamelCase__: int =5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase__: int =12 lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCAmelCase_) def __getstate__(self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Optional[int] =self.__dict__.copy() lowerCamelCase__: Dict =None return state def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece") raise # for backward compatibility if not hasattr(self , "sp_model_kwargs"): lowerCamelCase__: Dict ={} lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return ([0] * len(UpperCAmelCase_)) + [1] return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' lowerCamelCase__: Any =[self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE_ (self : str) ->Dict: '''simple docstring''' return len(self.sp_model) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip() return out_string def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return lowerCamelCase__: List[str] =os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase_ , "wb") as fi: lowerCamelCase__: Dict =self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase__: Union[str, Any] =[self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
10
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): lowerCamelCase__: str =[image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase__: List[str] =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCamelCase__: Any =np.concatenate(__a , axis=0 ) lowerCamelCase__: str =np.array(__a ).astype(np.floataa ) / 2_5_5.0 lowerCamelCase__: Tuple =image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase__: Union[str, Any] =2.0 * image - 1.0 lowerCamelCase__: Any =torch.from_numpy(__a ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase__: Dict =torch.cat(__a , dim=0 ) return image def lowerCAmelCase_ ( __a , __a , __a , __a=0.9_9_9_5 ) -> str: """simple docstring""" if not isinstance(__a , np.ndarray ): lowerCamelCase__: int =True lowerCamelCase__: Dict =va.device lowerCamelCase__: List[Any] =va.cpu().numpy() lowerCamelCase__: List[str] =va.cpu().numpy() lowerCamelCase__: Optional[int] =np.sum(va * va / (np.linalg.norm(__a ) * np.linalg.norm(__a )) ) if np.abs(__a ) > DOT_THRESHOLD: lowerCamelCase__: str =(1 - t) * va + t * va else: lowerCamelCase__: List[str] =np.arccos(__a ) lowerCamelCase__: Tuple =np.sin(__a ) lowerCamelCase__: str =theta_a * t lowerCamelCase__: List[Any] =np.sin(__a ) lowerCamelCase__: Tuple =np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase__: int =sin_theta_t / sin_theta_a lowerCamelCase__: List[Any] =sa * va + sa * va if inputs_are_torch: lowerCamelCase__: int =torch.from_numpy(__a ).to(__a ) return va def lowerCAmelCase_ ( __a , __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: str =F.normalize(__a , dim=-1 ) lowerCamelCase__: Union[str, Any] =F.normalize(__a , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCAmelCase_ ( __a , __a ) -> List[Any]: """simple docstring""" for param in model.parameters(): lowerCamelCase__: Any =value class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[Any] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , UpperCAmelCase_ : CLIPFeatureExtractor , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=None , ) ->List[str]: '''simple docstring''' super().__init__() self.register_modules( vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , clip_model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , coca_model=UpperCAmelCase_ , coca_tokenizer=UpperCAmelCase_ , coca_transform=UpperCAmelCase_ , ) lowerCamelCase__: Tuple =( feature_extractor.size if isinstance(feature_extractor.size , UpperCAmelCase_) else feature_extractor.size["shortest_edge"] ) lowerCamelCase__: int =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std) set_requires_grad(self.text_encoder , UpperCAmelCase_) set_requires_grad(self.clip_model , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[Union[str, int]] = "auto") ->Union[str, Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__: List[str] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]: '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str) ->Any: '''simple docstring''' set_requires_grad(self.vae , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' set_requires_grad(self.vae , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' set_requires_grad(self.unet , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]: '''simple docstring''' set_requires_grad(self.unet , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple) ->str: '''simple docstring''' lowerCamelCase__: str =min(int(num_inference_steps * strength) , UpperCAmelCase_) lowerCamelCase__: Tuple =max(num_inference_steps - init_timestep , 0) lowerCamelCase__: List[str] =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=None) ->Union[str, Any]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , torch.Tensor): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase_)}""") lowerCamelCase__: Optional[int] =image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Any =[ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(UpperCAmelCase_) ] lowerCamelCase__: List[Any] =torch.cat(UpperCAmelCase_ , dim=0) else: lowerCamelCase__: Tuple =self.vae.encode(UpperCAmelCase_).latent_dist.sample(UpperCAmelCase_) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__: List[str] =0.1_8215 * init_latents lowerCamelCase__: Optional[int] =init_latents.repeat_interleave(UpperCAmelCase_ , dim=0) lowerCamelCase__: List[Any] =randn_tensor(init_latents.shape , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_) # get latents lowerCamelCase__: str =self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[int] =init_latents return latents def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =self.coca_transform(UpperCAmelCase_).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase__: str =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype)) lowerCamelCase__: str =self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split("<end_of_text>")[0].replace("<start_of_text>" , "").rstrip(" .,") def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.feature_extractor.preprocess(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half() lowerCamelCase__: Any =self.clip_model.get_image_features(UpperCAmelCase_) lowerCamelCase__: int =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =image_embeddings_clip.repeat_interleave(UpperCAmelCase_ , dim=0) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , ) ->Any: '''simple docstring''' lowerCamelCase__: str =latents.detach().requires_grad_() lowerCamelCase__: int =self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) # predict the noise residual lowerCamelCase__: str =self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): lowerCamelCase__: List[Any] =self.scheduler.alphas_cumprod[timestep] lowerCamelCase__: Tuple =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__: int =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase__: Any =torch.sqrt(UpperCAmelCase_) lowerCamelCase__: Optional[int] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCAmelCase_): lowerCamelCase__: Any =self.scheduler.sigmas[index] lowerCamelCase__: List[str] =latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler)} not supported""") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__: Any =1 / 0.1_8215 * sample lowerCamelCase__: Any =self.vae.decode(UpperCAmelCase_).sample lowerCamelCase__: List[Any] =(image / 2 + 0.5).clamp(0 , 1) lowerCamelCase__: List[Any] =transforms.Resize(self.feature_extractor_size)(UpperCAmelCase_) lowerCamelCase__: Dict =self.normalize(UpperCAmelCase_).to(latents.dtype) lowerCamelCase__: Union[str, Any] =self.clip_model.get_image_features(UpperCAmelCase_) lowerCamelCase__: List[str] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase_) lowerCamelCase__: List[Any] =spherical_dist_loss(UpperCAmelCase_ , UpperCAmelCase_).mean() * clip_guidance_scale lowerCamelCase__: Dict =-torch.autograd.grad(UpperCAmelCase_ , UpperCAmelCase_)[0] if isinstance(self.scheduler , UpperCAmelCase_): lowerCamelCase__: Dict =latents.detach() + grads * (sigma**2) lowerCamelCase__: List[str] =noise_pred_original else: lowerCamelCase__: int =noise_pred_original - torch.sqrt(UpperCAmelCase_) * grads return noise_pred, latents @torch.no_grad() def __call__(self : Dict , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[int] = 512 , UpperCAmelCase_ : Optional[int] = 512 , UpperCAmelCase_ : float = 0.6 , UpperCAmelCase_ : Optional[int] = 50 , UpperCAmelCase_ : Optional[float] = 7.5 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[float] = 100 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : float = 0.8 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , ) ->Any: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and len(UpperCAmelCase_) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase_)} generators.""") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""") if isinstance(UpperCAmelCase_ , torch.Generator) and batch_size > 1: lowerCamelCase__: Optional[Any] =[generator] + [None] * (batch_size - 1) lowerCamelCase__: Optional[Any] =[ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] lowerCamelCase__: str =[x[0] for x in coca_is_none if x[1]] lowerCamelCase__: Optional[int] =", ".join(UpperCAmelCase_) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase_): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""") lowerCamelCase__: List[str] =self.get_image_description(UpperCAmelCase_) if style_prompt is None: if len(UpperCAmelCase_): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""") lowerCamelCase__: Optional[int] =self.get_image_description(UpperCAmelCase_) # get prompt text embeddings for content and style lowerCamelCase__: int =self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="pt" , ) lowerCamelCase__: Optional[Any] =self.text_encoder(content_text_input.input_ids.to(self.device))[0] lowerCamelCase__: Tuple =self.tokenizer( UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="pt" , ) lowerCamelCase__: Any =self.text_encoder(style_text_input.input_ids.to(self.device))[0] lowerCamelCase__: Tuple =slerp(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # duplicate text embeddings for each generation per prompt lowerCamelCase__: Dict =text_embeddings.repeat_interleave(UpperCAmelCase_ , dim=0) # set timesteps lowerCamelCase__: Dict ="offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) lowerCamelCase__: str ={} if accepts_offset: lowerCamelCase__: Tuple =1 self.scheduler.set_timesteps(UpperCAmelCase_ , **UpperCAmelCase_) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , self.device) lowerCamelCase__: Optional[Any] =timesteps[:1].repeat(UpperCAmelCase_) # Preprocess image lowerCamelCase__: List[Any] =preprocess(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[str] =self.prepare_latents( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , text_embeddings.dtype , self.device , UpperCAmelCase_) lowerCamelCase__: Tuple =preprocess(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: int =self.prepare_latents( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , text_embeddings.dtype , self.device , UpperCAmelCase_) lowerCamelCase__: Tuple =slerp(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if clip_guidance_scale > 0: lowerCamelCase__: Optional[int] =self.get_clip_image_embeddings(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: List[Any] =self.get_clip_image_embeddings(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =slerp( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase__: str =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase__: Optional[Any] =content_text_input.input_ids.shape[-1] lowerCamelCase__: int =self.tokenizer([""] , padding="max_length" , max_length=UpperCAmelCase_ , return_tensors="pt") lowerCamelCase__: Any =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase__: Optional[Any] =uncond_embeddings.repeat_interleave(UpperCAmelCase_ , dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase__: str =torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase__: Any =(batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase__: Tuple =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase__: int =torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device="cpu" , dtype=UpperCAmelCase_).to( self.device) else: lowerCamelCase__: Any =torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""") lowerCamelCase__: List[str] =latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase__: Union[str, Any] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase__: Optional[Any] ="eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) lowerCamelCase__: Dict ={} if accepts_eta: lowerCamelCase__: Optional[Any] =eta # check if the scheduler accepts generator lowerCamelCase__: str ="generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: lowerCamelCase__: Optional[int] =generator with self.progress_bar(total=UpperCAmelCase_): for i, t in enumerate(UpperCAmelCase_): # expand the latents if we are doing classifier free guidance lowerCamelCase__: Any =torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowerCamelCase__: Dict =self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) # predict the noise residual lowerCamelCase__: int =self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase__ , lowerCamelCase__: Any =noise_pred.chunk(2) lowerCamelCase__: Dict =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase__: str =( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase__ , lowerCamelCase__: Tuple =self.cond_fn( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__: Optional[int] =self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase__: int =1 / 0.1_8215 * latents lowerCamelCase__: str =self.vae.decode(UpperCAmelCase_).sample lowerCamelCase__: List[Any] =(image / 2 + 0.5).clamp(0 , 1) lowerCamelCase__: Optional[int] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": lowerCamelCase__: Union[str, Any] =self.numpy_to_pil(UpperCAmelCase_) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_)
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
1