code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =0
# if input_string is "aba" than new_input_string become "a|b|a"
lowerCamelCase__: List[str] =""
lowerCamelCase__: List[str] =""
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(__a ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
lowerCamelCase__ , lowerCamelCase__: List[Any] =0, 0
# length[i] shows the length of palindromic substring with center i
lowerCamelCase__: Union[str, Any] =[1 for i in range(len(__a ) )]
# for each character in new_string find corresponding palindromic string
lowerCamelCase__: Tuple =0
for j in range(len(__a ) ):
lowerCamelCase__: Tuple =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(__a )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
lowerCamelCase__: Union[str, Any] =2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
lowerCamelCase__: Dict =j - k + 1 # noqa: E741
lowerCamelCase__: Union[str, Any] =j + k - 1
# update max_length and start position
if max_length < length[j]:
lowerCamelCase__: Optional[Any] =length[j]
lowerCamelCase__: int =j
# create that string
lowerCamelCase__: List[str] =new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841
lowerCamelCase__: List[Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: List[str] =defaultdict(__a )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCamelCase__: List[str] =mst(__a )
lowerCamelCase__: Union[str, Any] =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCamelCase__: Optional[int] =tuple(answer[:2] )
lowerCamelCase__: List[Any] =tuple(edge[::-1] )
assert edge in result or reverse in result
| 10 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 | 1 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 | 1 |
__A = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 10 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 1 |
from ..utils import DummyObject, requires_backends
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["torch", "transformers", "onnx"]
def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict) ->Dict:
'''simple docstring'''
requires_backends(self , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str) ->Any:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["torch", "transformers", "onnx"]
def __init__(self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]) ->Any:
'''simple docstring'''
requires_backends(self , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any) ->List[str]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int) ->Optional[Any]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["torch", "transformers", "onnx"]
def __init__(self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->int:
'''simple docstring'''
requires_backends(self , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["torch", "transformers", "onnx"]
def __init__(self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str]) ->int:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str) ->List[str]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["torch", "transformers", "onnx"]
def __init__(self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]) ->Dict:
'''simple docstring'''
requires_backends(self , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int]) ->List[str]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict) ->Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["torch", "transformers", "onnx"]
def __init__(self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple) ->Dict:
'''simple docstring'''
requires_backends(self , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple) ->Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
requires_backends(cls , ["torch", "transformers", "onnx"])
| 10 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 1 |
from graphs.minimum_spanning_tree_kruskal import kruskal
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =9
lowerCamelCase__: Union[str, Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: Optional[Any] =kruskal(__a , __a )
lowerCamelCase__: str =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(__a ) == sorted(__a )
| 10 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase_ ( __a = "https://www.worldometers.info/coronavirus" ) -> dict:
"""simple docstring"""
lowerCamelCase__: List[str] =BeautifulSoup(requests.get(__a ).text , "html.parser" )
lowerCamelCase__: List[Any] =soup.findAll("h1" )
lowerCamelCase__: Tuple =soup.findAll("div" , {"class": "maincounter-number"} )
keys += soup.findAll("span" , {"class": "panel-title"} )
values += soup.findAll("div" , {"class": "number-table-main"} )
return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a )}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covidaa_stats().items():
print(f'{key}\n{value}\n')
| 10 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 1 |
from __future__ import annotations
__A = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Any , UpperCAmelCase_ : dict[str, list[str]] , UpperCAmelCase_ : str) ->None:
'''simple docstring'''
lowerCamelCase__: List[Any] =graph
# mapping node to its parent in resulting breadth first tree
lowerCamelCase__: dict[str, str | None] ={}
lowerCamelCase__: str =source_vertex
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->None:
'''simple docstring'''
lowerCamelCase__: str ={self.source_vertex}
lowerCamelCase__: List[Any] =None
lowerCamelCase__: Optional[int] =[self.source_vertex] # first in first out queue
while queue:
lowerCamelCase__: List[Any] =queue.pop(0)
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =vertex
queue.append(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
lowerCamelCase__: List[Any] =self.parent.get(UpperCAmelCase_)
if target_vertex_parent is None:
lowerCamelCase__: int =(
F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}"""
)
raise ValueError(UpperCAmelCase_)
return self.shortest_path(UpperCAmelCase_) + F"""->{target_vertex}"""
if __name__ == "__main__":
__A = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 10 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 1 |
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def lowerCAmelCase_ ( __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =torch.exp(__a )
lowerCamelCase__: List[Any] =torch.sum(__a , dim=1 ) # sum of exp(x_i)
lowerCamelCase__: Union[str, Any] =torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(__a ) - B / A
class _SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__(self : Dict , UpperCAmelCase_ : Optional[int]) ->Any:
'''simple docstring'''
super().__init__()
lowerCamelCase__: Dict =config.output_attentions
lowerCamelCase__: Dict =config.output_hidden_states
lowerCamelCase__: List[Any] =nn.ModuleList([BertLayer(UpperCAmelCase_) for _ in range(config.num_hidden_layers)])
lowerCamelCase__: str =nn.ModuleList([BertHighway(UpperCAmelCase_) for _ in range(config.num_hidden_layers)])
lowerCamelCase__: int =[-1 for _ in range(config.num_hidden_layers)]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
if (type(UpperCAmelCase_) is float) or (type(UpperCAmelCase_) is int):
for i in range(len(self.early_exit_entropy)):
lowerCamelCase__: Optional[int] =x
else:
lowerCamelCase__: int =x
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Dict) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name])
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , ) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =()
lowerCamelCase__: Optional[int] =()
lowerCamelCase__: Optional[int] =()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
lowerCamelCase__: List[str] =all_hidden_states + (hidden_states,)
lowerCamelCase__: List[Any] =layer_module(
UpperCAmelCase_ , UpperCAmelCase_ , head_mask[i] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =layer_outputs[0]
if self.output_attentions:
lowerCamelCase__: Any =all_attentions + (layer_outputs[1],)
lowerCamelCase__: str =(hidden_states,)
if self.output_hidden_states:
lowerCamelCase__: int =current_outputs + (all_hidden_states,)
if self.output_attentions:
lowerCamelCase__: List[Any] =current_outputs + (all_attentions,)
lowerCamelCase__: List[str] =self.highway[i](UpperCAmelCase_)
# logits, pooled_output
if not self.training:
lowerCamelCase__: List[Any] =highway_exit[0]
lowerCamelCase__: List[str] =entropy(UpperCAmelCase_)
lowerCamelCase__: str =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
lowerCamelCase__: int =all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
lowerCamelCase__: Dict =(highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCAmelCase_ , i + 1)
else:
lowerCamelCase__: Optional[int] =all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
lowerCamelCase__: Union[str, Any] =all_hidden_states + (hidden_states,)
lowerCamelCase__: List[str] =(hidden_states,)
if self.output_hidden_states:
lowerCamelCase__: str =outputs + (all_hidden_states,)
if self.output_attentions:
lowerCamelCase__: Dict =outputs + (all_attentions,)
lowerCamelCase__: Any =outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"The Bert Model transformer with early exiting (DeeBERT). " , __SCREAMING_SNAKE_CASE , )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
super().__init__(UpperCAmelCase_)
lowerCamelCase__: Any =config
lowerCamelCase__: Tuple =BertEmbeddings(UpperCAmelCase_)
lowerCamelCase__: str =DeeBertEncoder(UpperCAmelCase_)
lowerCamelCase__: int =BertPooler(UpperCAmelCase_)
self.init_weights()
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
return self.embeddings.word_embeddings
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : List[str]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: str =value
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[str]) ->List[Any]:
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase_)
@add_start_docstrings_to_model_forward(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=None , ) ->Optional[Any]:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
lowerCamelCase__: Union[str, Any] =input_ids.size()
elif inputs_embeds is not None:
lowerCamelCase__: Optional[int] =inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
lowerCamelCase__: Optional[Any] =input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowerCamelCase__: int =torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_)
if encoder_attention_mask is None:
lowerCamelCase__: List[Any] =torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_)
if token_type_ids is None:
lowerCamelCase__: Dict =torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowerCamelCase__: torch.Tensor =self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
lowerCamelCase__: Dict =encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
lowerCamelCase__: Optional[int] =encoder_attention_mask[:, None, None, :]
lowerCamelCase__: List[str] =encoder_extended_attention_mask.to(
dtype=next(self.parameters()).dtype) # fp16 compatibility
lowerCamelCase__: List[str] =(1.0 - encoder_extended_attention_mask) * -1_0000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowerCamelCase__: Optional[Any] =self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers)
lowerCamelCase__: int =self.embeddings(
input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_)
lowerCamelCase__: List[Any] =self.encoder(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , )
lowerCamelCase__: List[str] =encoder_outputs[0]
lowerCamelCase__: Optional[Any] =self.pooler(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any =message
lowerCamelCase__: int =exit_layer # start from 1!
class _SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : int) ->Tuple:
'''simple docstring'''
super().__init__()
lowerCamelCase__: Tuple =BertPooler(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =nn.Dropout(config.hidden_dropout_prob)
lowerCamelCase__: int =nn.Linear(config.hidden_size , config.num_labels)
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : List[Any]) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =encoder_outputs[0]
lowerCamelCase__: Optional[int] =self.pooler(UpperCAmelCase_)
# "return" pooler_output
# BertModel
lowerCamelCase__: Union[str, Any] =(pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
lowerCamelCase__: int =bmodel_output[1]
lowerCamelCase__: Union[str, Any] =self.dropout(UpperCAmelCase_)
lowerCamelCase__: int =self.classifier(UpperCAmelCase_)
return logits, pooled_output
@add_start_docstrings(
"Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , __SCREAMING_SNAKE_CASE , )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : str) ->Optional[int]:
'''simple docstring'''
super().__init__(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =config.num_labels
lowerCamelCase__: Tuple =config.num_hidden_layers
lowerCamelCase__: Dict =DeeBertModel(UpperCAmelCase_)
lowerCamelCase__: Any =nn.Dropout(config.hidden_dropout_prob)
lowerCamelCase__: List[Any] =nn.Linear(config.hidden_size , self.config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[str]=-1 , UpperCAmelCase_ : Optional[int]=False , ) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =self.num_layers
try:
lowerCamelCase__: str =self.bert(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
lowerCamelCase__: Union[str, Any] =outputs[1]
lowerCamelCase__: List[Any] =self.dropout(UpperCAmelCase_)
lowerCamelCase__: Dict =self.classifier(UpperCAmelCase_)
lowerCamelCase__: int =(logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowerCamelCase__: Any =e.message
lowerCamelCase__: Dict =e.exit_layer
lowerCamelCase__: List[str] =outputs[0]
if not self.training:
lowerCamelCase__: Optional[Any] =entropy(UpperCAmelCase_)
lowerCamelCase__: str =[]
lowerCamelCase__: List[str] =[]
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowerCamelCase__: Optional[Any] =MSELoss()
lowerCamelCase__: Any =loss_fct(logits.view(-1) , labels.view(-1))
else:
lowerCamelCase__: str =CrossEntropyLoss()
lowerCamelCase__: Union[str, Any] =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
# work with highway exits
lowerCamelCase__: Tuple =[]
for highway_exit in outputs[-1]:
lowerCamelCase__: Optional[Any] =highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCAmelCase_)
highway_entropy.append(highway_exit[2])
if self.num_labels == 1:
# We are doing regression
lowerCamelCase__: int =MSELoss()
lowerCamelCase__: int =loss_fct(highway_logits.view(-1) , labels.view(-1))
else:
lowerCamelCase__: List[str] =CrossEntropyLoss()
lowerCamelCase__: Optional[int] =loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1))
highway_losses.append(UpperCAmelCase_)
if train_highway:
lowerCamelCase__: Optional[int] =(sum(highway_losses[:-1]),) + outputs
# exclude the final highway, of course
else:
lowerCamelCase__: Any =(loss,) + outputs
if not self.training:
lowerCamelCase__: List[str] =outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowerCamelCase__: Optional[int] =(
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 10 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = 42
lowercase_ = 42
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : int) ->List[str]:
'''simple docstring'''
lowerCamelCase__: list[list[Edge]] =[[] for _ in range(UpperCAmelCase_)]
lowerCamelCase__: List[Any] =size
def __getitem__(self : List[str] , UpperCAmelCase_ : int) ->Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex])
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]:
'''simple docstring'''
return self._size
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1.")
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size).")
self._graph[from_vertex].append(Edge(UpperCAmelCase_ , UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->int | None:
'''simple docstring'''
lowerCamelCase__: Any =deque([start_vertex])
lowerCamelCase__: list[int | None] =[None] * self.size
lowerCamelCase__: List[Any] =0
while queue:
lowerCamelCase__: int =queue.popleft()
lowerCamelCase__: Dict =distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCamelCase__: Optional[Any] =current_distance + edge.weight
lowerCamelCase__: Tuple =distances[edge.destination_vertex]
if (
isinstance(UpperCAmelCase_ , UpperCAmelCase_)
and new_distance >= dest_vertex_distance
):
continue
lowerCamelCase__: str =new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex)
else:
queue.append(edge.destination_vertex)
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex.")
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def lowerCAmelCase_ ( __a ) -> Union[str, Any]:
"""simple docstring"""
if "model" in orig_key:
lowerCamelCase__: Tuple =orig_key.replace("model." , "" )
if "norm1" in orig_key:
lowerCamelCase__: Any =orig_key.replace("norm1" , "attention.output.LayerNorm" )
if "norm2" in orig_key:
lowerCamelCase__: Optional[int] =orig_key.replace("norm2" , "output.LayerNorm" )
if "norm" in orig_key:
lowerCamelCase__: Dict =orig_key.replace("norm" , "LayerNorm" )
if "transformer" in orig_key:
lowerCamelCase__: int =orig_key.split("." )[0].split("_" )[-1]
lowerCamelCase__: Dict =orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" )
if "mha.attn" in orig_key:
lowerCamelCase__: List[Any] =orig_key.replace("mha.attn" , "attention.self" )
if "mha" in orig_key:
lowerCamelCase__: str =orig_key.replace("mha" , "attention" )
if "W_q" in orig_key:
lowerCamelCase__: int =orig_key.replace("W_q" , "self.query" )
if "W_k" in orig_key:
lowerCamelCase__: Union[str, Any] =orig_key.replace("W_k" , "self.key" )
if "W_v" in orig_key:
lowerCamelCase__: Optional[Any] =orig_key.replace("W_v" , "self.value" )
if "ff1" in orig_key:
lowerCamelCase__: Union[str, Any] =orig_key.replace("ff1" , "intermediate.dense" )
if "ff2" in orig_key:
lowerCamelCase__: Tuple =orig_key.replace("ff2" , "output.dense" )
if "ff" in orig_key:
lowerCamelCase__: Union[str, Any] =orig_key.replace("ff" , "output.dense" )
if "mlm_class" in orig_key:
lowerCamelCase__: Optional[int] =orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" )
if "mlm" in orig_key:
lowerCamelCase__: Any =orig_key.replace("mlm" , "cls.predictions.transform" )
if "cls" not in orig_key:
lowerCamelCase__: Dict ="yoso." + orig_key
return orig_key
def lowerCAmelCase_ ( __a , __a ) -> Optional[int]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Dict =orig_state_dict.pop(__a )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
lowerCamelCase__: Union[str, Any] =val
lowerCamelCase__: Optional[Any] =orig_state_dict["cls.predictions.decoder.bias"]
lowerCamelCase__: Dict =torch.arange(__a ).expand((1, -1) ) + 2
return orig_state_dict
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =torch.load(__a , map_location="cpu" )["model_state_dict"]
lowerCamelCase__: Any =YosoConfig.from_json_file(__a )
lowerCamelCase__: Optional[int] =YosoForMaskedLM(__a )
lowerCamelCase__: Dict =convert_checkpoint_helper(config.max_position_embeddings , __a )
print(model.load_state_dict(__a ) )
model.eval()
model.save_pretrained(__a )
print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for YOSO model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__A = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 10 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase_ = Features({"image": Image()} )
lowercase_ = Features({"labels": ClassLabel} )
lowercase_ = "image"
lowercase_ = "labels"
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""")
lowerCamelCase__: List[Any] =copy.deepcopy(self)
lowerCamelCase__: Optional[int] =self.label_schema.copy()
lowerCamelCase__: int =features[self.label_column]
lowerCamelCase__: int =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 10 | 1 |
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = CLIPTokenizer
lowercase_ = CLIPTokenizerFast
lowercase_ = True
lowercase_ = {}
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]:
'''simple docstring'''
super().setUp()
# fmt: off
lowerCamelCase__: str =["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCamelCase__: Optional[int] =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: Dict =["#version: 0.2", "l o", "lo w</w>", "e r</w>"]
lowerCamelCase__: List[str] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as fp:
fp.write(json.dumps(UpperCAmelCase_) + "\n")
with open(self.merges_file , "w" , encoding="utf-8") as fp:
fp.write("\n".join(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : List[str]) ->List[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any]) ->int:
'''simple docstring'''
lowerCamelCase__: Optional[Any] ="lower newer"
lowerCamelCase__: Optional[Any] ="lower newer"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map)
lowerCamelCase__: Any ="lower newer"
lowerCamelCase__: List[str] =["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
lowerCamelCase__: List[str] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[str] =[10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
@require_ftfy
def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
lowerCamelCase__: Tuple =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: int =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] ="A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."
lowerCamelCase__: str =tokenizer_s.tokenize(UpperCAmelCase_)
lowerCamelCase__: int =tokenizer_r.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
lowerCamelCase__: Optional[int] ="xa\u0303y" + " " + "x\xe3y"
lowerCamelCase__: Union[str, Any] =tokenizer_s.tokenize(UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer_r.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
# Test that the tokenization is identical on unicode of space type
lowerCamelCase__: Tuple =[
"\u0009", # (horizontal tab, '\t')
"\u000B", # (vertical tab)
"\u000C", # (form feed)
"\u0020", # (space, ' ')
"\u200E", # (left-to-right mark):w
"\u200F", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
lowerCamelCase__: int =tokenizer_s.tokenize(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =tokenizer_r.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
# Test that the tokenization is identical on unicode of line break type
lowerCamelCase__: Tuple =[
"\u000A", # (line feed, '\n')
"\r\n", # (carriage return and line feed, '\r\n')
"\u000D", # (carriage return, '\r')
"\r", # (carriage return, '\r')
"\u000D", # (carriage return, '\r')
"\u2028", # (line separator)
"\u2029", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
lowerCamelCase__: List[str] =tokenizer_s.tokenize(UpperCAmelCase_)
lowerCamelCase__: str =tokenizer_r.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
lowerCamelCase__: List[str] ="hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowerCamelCase__: str =F"""{text_of_1_token} {text_of_1_token}"""
lowerCamelCase__: int =self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , )
lowerCamelCase__: str =tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_)))
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , )
lowerCamelCase__: str =F""" {text}"""
lowerCamelCase__: Optional[Any] =self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase_ , use_fast=UpperCAmelCase_ , )
lowerCamelCase__: Tuple =tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_)))
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_) + 1, 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase_) as context:
self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer")
self.assertTrue(
context.exception.args[0].startswith(
"The `backend_tokenizer` provided does not match the expected format."))
@require_ftfy
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]:
'''simple docstring'''
super().test_tokenization_python_rust_equals()
def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]:
'''simple docstring'''
pass
| 10 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
__A = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
__A = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
__A = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
__A = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
__A = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
__A = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
__A = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
__A = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
__A = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
__A = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
__A = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __call__(self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Union[bool, str] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Any , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
elif titles is None or texts is None:
lowerCamelCase__: Optional[int] =titles if texts is None else texts
return super().__call__(
UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[str] =titles if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [titles]
lowerCamelCase__: List[str] =texts if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [texts]
lowerCamelCase__: int =len(UpperCAmelCase_)
lowerCamelCase__: List[str] =questions if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) else [questions] * n_passages
if len(UpperCAmelCase_) != len(UpperCAmelCase_):
raise ValueError(
F"""There should be as many titles than texts but got {len(UpperCAmelCase_)} titles and {len(UpperCAmelCase_)} texts.""")
lowerCamelCase__: int =super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_)["input_ids"]
lowerCamelCase__: List[Any] =super().__call__(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_)["input_ids"]
lowerCamelCase__: Any ={
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ , UpperCAmelCase_)
]
}
if return_attention_mask is not False:
lowerCamelCase__: Any =[]
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
lowerCamelCase__: Dict =attention_mask
return self.pad(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : BatchEncoding , UpperCAmelCase_ : DPRReaderOutput , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
lowerCamelCase__: Any =reader_input["input_ids"]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =reader_output[:3]
lowerCamelCase__: Optional[int] =len(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =sorted(range(UpperCAmelCase_) , reverse=UpperCAmelCase_ , key=relevance_logits.__getitem__)
lowerCamelCase__: List[DPRReaderOutput] =[]
for doc_id in sorted_docs:
lowerCamelCase__: Optional[Any] =list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
lowerCamelCase__: List[str] =sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowerCamelCase__: Optional[Any] =sequence_ids.index(self.pad_token_id)
else:
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase_ , top_spans=UpperCAmelCase_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase_ , start_index=UpperCAmelCase_ , end_index=UpperCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase_) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
lowerCamelCase__: str =[]
for start_index, start_score in enumerate(UpperCAmelCase_):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x[1] , reverse=UpperCAmelCase_)
lowerCamelCase__: List[str] =[]
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""")
lowerCamelCase__: int =end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F"""Span is too long: {length} > {max_answer_length}""")
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase_) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = READER_PRETRAINED_VOCAB_FILES_MAP
lowercase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = READER_PRETRAINED_INIT_CONFIGURATION
lowercase_ = ["input_ids", "attention_mask"]
| 10 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =n
lowerCamelCase__: Tuple =[None] * self.n
lowerCamelCase__: str =0 # index of the first element
lowerCamelCase__: Tuple =0
lowerCamelCase__: Optional[Any] =0
def __len__(self : str) ->int:
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE_ (self : int) ->bool:
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL")
lowerCamelCase__: List[Any] =data
lowerCamelCase__: Dict =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW")
lowerCamelCase__: Optional[Any] =self.array[self.front]
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Dict =(self.front + 1) % self.n
self.size -= 1
return temp
| 10 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
lowercase_ = "CIDAS/clipseg-rd64-refined"
lowercase_ = "image_segmenter"
lowercase_ = CLIPSegForImageSegmentation
lowercase_ = ["image", "text"]
lowercase_ = ["image"]
def __init__(self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int) ->List[Any]:
'''simple docstring'''
requires_backends(self , ["vision"])
super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : "Image" , UpperCAmelCase_ : str) ->Any:
'''simple docstring'''
return self.pre_processor(text=[label] , images=[image] , padding=UpperCAmelCase_ , return_tensors="pt")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
with torch.no_grad():
lowerCamelCase__: List[Any] =self.model(**UpperCAmelCase_).logits
return logits
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =outputs.cpu().detach().numpy()
lowerCamelCase__: str =0
lowerCamelCase__: Dict =1
return Image.fromarray((array * 255).astype(np.uinta))
| 10 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> YolosConfig:
"""simple docstring"""
lowerCamelCase__: str =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase__: int =192
lowerCamelCase__: Optional[int] =768
lowerCamelCase__: Any =12
lowerCamelCase__: str =3
lowerCamelCase__: Optional[int] =[800, 1333]
lowerCamelCase__: Union[str, Any] =False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: int =330
lowerCamelCase__: Optional[Any] =14
lowerCamelCase__: Any =6
lowerCamelCase__: List[str] =1320
elif "yolos_s" in yolos_name:
lowerCamelCase__: List[str] =384
lowerCamelCase__: Union[str, Any] =1536
lowerCamelCase__: List[Any] =12
lowerCamelCase__: Any =6
elif "yolos_b" in yolos_name:
lowerCamelCase__: str =[800, 1344]
lowerCamelCase__: int =91
lowerCamelCase__: str ="huggingface/label-files"
lowerCamelCase__: List[str] ="coco-detection-id2label.json"
lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()}
lowerCamelCase__: List[str] =idalabel
lowerCamelCase__: int ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :]
lowerCamelCase__: str =in_proj_bias[: config.hidden_size]
lowerCamelCase__: str =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__: str =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :]
lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if "backbone" in name:
lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCAmelCase_ ( __a , __a ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Any =orig_state_dict.pop(__a )
if "qkv" in key:
lowerCamelCase__: Tuple =key.split("." )
lowerCamelCase__: List[str] =int(key_split[2] )
lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase__: int =val[:dim, :]
lowerCamelCase__: str =val[
dim : dim * 2, :
]
lowerCamelCase__: Any =val[-dim:, :]
else:
lowerCamelCase__: Tuple =val[:dim]
lowerCamelCase__: Optional[Any] =val[dim : dim * 2]
lowerCamelCase__: str =val[-dim:]
else:
lowerCamelCase__: Dict =val
return orig_state_dict
def lowerCAmelCase_ ( ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =get_yolos_config(__a )
# load original state_dict
lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase__: int =YolosForObjectDetection(__a )
model.eval()
lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512
lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a )
lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Tuple =model(**__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes
lowerCamelCase__ , lowerCamelCase__: Any =None, None
if yolos_name == "yolos_ti":
lowerCamelCase__: Optional[Any] =torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
lowerCamelCase__: List[Any] =torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase__: Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
lowerCamelCase__: Any =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase__: str =torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
lowerCamelCase__: Optional[Any] =torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: str =torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
lowerCamelCase__: Tuple =torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
lowerCamelCase__: Optional[int] =torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
lowerCamelCase__: Any ={
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase__: Optional[int] =model_mapping[yolos_name]
image_processor.push_to_hub(__a , organization="hustvl" )
model.push_to_hub(__a , organization="hustvl" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 10 | 1 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "M-CLIP"
def __init__(self : Optional[Any] , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : int=768 , **UpperCAmelCase_ : Dict) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =transformerDimSize
lowerCamelCase__: Tuple =imageDimSize
super().__init__(**UpperCAmelCase_)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MCLIPConfig
def __init__(self : List[str] , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict) ->Dict:
'''simple docstring'''
super().__init__(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: str =XLMRobertaModel(UpperCAmelCase_)
lowerCamelCase__: Any =torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__: str =self.transformer(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)[0]
lowerCamelCase__: Optional[int] =(embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
return self.LinearTransformation(UpperCAmelCase_), embs
| 10 |
from math import ceil, sqrt
def lowerCAmelCase_ ( __a = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__: str =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
import os
# Precomputes a list of the 100 first triangular numbers
__A = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def lowerCAmelCase_ ( ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =os.path.dirname(os.path.realpath(__a ) )
lowerCamelCase__: str =os.path.join(__a , "words.txt" )
lowerCamelCase__: List[str] =""
with open(__a ) as f:
lowerCamelCase__: Any =f.readline()
lowerCamelCase__: List[str] =[word.strip("\"" ) for word in words.strip("\r\n" ).split("," )]
lowerCamelCase__: List[str] =[
word
for word in [sum(ord(__a ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__a )
if __name__ == "__main__":
print(solution())
| 10 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =tmp_path / "cache"
lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
lowerCamelCase__: str =parquet_path
elif issubclass(__a , __a ):
lowerCamelCase__: str =[parquet_path]
lowerCamelCase__: Optional[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
lowerCamelCase__: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: List[str] =ParquetDatasetReader(
{"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: int =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]:
"""simple docstring"""
if split:
lowerCamelCase__: Union[str, Any] ={split: parquet_path}
else:
lowerCamelCase__: int ="train"
lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path}
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" )
lowerCamelCase__: Optional[int] =pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" )
lowerCamelCase__: Union[str, Any] ={"image": [image_path]}
lowerCamelCase__: int =Features({"image": Image()} )
lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a )
lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 10 | 1 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "segformer"
def __init__(self : str , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Any=[2, 2, 2, 2] , UpperCAmelCase_ : Dict=[8, 4, 2, 1] , UpperCAmelCase_ : Any=[32, 64, 160, 256] , UpperCAmelCase_ : Dict=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : str=[1, 2, 5, 8] , UpperCAmelCase_ : Optional[Any]=[4, 4, 4, 4] , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Union[str, Any]=1E-6 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : Union[str, Any]=255 , **UpperCAmelCase_ : Any , ) ->List[str]:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"
" removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCAmelCase_ , )
lowerCamelCase__: List[str] =num_channels
lowerCamelCase__: int =num_encoder_blocks
lowerCamelCase__: Union[str, Any] =depths
lowerCamelCase__: List[Any] =sr_ratios
lowerCamelCase__: Union[str, Any] =hidden_sizes
lowerCamelCase__: Optional[int] =patch_sizes
lowerCamelCase__: str =strides
lowerCamelCase__: List[str] =mlp_ratios
lowerCamelCase__: Tuple =num_attention_heads
lowerCamelCase__: Optional[Any] =hidden_act
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: List[str] =classifier_dropout_prob
lowerCamelCase__: Tuple =initializer_range
lowerCamelCase__: List[str] =drop_path_rate
lowerCamelCase__: Optional[int] =layer_norm_eps
lowerCamelCase__: Optional[int] =decoder_hidden_size
lowerCamelCase__: List[Any] =kwargs.get("reshape_last_stage" , UpperCAmelCase_)
lowerCamelCase__: List[Any] =semantic_loss_ignore_index
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ (self : int) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
])
@property
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->float:
'''simple docstring'''
return 1E-4
@property
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int:
'''simple docstring'''
return 12
| 10 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A = logging.get_logger(__name__)
__A = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "blip_2_vision_model"
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=1_408 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Any=39 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Union[str, Any]=224 , UpperCAmelCase_ : Union[str, Any]=14 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Any=0.0_0001 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Dict=1E-1_0 , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : int , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: Tuple =hidden_size
lowerCamelCase__: Tuple =intermediate_size
lowerCamelCase__: Optional[Any] =num_hidden_layers
lowerCamelCase__: int =num_attention_heads
lowerCamelCase__: Any =patch_size
lowerCamelCase__: Dict =image_size
lowerCamelCase__: int =initializer_range
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: List[str] =layer_norm_eps
lowerCamelCase__: Union[str, Any] =hidden_act
lowerCamelCase__: str =qkv_bias
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : List[Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: Dict =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_)
# get the vision config dict if we are loading from Blip2Config
if config_dict.get("model_type") == "blip-2":
lowerCamelCase__: Optional[int] =config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "blip_2_qformer"
def __init__(self : Union[str, Any] , UpperCAmelCase_ : str=30_522 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[int]=1E-1_2 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[Any]=1_408 , **UpperCAmelCase_ : Any , ) ->str:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =vocab_size
lowerCamelCase__: Optional[int] =hidden_size
lowerCamelCase__: Any =num_hidden_layers
lowerCamelCase__: Optional[int] =num_attention_heads
lowerCamelCase__: str =hidden_act
lowerCamelCase__: List[Any] =intermediate_size
lowerCamelCase__: List[str] =hidden_dropout_prob
lowerCamelCase__: int =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Any =initializer_range
lowerCamelCase__: str =layer_norm_eps
lowerCamelCase__: Any =position_embedding_type
lowerCamelCase__: List[Any] =cross_attention_frequency
lowerCamelCase__: Union[str, Any] =encoder_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Optional[Any]) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_)
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get("model_type") == "blip-2":
lowerCamelCase__: Tuple =config_dict["qformer_config"]
if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "blip-2"
lowercase_ = True
def __init__(self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=32 , **UpperCAmelCase_ : str) ->int:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if vision_config is None:
lowerCamelCase__: Any ={}
logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.")
if qformer_config is None:
lowerCamelCase__: str ={}
logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.")
if text_config is None:
lowerCamelCase__: Union[str, Any] ={}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).")
lowerCamelCase__: Dict =BlipaVisionConfig(**UpperCAmelCase_)
lowerCamelCase__: List[str] =BlipaQFormerConfig(**UpperCAmelCase_)
lowerCamelCase__: Dict =text_config["model_type"] if "model_type" in text_config else "opt"
lowerCamelCase__: List[str] =CONFIG_MAPPING[text_model_type](**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =self.text_config.tie_word_embeddings
lowerCamelCase__: Optional[Any] =self.text_config.is_encoder_decoder
lowerCamelCase__: Any =num_query_tokens
lowerCamelCase__: List[Any] =self.vision_config.hidden_size
lowerCamelCase__: Optional[Any] =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
lowerCamelCase__: List[Any] =1.0
lowerCamelCase__: Dict =0.02
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : List[str] , UpperCAmelCase_ : BlipaVisionConfig , UpperCAmelCase_ : BlipaQFormerConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Dict , ) ->int:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[Any] =copy.deepcopy(self.__dict__)
lowerCamelCase__: Optional[int] =self.vision_config.to_dict()
lowerCamelCase__: List[Any] =self.qformer_config.to_dict()
lowerCamelCase__: Any =self.text_config.to_dict()
lowerCamelCase__: Union[str, Any] =self.__class__.model_type
return output
| 10 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 | 1 |
def lowerCAmelCase_ ( __a , __a ) -> int:
"""simple docstring"""
while second != 0:
lowerCamelCase__: Union[str, Any] =first & second
first ^= second
lowerCamelCase__: str =c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = int(input("Enter the first number: ").strip())
__A = int(input("Enter the second number: ").strip())
print(f'{add(first, second) = }')
| 10 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (DDPMParallelScheduler,)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any ={
"num_train_timesteps": 1_000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**UpperCAmelCase_)
return config
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.dummy_model()
lowerCamelCase__: int =self.dummy_sample_deter
lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1
lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1
lowerCamelCase__: Optional[Any] =samplea.shape[0]
lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0)
lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1))
lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 1153.1833) < 1E-2
assert abs(result_mean.item() - 0.5005) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.dummy_model()
lowerCamelCase__: List[Any] =self.dummy_sample_deter
lowerCamelCase__: int =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: Any =pred_prev_sample
lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 258.9606) < 1E-2
assert abs(result_mean.item() - 0.3372) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction")
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: str =self.dummy_model()
lowerCamelCase__: str =self.dummy_sample_deter
lowerCamelCase__: Dict =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: List[str] =pred_prev_sample
lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 202.0296) < 1E-2
assert abs(result_mean.item() - 0.2631) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.scheduler_classes[0]
lowerCamelCase__: Union[str, Any] =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase_):
if i == len(UpperCAmelCase_) - 1:
lowerCamelCase__: Dict =-1
else:
lowerCamelCase__: Union[str, Any] =timesteps[i + 1]
lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_)
lowerCamelCase__: str =prev_t.item()
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: List[Any] =self.get_scheduler_config()
lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config()
lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0]
lowerCamelCase__: int =len(UpperCAmelCase_)
with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
| 10 | 1 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def lowerCAmelCase_ ( __a ) -> Dict:
"""simple docstring"""
lowerCamelCase__: str =[
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__a , __a )
def lowerCAmelCase_ ( __a ) -> List[str]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: Tuple =emb.weight.shape
lowerCamelCase__: Tuple =nn.Linear(__a , __a , bias=__a )
lowerCamelCase__: int =emb.weight.data
return lin_layer
def lowerCAmelCase_ ( __a , __a=None ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Optional[Any] ={}
for old_key in state_dict.keys():
lowerCamelCase__: List[Any] =old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowerCamelCase__: int =key.replace("moe_layer.experts.0" , F"""ffn.experts.expert_{expert_idx}""" )
else:
lowerCamelCase__: Optional[Any] =key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
lowerCamelCase__: int =key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
lowerCamelCase__: Tuple =key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
lowerCamelCase__: Tuple =key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
lowerCamelCase__: int =key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
lowerCamelCase__: Optional[int] =key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
lowerCamelCase__: List[str] =key.replace("final_layer_norm" , "ff_layer_norm" )
lowerCamelCase__: List[str] =state_dict[old_key]
return new_dict
def lowerCAmelCase_ ( __a , __a , __a , __a , __a = WEIGHTS_NAME ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: List[str] =[]
lowerCamelCase__: Any =0
os.makedirs(__a , exist_ok=__a )
for expert in range(__a ):
lowerCamelCase__: Any =switch_checkpoint_path + F"""-rank-{expert}.pt"""
if os.path.isfile(__a ):
lowerCamelCase__: Union[str, Any] =torch.load(__a )["model"]
remove_ignore_keys_(__a )
lowerCamelCase__: int =rename_fairseq_keys(__a , __a )
lowerCamelCase__: Any =os.path.join(
__a , weights_name.replace(".bin" , F"""-{len(__a )+1:05d}-of-???.bin""" ) )
torch.save(__a , __a )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(__a )[0]].dtype )
# Add the last block
lowerCamelCase__: Optional[int] =os.path.join(__a , weights_name.replace(".bin" , F"""-{len(__a )+1:05d}-of-???.bin""" ) )
lowerCamelCase__: str =torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(__a )
lowerCamelCase__: Any =rename_fairseq_keys(__a , __a )
lowerCamelCase__: Optional[Any] =shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__a ) == 1:
lowerCamelCase__: Optional[int] =os.path.join(__a , __a )
torch.save(__a , __a )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__a , __a )
# Otherwise, let's build the index
lowerCamelCase__: Dict ={}
for idx, shard in enumerate(__a ):
lowerCamelCase__: str =weights_name.replace(".bin" , F"""-{idx+1:05d}-of-{len(__a ):05d}.bin""" )
lowerCamelCase__: Optional[Any] =os.path.join(__a , weights_name.replace(".bin" , F"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(__a , os.path.join(__a , __a ) )
for key in shard:
lowerCamelCase__: List[str] =shard_file
# Add the metadata
lowerCamelCase__: List[str] ={"total_size": total_size}
lowerCamelCase__: List[Any] ={"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__a , __a ) , "w" , encoding="utf-8" ) as f:
lowerCamelCase__: str =json.dumps(__a , indent=2 , sort_keys=__a ) + "\n"
f.write(__a )
return metadata, index
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__A = parser.parse_args()
__A , __A = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
__A = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| 10 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841
lowerCamelCase__: List[Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: List[str] =defaultdict(__a )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCamelCase__: List[str] =mst(__a )
lowerCamelCase__: Union[str, Any] =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCamelCase__: Optional[int] =tuple(answer[:2] )
lowerCamelCase__: List[Any] =tuple(edge[::-1] )
assert edge in result or reverse in result
| 10 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
__A = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["pixel_values"]
def __init__(self : Dict , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 8 , **UpperCAmelCase_ : Optional[int] , ) ->None:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: Dict =do_rescale
lowerCamelCase__: Any =rescale_factor
lowerCamelCase__: List[str] =do_pad
lowerCamelCase__: List[Any] =pad_size
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str]) ->np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Tuple =get_image_size(UpperCAmelCase_)
lowerCamelCase__: Any =(old_height // size + 1) * size - old_height
lowerCamelCase__: Optional[int] =(old_width // size + 1) * size - old_width
return pad(UpperCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[Any] , ) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__: Dict =rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__: int =do_pad if do_pad is not None else self.do_pad
lowerCamelCase__: Dict =pad_size if pad_size is not None else self.pad_size
lowerCamelCase__: Any =make_list_of_images(UpperCAmelCase_)
if not valid_images(UpperCAmelCase_):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
lowerCamelCase__: Dict =[to_numpy_array(UpperCAmelCase_) for image in images]
if do_rescale:
lowerCamelCase__: str =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images]
if do_pad:
lowerCamelCase__: Tuple =[self.pad(UpperCAmelCase_ , size=UpperCAmelCase_) for image in images]
lowerCamelCase__: Tuple =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images]
lowerCamelCase__: Union[str, Any] ={"pixel_values": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
| 10 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 | 1 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = XGLMConfig
lowercase_ = {}
lowercase_ = "gelu"
def __init__(self : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=14 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : List[str]=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =parent
lowerCamelCase__: int =batch_size
lowerCamelCase__: List[str] =seq_length
lowerCamelCase__: int =is_training
lowerCamelCase__: int =use_input_mask
lowerCamelCase__: Tuple =use_labels
lowerCamelCase__: Any =vocab_size
lowerCamelCase__: Dict =d_model
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Tuple =num_attention_heads
lowerCamelCase__: Dict =ffn_dim
lowerCamelCase__: Optional[int] =activation_function
lowerCamelCase__: str =activation_dropout
lowerCamelCase__: int =attention_dropout
lowerCamelCase__: Optional[Any] =max_position_embeddings
lowerCamelCase__: Optional[int] =initializer_range
lowerCamelCase__: str =None
lowerCamelCase__: List[Any] =0
lowerCamelCase__: str =2
lowerCamelCase__: Union[str, Any] =1
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]:
'''simple docstring'''
return XGLMConfig.from_pretrained("facebook/xglm-564M")
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int:
'''simple docstring'''
lowerCamelCase__: Dict =tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3)
lowerCamelCase__: str =None
if self.use_input_mask:
lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length])
lowerCamelCase__: Dict =self.get_config()
lowerCamelCase__: Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2)
return (
config,
input_ids,
input_mask,
head_mask,
)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int:
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any:
'''simple docstring'''
lowerCamelCase__: str =self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
): Union[str, Any] =config_and_inputs
lowerCamelCase__: str ={
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
lowercase_ = (TFXGLMForCausalLM,) if is_tf_available() else ()
lowercase_ = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
lowercase_ = False
lowercase_ = False
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Tuple =TFXGLMModelTester(self)
lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_ , n_embd=37)
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: Dict =TFXGLMModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str=True) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
lowerCamelCase__: Optional[int] =tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
lowerCamelCase__: Union[str, Any] =[2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
lowerCamelCase__: List[str] =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=1)
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =XGLMTokenizer.from_pretrained("facebook/xglm-564M")
lowerCamelCase__: Tuple =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
tf.random.set_seed(0)
lowerCamelCase__: Union[str, Any] =tokenizer("Today is a nice day and" , return_tensors="tf")
lowerCamelCase__: Dict =tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0"):
lowerCamelCase__: str =model.generate(UpperCAmelCase_ , do_sample=UpperCAmelCase_ , seed=[7, 0])
lowerCamelCase__: str =tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =(
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
lowerCamelCase__: Tuple =XGLMTokenizer.from_pretrained("facebook/xglm-564M")
lowerCamelCase__: str ="left"
# use different length sentences to test batching
lowerCamelCase__: List[Any] =[
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
lowerCamelCase__: Optional[Any] =tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =inputs["input_ids"]
lowerCamelCase__: str =model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] , max_new_tokens=12)
lowerCamelCase__: Tuple =tokenizer(sentences[0] , return_tensors="tf").input_ids
lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12)
lowerCamelCase__: Optional[Any] =tokenizer(sentences[1] , return_tensors="tf").input_ids
lowerCamelCase__: Union[str, Any] =model.generate(input_ids=UpperCAmelCase_ , max_new_tokens=12)
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Any =tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_)
lowerCamelCase__: int =[
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence])
| 10 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | 1 |
def lowerCAmelCase_ ( __a = 1000 ) -> int:
"""simple docstring"""
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 10 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =XLMRobertaModel.from_pretrained("xlm-roberta-base")
lowerCamelCase__: int =torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]])
# The dog is cute and lives in the garden house
lowerCamelCase__: Optional[Any] =torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim
lowerCamelCase__: str =torch.tensor(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_)["last_hidden_state"].detach()
self.assertEqual(output.shape , UpperCAmelCase_)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3))
@slow
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =XLMRobertaModel.from_pretrained("xlm-roberta-large")
lowerCamelCase__: Tuple =torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]])
# The dog is cute and lives in the garden house
lowerCamelCase__: Union[str, Any] =torch.Size((1, 12, 1_024)) # batch_size, sequence_length, embedding_vector_dim
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]])
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
lowerCamelCase__: List[Any] =model(UpperCAmelCase_)["last_hidden_state"].detach()
self.assertEqual(output.shape , UpperCAmelCase_)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3))
| 10 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "philschmid/bart-large-cnn-samsum"
lowercase_ = (
"This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, "
"and returns a summary of the text."
)
lowercase_ = "summarizer"
lowercase_ = AutoTokenizer
lowercase_ = AutoModelForSeqaSeqLM
lowercase_ = ["text"]
lowercase_ = ["text"]
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int) ->Dict:
'''simple docstring'''
return self.pre_processor(UpperCAmelCase_ , return_tensors="pt" , truncation=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : int) ->List[str]:
'''simple docstring'''
return self.model.generate(**UpperCAmelCase_)[0]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
return self.pre_processor.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_)
| 10 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> list:
"""simple docstring"""
if any(not isinstance(__a , __a ) or x < 0 for x in sequence ):
raise TypeError("Sequence must be list of non-negative integers" )
for _ in range(len(__a ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__a , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 10 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__A = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
__A = direct_transformers_import(PATH_TO_TRANSFORMERS)
__A = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__A = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)")
__A = {
"DecisionTransformerConfig",
"EncoderDecoderConfig",
"MusicgenConfig",
"RagConfig",
"SpeechEncoderDecoderConfig",
"TimmBackboneConfig",
"VisionEncoderDecoderConfig",
"VisionTextDualEncoderConfig",
"LlamaConfig",
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: List[Any] =None
# source code of `config_class`
lowerCamelCase__: List[str] =inspect.getsource(__a )
lowerCamelCase__: List[Any] =_re_checkpoint.findall(__a )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
lowerCamelCase__: int =ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
lowerCamelCase__: List[str] =F"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
lowerCamelCase__: str =ckpt_name
break
return checkpoint
def lowerCAmelCase_ ( ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
lowerCamelCase__: Union[str, Any] =get_checkpoint_from_config_class(__a )
lowerCamelCase__: Tuple =config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__a )
if len(__a ) > 0:
lowerCamelCase__: Tuple ="\n".join(sorted(__a ) )
raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 10 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 1 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__A = {
"configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"],
"tokenization_perceiver": ["PerceiverTokenizer"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["PerceiverFeatureExtractor"]
__A = ["PerceiverImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Any ="ZinengTang/tvlt-base"
lowerCamelCase__: Dict =tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE_ (self : Tuple , **UpperCAmelCase_ : int) ->int:
'''simple docstring'''
return TvltImageProcessor.from_pretrained(self.checkpoint , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , **UpperCAmelCase_ : Optional[int]) ->Any:
'''simple docstring'''
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.get_image_processor()
lowerCamelCase__: Any =self.get_feature_extractor()
lowerCamelCase__: Tuple =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_)
processor.save_pretrained(self.tmpdirname)
lowerCamelCase__: Any =TvltProcessor.from_pretrained(self.tmpdirname)
self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_)
self.assertIsInstance(processor.image_processor , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.get_image_processor()
lowerCamelCase__: Tuple =self.get_feature_extractor()
lowerCamelCase__: int =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_)
lowerCamelCase__: List[Any] =np.ones([12_000])
lowerCamelCase__: Optional[Any] =feature_extractor(UpperCAmelCase_ , return_tensors="np")
lowerCamelCase__: Dict =processor(audio=UpperCAmelCase_ , return_tensors="np")
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.get_image_processor()
lowerCamelCase__: List[Any] =self.get_feature_extractor()
lowerCamelCase__: Any =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_)
lowerCamelCase__: str =np.ones([3, 224, 224])
lowerCamelCase__: Optional[int] =image_processor(UpperCAmelCase_ , return_tensors="np")
lowerCamelCase__: Union[str, Any] =processor(images=UpperCAmelCase_ , return_tensors="np")
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Dict =self.get_image_processor()
lowerCamelCase__: Union[str, Any] =self.get_feature_extractor()
lowerCamelCase__: Union[str, Any] =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_)
lowerCamelCase__: Any =np.ones([12_000])
lowerCamelCase__: Any =np.ones([3, 224, 224])
lowerCamelCase__: Union[str, Any] =processor(audio=UpperCAmelCase_ , images=UpperCAmelCase_)
self.assertListEqual(list(inputs.keys()) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"])
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase_):
processor()
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Dict =self.get_image_processor()
lowerCamelCase__: Any =self.get_feature_extractor()
lowerCamelCase__: Tuple =TvltProcessor(image_processor=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_)
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
| 10 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json",
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "open-llama"
def __init__(self : Dict , UpperCAmelCase_ : Optional[Any]=100_000 , UpperCAmelCase_ : Union[str, Any]=4_096 , UpperCAmelCase_ : Union[str, Any]=11_008 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : str="silu" , UpperCAmelCase_ : Any=2_048 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : int=1E-6 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : int , ) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: int =vocab_size
lowerCamelCase__: Dict =max_position_embeddings
lowerCamelCase__: str =hidden_size
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Any =num_hidden_layers
lowerCamelCase__: Union[str, Any] =num_attention_heads
lowerCamelCase__: List[str] =hidden_act
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: str =rms_norm_eps
lowerCamelCase__: Tuple =use_cache
lowerCamelCase__: str =kwargs.pop(
"use_memorry_efficient_attention" , UpperCAmelCase_)
lowerCamelCase__: str =hidden_dropout_prob
lowerCamelCase__: Optional[Any] =attention_dropout_prob
lowerCamelCase__: Dict =use_stable_embedding
lowerCamelCase__: int =shared_input_output_embedding
lowerCamelCase__: Dict =rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , UpperCAmelCase_) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
F"""got {self.rope_scaling}""")
lowerCamelCase__: Any =self.rope_scaling.get("type" , UpperCAmelCase_)
lowerCamelCase__: Tuple =self.rope_scaling.get("factor" , UpperCAmelCase_)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""")
if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or rope_scaling_factor <= 1.0:
raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""")
| 10 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
from __future__ import annotations
__A = "#"
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : str) ->None:
'''simple docstring'''
lowerCamelCase__: dict ={}
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : str) ->None:
'''simple docstring'''
lowerCamelCase__: List[Any] =self._trie
for char in text:
if char not in trie:
lowerCamelCase__: Optional[int] ={}
lowerCamelCase__: str =trie[char]
lowerCamelCase__: Optional[int] =True
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str) ->tuple | list:
'''simple docstring'''
lowerCamelCase__: Tuple =self._trie
for char in prefix:
if char in trie:
lowerCamelCase__: int =trie[char]
else:
return []
return self._elements(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : dict) ->tuple:
'''simple docstring'''
lowerCamelCase__: List[Any] =[]
for c, v in d.items():
lowerCamelCase__: int =[" "] if c == END else [(c + s) for s in self._elements(UpperCAmelCase_)]
result.extend(UpperCAmelCase_)
return tuple(UpperCAmelCase_)
__A = Trie()
__A = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def lowerCAmelCase_ ( __a ) -> tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =trie.find_word(__a )
return tuple(string + word for word in suffixes )
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
print(autocomplete_using_trie("de" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 10 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__A = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["pixel_values"]
def __init__(self : Optional[Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =size if size is not None else {"shortest_edge": 224}
lowerCamelCase__: Optional[Any] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =crop_size if crop_size is not None else {"height": 224, "width": 224}
lowerCamelCase__: Tuple =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_ , param_name="crop_size")
lowerCamelCase__: Union[str, Any] =do_resize
lowerCamelCase__: Union[str, Any] =size
lowerCamelCase__: Any =resample
lowerCamelCase__: List[str] =do_center_crop
lowerCamelCase__: List[Any] =crop_size
lowerCamelCase__: List[str] =do_rescale
lowerCamelCase__: List[str] =rescale_factor
lowerCamelCase__: str =do_normalize
lowerCamelCase__: Tuple =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCamelCase__: List[Any] =image_std if image_std is not None else OPENAI_CLIP_STD
lowerCamelCase__: int =do_convert_rgb
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->np.ndarray:
'''simple docstring'''
lowerCamelCase__: List[str] =get_size_dict(UpperCAmelCase_ , default_to_square=UpperCAmelCase_)
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""")
lowerCamelCase__: Optional[int] =get_resize_output_image_size(UpperCAmelCase_ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase_)
return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[int] , ) ->np.ndarray:
'''simple docstring'''
lowerCamelCase__: int =get_size_dict(UpperCAmelCase_)
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""")
return center_crop(UpperCAmelCase_ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->int:
'''simple docstring'''
return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ) ->np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ) ->PIL.Image.Image:
'''simple docstring'''
lowerCamelCase__: Tuple =do_resize if do_resize is not None else self.do_resize
lowerCamelCase__: List[Any] =size if size is not None else self.size
lowerCamelCase__: List[Any] =get_size_dict(UpperCAmelCase_ , param_name="size" , default_to_square=UpperCAmelCase_)
lowerCamelCase__: Any =resample if resample is not None else self.resample
lowerCamelCase__: Any =do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase__: Any =crop_size if crop_size is not None else self.crop_size
lowerCamelCase__: Union[str, Any] =get_size_dict(UpperCAmelCase_ , param_name="crop_size" , default_to_square=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__: List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__: int =do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__: Optional[Any] =image_mean if image_mean is not None else self.image_mean
lowerCamelCase__: Optional[int] =image_std if image_std is not None else self.image_std
lowerCamelCase__: Dict =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCamelCase__: Dict =make_list_of_images(UpperCAmelCase_)
if not valid_images(UpperCAmelCase_):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray.")
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCamelCase__: List[Any] =[convert_to_rgb(UpperCAmelCase_) for image in images]
# All transformations expect numpy arrays.
lowerCamelCase__: str =[to_numpy_array(UpperCAmelCase_) for image in images]
if do_resize:
lowerCamelCase__: Union[str, Any] =[self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images]
if do_center_crop:
lowerCamelCase__: Optional[Any] =[self.center_crop(image=UpperCAmelCase_ , size=UpperCAmelCase_) for image in images]
if do_rescale:
lowerCamelCase__: Any =[self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_) for image in images]
if do_normalize:
lowerCamelCase__: List[str] =[self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_) for image in images]
lowerCamelCase__: List[str] =[to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images]
lowerCamelCase__: str ={"pixel_values": images}
return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
| 10 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase_ = Features({"image": Image()} )
lowercase_ = Features({"labels": ClassLabel} )
lowercase_ = "image"
lowercase_ = "labels"
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""")
lowerCamelCase__: List[Any] =copy.deepcopy(self)
lowerCamelCase__: Optional[int] =self.label_schema.copy()
lowerCamelCase__: int =features[self.label_column]
lowerCamelCase__: int =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 10 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__A = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 10 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 | 1 |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
__A = logging.get_logger(__name__) # pylint: disable=invalid-name
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Any , UpperCAmelCase_ : CLIPSegForImageSegmentation , UpperCAmelCase_ : CLIPSegProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ) ->List[Any]:
'''simple docstring'''
super().__init__()
if hasattr(scheduler.config , "steps_offset") and scheduler.config.steps_offset != 1:
lowerCamelCase__: List[str] =(
F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"""
F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_)
lowerCamelCase__: Tuple =dict(scheduler.config)
lowerCamelCase__: List[str] =1
lowerCamelCase__: Optional[int] =FrozenDict(UpperCAmelCase_)
if hasattr(scheduler.config , "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
lowerCamelCase__: Tuple =(
F"""The configuration file of this scheduler: {scheduler} has not set the configuration"""
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
" Hub, it would be very nice if you could open a Pull request for the"
" `scheduler/scheduler_config.json` file"
)
deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =dict(scheduler.config)
lowerCamelCase__: str =True
lowerCamelCase__: Optional[Any] =FrozenDict(UpperCAmelCase_)
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .")
self.register_modules(
segmentation_model=UpperCAmelCase_ , segmentation_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Union[str, int]] = "auto") ->List[Any]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCamelCase__: Dict =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.enable_attention_slicing(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
lowerCamelCase__: Dict =torch.device("cuda")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(UpperCAmelCase_ , UpperCAmelCase_)
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
if self.device != torch.device("meta") or not hasattr(self.unet , "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCAmelCase_ , "_hf_hook")
and hasattr(module._hf_hook , "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def __call__(self : int , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : str , ) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.segmentation_processor(
text=[text] , images=[image] , padding="max_length" , return_tensors="pt").to(self.device)
lowerCamelCase__: Dict =self.segmentation_model(**UpperCAmelCase_)
lowerCamelCase__: Tuple =torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
lowerCamelCase__: List[Any] =self.numpy_to_pil(UpperCAmelCase_)[0].resize(image.size)
# Run inpainting pipeline with the generated mask
lowerCamelCase__: int =StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , )
| 10 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =n
lowerCamelCase__: Tuple =[None] * self.n
lowerCamelCase__: str =0 # index of the first element
lowerCamelCase__: Tuple =0
lowerCamelCase__: Optional[Any] =0
def __len__(self : str) ->int:
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE_ (self : int) ->bool:
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL")
lowerCamelCase__: List[Any] =data
lowerCamelCase__: Dict =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW")
lowerCamelCase__: Optional[Any] =self.array[self.front]
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Dict =(self.front + 1) % self.n
self.size -= 1
return temp
| 10 | 1 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = MobileBertTokenizer
lowercase_ = MobileBertTokenizerFast
lowercase_ = True
lowercase_ = True
lowercase_ = filter_non_english
lowercase_ = "google/mobilebert-uncased"
def SCREAMING_SNAKE_CASE_ (self : Any) ->Any:
'''simple docstring'''
super().setUp()
lowerCamelCase__: Any =[
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
lowerCamelCase__: str =[
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] ="UNwant\u00E9d,running"
lowerCamelCase__: Dict ="unwanted, running"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : int) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.tokenizer_class(self.vocab_file)
lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(UpperCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [9, 6, 7, 12, 10, 11])
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__: Tuple =self.get_tokenizer()
lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer()
lowerCamelCase__: List[Any] ="UNwant\u00E9d,running"
lowerCamelCase__: Optional[Any] =tokenizer.tokenize(UpperCAmelCase_)
lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[str] =self.get_rust_tokenizer()
lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_)
lowerCamelCase__: int =rust_tokenizer.encode(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
# With lower casing
lowerCamelCase__: Dict =self.get_tokenizer(do_lower_case=UpperCAmelCase_)
lowerCamelCase__: List[str] =self.get_rust_tokenizer(do_lower_case=UpperCAmelCase_)
lowerCamelCase__: Optional[int] ="UNwant\u00E9d,running"
lowerCamelCase__: Tuple =tokenizer.tokenize(UpperCAmelCase_)
lowerCamelCase__: List[str] =rust_tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Tuple =rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.get_rust_tokenizer()
lowerCamelCase__: Any =tokenizer.encode(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =rust_tokenizer.encode(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: str =BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"])
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"])
def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"])
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =BasicTokenizer(do_lower_case=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"])
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"])
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int:
'''simple docstring'''
lowerCamelCase__: str =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"])
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[Any] =BasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"])
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
lowerCamelCase__: Optional[int] ={}
for i, token in enumerate(UpperCAmelCase_):
lowerCamelCase__: List[str] =i
lowerCamelCase__: Optional[int] =WordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize("") , [])
self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"])
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]:
'''simple docstring'''
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.get_tokenizer()
lowerCamelCase__: Optional[Any] =self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]])
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]])
@slow
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict =self.tokenizer_class.from_pretrained("google/mobilebert-uncased")
lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
lowerCamelCase__: List[str] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
lowerCamelCase__: Any =tokenizer_r.encode_plus(
UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , )
lowerCamelCase__: Optional[int] =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False
lowerCamelCase__: Optional[Any] =(
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"])
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: str =["的", "人", "有"]
lowerCamelCase__: Optional[Any] ="".join(UpperCAmelCase_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
lowerCamelCase__: str =True
lowerCamelCase__: List[str] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Any =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: List[str] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_)
lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Any =False
lowerCamelCase__: List[Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: str =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Dict =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: List[Any] =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Dict =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_)
lowerCamelCase__: Dict =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_)
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase__: str =[
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_)
]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
| 10 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> YolosConfig:
"""simple docstring"""
lowerCamelCase__: str =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase__: int =192
lowerCamelCase__: Optional[int] =768
lowerCamelCase__: Any =12
lowerCamelCase__: str =3
lowerCamelCase__: Optional[int] =[800, 1333]
lowerCamelCase__: Union[str, Any] =False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: int =330
lowerCamelCase__: Optional[Any] =14
lowerCamelCase__: Any =6
lowerCamelCase__: List[str] =1320
elif "yolos_s" in yolos_name:
lowerCamelCase__: List[str] =384
lowerCamelCase__: Union[str, Any] =1536
lowerCamelCase__: List[Any] =12
lowerCamelCase__: Any =6
elif "yolos_b" in yolos_name:
lowerCamelCase__: str =[800, 1344]
lowerCamelCase__: int =91
lowerCamelCase__: str ="huggingface/label-files"
lowerCamelCase__: List[str] ="coco-detection-id2label.json"
lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()}
lowerCamelCase__: List[str] =idalabel
lowerCamelCase__: int ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :]
lowerCamelCase__: str =in_proj_bias[: config.hidden_size]
lowerCamelCase__: str =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__: str =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :]
lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if "backbone" in name:
lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCAmelCase_ ( __a , __a ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Any =orig_state_dict.pop(__a )
if "qkv" in key:
lowerCamelCase__: Tuple =key.split("." )
lowerCamelCase__: List[str] =int(key_split[2] )
lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase__: int =val[:dim, :]
lowerCamelCase__: str =val[
dim : dim * 2, :
]
lowerCamelCase__: Any =val[-dim:, :]
else:
lowerCamelCase__: Tuple =val[:dim]
lowerCamelCase__: Optional[Any] =val[dim : dim * 2]
lowerCamelCase__: str =val[-dim:]
else:
lowerCamelCase__: Dict =val
return orig_state_dict
def lowerCAmelCase_ ( ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =get_yolos_config(__a )
# load original state_dict
lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase__: int =YolosForObjectDetection(__a )
model.eval()
lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512
lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a )
lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Tuple =model(**__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes
lowerCamelCase__ , lowerCamelCase__: Any =None, None
if yolos_name == "yolos_ti":
lowerCamelCase__: Optional[Any] =torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
lowerCamelCase__: List[Any] =torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase__: Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
lowerCamelCase__: Any =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase__: str =torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
lowerCamelCase__: Optional[Any] =torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: str =torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
lowerCamelCase__: Tuple =torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
lowerCamelCase__: Optional[int] =torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
lowerCamelCase__: Any ={
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase__: Optional[int] =model_mapping[yolos_name]
image_processor.push_to_hub(__a , organization="hustvl" )
model.push_to_hub(__a , organization="hustvl" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> List[Any]:
"""simple docstring"""
if collection == []:
return []
# get some information about the collection
lowerCamelCase__: List[Any] =len(__a )
lowerCamelCase__: List[str] =max(__a )
lowerCamelCase__: Dict =min(__a )
# create the counting array
lowerCamelCase__: Tuple =coll_max + 1 - coll_min
lowerCamelCase__: Optional[int] =[0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , __a ):
lowerCamelCase__: int =counting_arr[i] + counting_arr[i - 1]
# create the output collection
lowerCamelCase__: Dict =[0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , __a ) ):
lowerCamelCase__: int =collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
return "".join([chr(__a ) for i in counting_sort([ord(__a ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt"
__A = input("Enter numbers separated by a comma:\n").strip()
__A = [int(item) for item in user_input.split(",")]
print(counting_sort(unsorted))
| 10 |
from math import ceil, sqrt
def lowerCAmelCase_ ( __a = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__: str =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__A = random.Random()
def lowerCAmelCase_ ( __a , __a=1.0 , __a=None , __a=None ) -> Optional[Any]:
"""simple docstring"""
if rng is None:
lowerCamelCase__: Union[str, Any] =global_rng
lowerCamelCase__: List[Any] =[]
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Dict=2_000 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=16_000 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=True , ) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =parent
lowerCamelCase__: int =batch_size
lowerCamelCase__: Tuple =min_seq_length
lowerCamelCase__: Dict =max_seq_length
lowerCamelCase__: Optional[int] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowerCamelCase__: Any =feature_size
lowerCamelCase__: List[str] =padding_value
lowerCamelCase__: Union[str, Any] =sampling_rate
lowerCamelCase__: Dict =return_attention_mask
lowerCamelCase__: Optional[Any] =do_normalize
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict:
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False) ->List[Any]:
'''simple docstring'''
def _flatten(UpperCAmelCase_ : Optional[int]):
return list(itertools.chain(*UpperCAmelCase_))
if equal_length:
lowerCamelCase__: List[Any] =floats_list((self.batch_size, self.max_seq_length))
else:
# make sure that inputs increase in size
lowerCamelCase__: Dict =[
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff)
]
if numpify:
lowerCamelCase__: List[str] =[np.asarray(UpperCAmelCase_) for x in speech_inputs]
return speech_inputs
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = WavaVecaFeatureExtractor
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any:
'''simple docstring'''
lowerCamelCase__: Any =WavaVecaFeatureExtractionTester(self)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1E-3))
self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1E-3))
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)]
lowerCamelCase__: Any =[np.asarray(UpperCAmelCase_) for speech_input in speech_inputs]
# Test not batched input
lowerCamelCase__: str =feat_extract(speech_inputs[0] , return_tensors="np").input_values
lowerCamelCase__: int =feat_extract(np_speech_inputs[0] , return_tensors="np").input_values
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3))
# Test batched
lowerCamelCase__: List[str] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values
lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values
for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3))
# Test 2-D numpy arrays are batched.
lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in (800, 800, 800)]
lowerCamelCase__: Union[str, Any] =np.asarray(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values
lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values
for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)]
lowerCamelCase__: List[Any] =["longest", "max_length", "do_not_pad"]
lowerCamelCase__: Optional[Any] =[None, 1_600, None]
for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: str =feat_extract(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="np")
lowerCamelCase__: Tuple =processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800])
self.assertTrue(input_values[0][800:].sum() < 1E-6)
self._check_zero_mean_unit_variance(input_values[1][:1_000])
self.assertTrue(input_values[0][1_000:].sum() < 1E-6)
self._check_zero_mean_unit_variance(input_values[2][:1_200])
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
lowerCamelCase__: Union[str, Any] =range(800 , 1_400 , 200)
lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in lengths]
lowerCamelCase__: Any =["longest", "max_length", "do_not_pad"]
lowerCamelCase__: int =[None, 1_600, None]
for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: int =feat_extract(UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_)
lowerCamelCase__: Any =processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800])
self._check_zero_mean_unit_variance(input_values[1][:1_000])
self._check_zero_mean_unit_variance(input_values[2][:1_200])
def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)]
lowerCamelCase__: Tuple =feat_extract(
UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="max_length" , return_tensors="np")
lowerCamelCase__: int =processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800])
self._check_zero_mean_unit_variance(input_values[1])
self._check_zero_mean_unit_variance(input_values[2])
def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
lowerCamelCase__: Any =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)]
lowerCamelCase__: str =feat_extract(
UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="longest" , return_tensors="np")
lowerCamelCase__: int =processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800])
self._check_zero_mean_unit_variance(input_values[1, :1_000])
self._check_zero_mean_unit_variance(input_values[2])
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000))
lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)]
lowerCamelCase__: str =feat_extract(
UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=2_000 , padding="longest" , return_tensors="np")
lowerCamelCase__: int =processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800])
self._check_zero_mean_unit_variance(input_values[1, :1_000])
self._check_zero_mean_unit_variance(input_values[2])
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200))
@require_torch
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any:
'''simple docstring'''
import torch
lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
lowerCamelCase__: int =np.random.rand(100).astype(np.floataa)
lowerCamelCase__: Any =np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowerCamelCase__: str =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np")
self.assertTrue(np_processed.input_values.dtype == np.floataa)
lowerCamelCase__: Any =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt")
self.assertTrue(pt_processed.input_values.dtype == torch.floataa)
@slow
@require_torch
def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]:
'''simple docstring'''
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
lowerCamelCase__: Optional[int] =WavaVecaConfig.from_pretrained(UpperCAmelCase_)
lowerCamelCase__: List[str] =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_)
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer")
| 10 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =tmp_path / "cache"
lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
lowerCamelCase__: str =parquet_path
elif issubclass(__a , __a ):
lowerCamelCase__: str =[parquet_path]
lowerCamelCase__: Optional[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
lowerCamelCase__: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: List[str] =ParquetDatasetReader(
{"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: int =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]:
"""simple docstring"""
if split:
lowerCamelCase__: Union[str, Any] ={split: parquet_path}
else:
lowerCamelCase__: int ="train"
lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path}
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" )
lowerCamelCase__: Optional[int] =pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" )
lowerCamelCase__: Union[str, Any] ={"image": [image_path]}
lowerCamelCase__: int =Features({"image": Image()} )
lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a )
lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 10 | 1 |
import string
import numpy
def lowerCAmelCase_ ( __a , __a ) -> int:
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , __a )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
lowercase_ = numpy.vectorize(lambda __SCREAMING_SNAKE_CASE : x % 36 )
lowercase_ = numpy.vectorize(__SCREAMING_SNAKE_CASE )
def __init__(self : Union[str, Any] , UpperCAmelCase_ : numpy.ndarray) ->None:
'''simple docstring'''
lowerCamelCase__: int =self.modulus(UpperCAmelCase_) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
lowerCamelCase__: Dict =encrypt_key.shape[0]
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : str) ->int:
'''simple docstring'''
return self.key_string.index(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int) ->str:
'''simple docstring'''
return self.key_string[round(UpperCAmelCase_)]
def SCREAMING_SNAKE_CASE_ (self : int) ->None:
'''simple docstring'''
lowerCamelCase__: str =round(numpy.linalg.det(self.encrypt_key))
if det < 0:
lowerCamelCase__: str =det % len(self.key_string)
lowerCamelCase__: Optional[int] =len(self.key_string)
if greatest_common_divisor(UpperCAmelCase_ , len(self.key_string)) != 1:
lowerCamelCase__: Tuple =(
F"""determinant modular {req_l} of encryption key({det}) """
F"""is not co prime w.r.t {req_l}.\nTry another key."""
)
raise ValueError(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
lowerCamelCase__: int =[char for char in text.upper() if char in self.key_string]
lowerCamelCase__: List[str] =chars[-1]
while len(UpperCAmelCase_) % self.break_key != 0:
chars.append(UpperCAmelCase_)
return "".join(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
lowerCamelCase__: Any =self.process_text(text.upper())
lowerCamelCase__: List[str] =""
for i in range(0 , len(UpperCAmelCase_) - self.break_key + 1 , self.break_key):
lowerCamelCase__: Union[str, Any] =text[i : i + self.break_key]
lowerCamelCase__: Optional[int] =[self.replace_letters(UpperCAmelCase_) for char in batch]
lowerCamelCase__: Any =numpy.array([vec]).T
lowerCamelCase__: Union[str, Any] =self.modulus(self.encrypt_key.dot(UpperCAmelCase_)).T.tolist()[
0
]
lowerCamelCase__: Dict ="".join(
self.replace_digits(UpperCAmelCase_) for num in batch_encrypted)
encrypted += encrypted_batch
return encrypted
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->numpy.ndarray:
'''simple docstring'''
lowerCamelCase__: Tuple =round(numpy.linalg.det(self.encrypt_key))
if det < 0:
lowerCamelCase__: str =det % len(self.key_string)
lowerCamelCase__: Optional[int] =None
for i in range(len(self.key_string)):
if (det * i) % len(self.key_string) == 1:
lowerCamelCase__: Optional[int] =i
break
lowerCamelCase__: str =(
det_inv
* numpy.linalg.det(self.encrypt_key)
* numpy.linalg.inv(self.encrypt_key)
)
return self.to_int(self.modulus(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
lowerCamelCase__: Any =self.make_decrypt_key()
lowerCamelCase__: Any =self.process_text(text.upper())
lowerCamelCase__: Dict =""
for i in range(0 , len(UpperCAmelCase_) - self.break_key + 1 , self.break_key):
lowerCamelCase__: List[str] =text[i : i + self.break_key]
lowerCamelCase__: List[str] =[self.replace_letters(UpperCAmelCase_) for char in batch]
lowerCamelCase__: Dict =numpy.array([vec]).T
lowerCamelCase__: Any =self.modulus(decrypt_key.dot(UpperCAmelCase_)).T.tolist()[0]
lowerCamelCase__: int ="".join(
self.replace_digits(UpperCAmelCase_) for num in batch_decrypted)
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =int(input("Enter the order of the encryption key: " ) )
lowerCamelCase__: str =[]
print("Enter each row of the encryption key with space separated integers" )
for _ in range(__a ):
lowerCamelCase__: List[Any] =[int(__a ) for x in input().split()]
hill_matrix.append(__a )
lowerCamelCase__: Dict =HillCipher(numpy.array(__a ) )
print("Would you like to encrypt or decrypt some text? (1 or 2)" )
lowerCamelCase__: List[str] =input("\n1. Encrypt\n2. Decrypt\n" )
if option == "1":
lowerCamelCase__: Union[str, Any] =input("What text would you like to encrypt?: " )
print("Your encrypted text is:" )
print(hc.encrypt(__a ) )
elif option == "2":
lowerCamelCase__: Optional[int] =input("What text would you like to decrypt?: " )
print("Your decrypted text is:" )
print(hc.decrypt(__a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 10 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 | 1 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Union[str, Any]=19 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Optional[Any]=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=None , ) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Union[str, Any] =seq_length
lowerCamelCase__: List[str] =is_training
lowerCamelCase__: Optional[int] =use_input_mask
lowerCamelCase__: int =use_token_type_ids
lowerCamelCase__: int =use_labels
lowerCamelCase__: Any =vocab_size
lowerCamelCase__: Optional[Any] =hidden_size
lowerCamelCase__: Optional[Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =num_attention_heads
lowerCamelCase__: Optional[Any] =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: List[str] =hidden_dropout_prob
lowerCamelCase__: List[Any] =attention_probs_dropout_prob
lowerCamelCase__: Optional[Any] =max_position_embeddings
lowerCamelCase__: str =type_vocab_size
lowerCamelCase__: List[str] =type_sequence_label_size
lowerCamelCase__: Dict =initializer_range
lowerCamelCase__: Any =num_labels
lowerCamelCase__: int =num_choices
lowerCamelCase__: Tuple =scope
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int:
'''simple docstring'''
lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowerCamelCase__: Optional[Any] =None
if self.use_input_mask:
lowerCamelCase__: Tuple =random_attention_mask([self.batch_size, self.seq_length])
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Any =None
if self.use_labels:
lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowerCamelCase__: List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowerCamelCase__: List[str] =ids_tensor([self.batch_size] , self.num_choices)
lowerCamelCase__: Optional[Any] =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =EsmConfig(
vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCAmelCase_ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , )
return config
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: str =EsmForProteinFolding(config=UpperCAmelCase_).float()
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: str =model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(UpperCAmelCase_)
lowerCamelCase__: Any =model(UpperCAmelCase_)
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3))
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2))
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
): Optional[Any] =config_and_inputs
lowerCamelCase__: Any ={"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = False
lowercase_ = (EsmForProteinFolding,) if is_torch_available() else ()
lowercase_ = ()
lowercase_ = {} if is_torch_available() else {}
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =EsmFoldModelTester(self)
lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
@unittest.skip("Does not support attention outputs")
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any:
'''simple docstring'''
pass
@unittest.skip
def SCREAMING_SNAKE_CASE_ (self : int) ->Tuple:
'''simple docstring'''
pass
@unittest.skip("Esm does not support embedding resizing")
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
pass
@unittest.skip("Esm does not support embedding resizing")
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[Any]:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support passing input embeds!")
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning.")
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning.")
def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning.")
def SCREAMING_SNAKE_CASE_ (self : Any) ->Any:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning.")
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support head pruning.")
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not output hidden states in the normal way.")
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]:
'''simple docstring'''
pass
@unittest.skip("ESMfold does not output hidden states in the normal way.")
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
pass
@unittest.skip("ESMFold only has one output format.")
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any:
'''simple docstring'''
pass
@unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality")
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any:
'''simple docstring'''
pass
@unittest.skip("ESMFold does not support input chunking.")
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.")
def SCREAMING_SNAKE_CASE_ (self : int) ->Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support torchscript compilation.")
def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]:
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support torchscript compilation.")
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support torchscript compilation.")
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
pass
@unittest.skip("ESMFold doesn't support data parallel.")
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int:
'''simple docstring'''
pass
@require_torch
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =EsmForProteinFolding.from_pretrained("facebook/esmfold_v1").float()
model.eval()
lowerCamelCase__: Any =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
lowerCamelCase__: int =model(UpperCAmelCase_)["positions"]
lowerCamelCase__: Tuple =torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa)
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCAmelCase_ , atol=1E-4))
| 10 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = ShapEImgaImgPipeline
lowercase_ = ["image"]
lowercase_ = ["image"]
lowercase_ = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
lowercase_ = False
@property
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]:
'''simple docstring'''
return 32
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->int:
'''simple docstring'''
return 32
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict:
'''simple docstring'''
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
return 8
@property
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]:
'''simple docstring'''
torch.manual_seed(0)
lowerCamelCase__: List[str] =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
lowerCamelCase__: int =CLIPVisionModel(UpperCAmelCase_)
return model
@property
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_resize=UpperCAmelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , )
return image_processor
@property
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int:
'''simple docstring'''
torch.manual_seed(0)
lowerCamelCase__: Union[str, Any] ={
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
lowerCamelCase__: Tuple =PriorTransformer(**UpperCAmelCase_)
return model
@property
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]:
'''simple docstring'''
torch.manual_seed(0)
lowerCamelCase__: Any ={
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
lowerCamelCase__: Optional[Any] =ShapERenderer(**UpperCAmelCase_)
return model
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =self.dummy_prior
lowerCamelCase__: Optional[Any] =self.dummy_image_encoder
lowerCamelCase__: Optional[int] =self.dummy_image_processor
lowerCamelCase__: Tuple =self.dummy_renderer
lowerCamelCase__: Any =HeunDiscreteScheduler(
beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=UpperCAmelCase_ , clip_sample=UpperCAmelCase_ , clip_sample_range=1.0 , )
lowerCamelCase__: str ={
"prior": prior,
"image_encoder": image_encoder,
"image_processor": image_processor,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=0) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_)).to(UpperCAmelCase_)
if str(UpperCAmelCase_).startswith("mps"):
lowerCamelCase__: int =torch.manual_seed(UpperCAmelCase_)
else:
lowerCamelCase__: int =torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_)
lowerCamelCase__: str ={
"image": input_image,
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "np",
}
return inputs
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] ="cpu"
lowerCamelCase__: int =self.get_dummy_components()
lowerCamelCase__: int =self.pipeline_class(**UpperCAmelCase_)
lowerCamelCase__: List[str] =pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
lowerCamelCase__: int =pipe(**self.get_dummy_inputs(UpperCAmelCase_))
lowerCamelCase__: int =output.images[0]
lowerCamelCase__: Tuple =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCamelCase__: Dict =np.array(
[
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
0.0003_9216,
])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[Any] =torch_device == "cpu"
lowerCamelCase__: List[str] =True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =self.get_dummy_components()
lowerCamelCase__: List[Any] =self.pipeline_class(**UpperCAmelCase_)
lowerCamelCase__: List[str] =pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
lowerCamelCase__: List[Any] =1
lowerCamelCase__: int =2
lowerCamelCase__: Tuple =self.get_dummy_inputs(UpperCAmelCase_)
for key in inputs.keys():
if key in self.batch_params:
lowerCamelCase__: Dict =batch_size * [inputs[key]]
lowerCamelCase__: Dict =pipe(**UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png")
lowerCamelCase__: Tuple =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_img2img_out.npy")
lowerCamelCase__: str =ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img")
lowerCamelCase__: int =pipe.to(UpperCAmelCase_)
pipe.set_progress_bar_config(disable=UpperCAmelCase_)
lowerCamelCase__: int =torch.Generator(device=UpperCAmelCase_).manual_seed(0)
lowerCamelCase__: Any =pipe(
UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_)
| 10 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (DDPMParallelScheduler,)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any ={
"num_train_timesteps": 1_000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**UpperCAmelCase_)
return config
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.dummy_model()
lowerCamelCase__: int =self.dummy_sample_deter
lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1
lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1
lowerCamelCase__: Optional[Any] =samplea.shape[0]
lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0)
lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1))
lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 1153.1833) < 1E-2
assert abs(result_mean.item() - 0.5005) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.dummy_model()
lowerCamelCase__: List[Any] =self.dummy_sample_deter
lowerCamelCase__: int =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: Any =pred_prev_sample
lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 258.9606) < 1E-2
assert abs(result_mean.item() - 0.3372) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction")
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: str =self.dummy_model()
lowerCamelCase__: str =self.dummy_sample_deter
lowerCamelCase__: Dict =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: List[str] =pred_prev_sample
lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 202.0296) < 1E-2
assert abs(result_mean.item() - 0.2631) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.scheduler_classes[0]
lowerCamelCase__: Union[str, Any] =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase_):
if i == len(UpperCAmelCase_) - 1:
lowerCamelCase__: Dict =-1
else:
lowerCamelCase__: Union[str, Any] =timesteps[i + 1]
lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_)
lowerCamelCase__: str =prev_t.item()
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: List[Any] =self.get_scheduler_config()
lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config()
lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0]
lowerCamelCase__: int =len(UpperCAmelCase_)
with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
| 10 | 1 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = MODEL_FOR_MASKED_LM_MAPPING
lowercase_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Any =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf")
lowerCamelCase__: List[Any] =unmasker("My name is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped"},
{"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser"},
] , )
lowerCamelCase__: List[str] =unmasker("The largest city in France is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{
"sequence": "The largest city in France is grouped",
"score": 2.1E-0_5,
"token": 38_015,
"token_str": " grouped",
},
{
"sequence": "The largest city in France is accuser",
"score": 2.1E-0_5,
"token": 25_506,
"token_str": " accuser",
},
] , )
lowerCamelCase__: List[str] =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3)
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"},
{"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3_499, "token_str": " Patrick"},
{"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2_941, "token_str": " Te"},
] , )
@require_torch
def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt")
lowerCamelCase__: Tuple =unmasker("My name is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul"},
{"sequence": "My name isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"},
] , )
lowerCamelCase__: str =unmasker("The largest city in France is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{
"sequence": "The largest city in France is Maul",
"score": 2.2E-0_5,
"token": 35_676,
"token_str": " Maul",
},
{"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"},
] , )
lowerCamelCase__: str =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3)
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3_499, "token_str": " Patrick"},
{"sequence": "My name is Te", "score": 2E-0_5, "token": 2_941, "token_str": " Te"},
{"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"},
] , )
lowerCamelCase__: Dict =unmasker("My name is <mask> <mask>" , top_k=2)
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
[
{
"score": 2.2E-0_5,
"token": 35_676,
"token_str": " Maul",
"sequence": "<s>My name is Maul<mask></s>",
},
{"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
],
[
{
"score": 2.2E-0_5,
"token": 35_676,
"token_str": " Maul",
"sequence": "<s>My name is<mask> Maul</s>",
},
{"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
],
] , )
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt")
# convert model to fp16
pipe.model.half()
lowerCamelCase__: str =pipe("Paris is the [MASK] of France.")
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
@require_torch
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Any =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt")
self.run_large_test(UpperCAmelCase_)
@slow
@require_tf
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[Any] =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf")
self.run_large_test(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =unmasker("My name is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_) , [
{"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
{"sequence": "My name is Chris", "score": 0.007, "token": 1_573, "token_str": " Chris"},
] , )
lowerCamelCase__: Tuple =unmasker("The largest city in France is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_) , [
{
"sequence": "The largest city in France is Paris",
"score": 0.251,
"token": 2_201,
"token_str": " Paris",
},
{
"sequence": "The largest city in France is Lyon",
"score": 0.214,
"token": 12_790,
"token_str": " Lyon",
},
] , )
lowerCamelCase__: int =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3)
self.assertEqual(
nested_simplify(UpperCAmelCase_) , [
{"sequence": "My name is Patrick", "score": 0.005, "token": 3_499, "token_str": " Patrick"},
{"sequence": "My name is Clara", "score": 0.000, "token": 13_606, "token_str": " Clara"},
{"sequence": "My name is Te", "score": 0.000, "token": 2_941, "token_str": " Te"},
] , )
@require_torch
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt")
lowerCamelCase__: Dict =None
lowerCamelCase__: Dict =None
self.run_pipeline_test(UpperCAmelCase_ , [])
@require_tf
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
lowerCamelCase__: Tuple =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf")
lowerCamelCase__: Any =None
lowerCamelCase__: Optional[int] =None
self.run_pipeline_test(UpperCAmelCase_ , [])
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[
F"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =fill_masker.tokenizer
lowerCamelCase__: str =fill_masker.model
lowerCamelCase__: Optional[int] =fill_masker(
F"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: List[Any] =fill_masker([F"""This is a {tokenizer.mask_token}"""])
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Optional[Any] =fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""])
self.assertEqual(
UpperCAmelCase_ , [
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
] , )
with self.assertRaises(UpperCAmelCase_):
fill_masker([None])
# No mask_token is not supported
with self.assertRaises(UpperCAmelCase_):
fill_masker("This is")
self.run_test_top_k(UpperCAmelCase_ , UpperCAmelCase_)
self.run_test_targets(UpperCAmelCase_ , UpperCAmelCase_)
self.run_test_top_k_targets(UpperCAmelCase_ , UpperCAmelCase_)
self.fill_mask_with_duplicate_targets_and_top_k(UpperCAmelCase_ , UpperCAmelCase_)
self.fill_mask_with_multiple_masks(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =tokenizer.get_vocab()
lowerCamelCase__: Optional[int] =sorted(vocab.keys())[:2]
# Pipeline argument
lowerCamelCase__: Tuple =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , targets=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""")
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Tuple ={vocab[el] for el in targets}
self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_)
lowerCamelCase__: List[str] =[tokenizer.decode([x]) for x in target_ids]
self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_))
# Call argument
lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_)
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Optional[int] ={vocab[el] for el in targets}
self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_)
lowerCamelCase__: str =[tokenizer.decode([x]) for x in target_ids]
self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_))
# Score equivalence
lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_)
lowerCamelCase__: str =[top_mask["token_str"] for top_mask in outputs]
lowerCamelCase__: Dict =[top_mask["score"] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(UpperCAmelCase_) == set(UpperCAmelCase_):
lowerCamelCase__: Union[str, Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_)
lowerCamelCase__: Any =[top_mask["score"] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_))
# Raises with invalid
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Optional[int] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[])
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""])
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="")
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , top_k=2)
lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""")
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Dict =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Tuple =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2)
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =tokenizer.get_vocab()
lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
# top_k=2, ntargets=3
lowerCamelCase__: List[str] =sorted(vocab.keys())[:3]
lowerCamelCase__: List[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=UpperCAmelCase_)
# If we use the most probably targets, and filter differently, we should still
# have the same results
lowerCamelCase__: Union[str, Any] =[el["token_str"] for el in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(UpperCAmelCase_).issubset(UpperCAmelCase_):
lowerCamelCase__: int =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=UpperCAmelCase_)
# They should yield exactly the same result
self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer.get_vocab()
# String duplicates + id duplicates
lowerCamelCase__: Optional[Any] =sorted(vocab.keys())[:3]
lowerCamelCase__: Optional[Any] =[targets[0], targets[1], targets[0], targets[2], targets[1]]
lowerCamelCase__: Union[str, Any] =fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=UpperCAmelCase_ , top_k=10)
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(UpperCAmelCase_) , 3)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Tuple =fill_masker(
F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2)
self.assertEqual(
UpperCAmelCase_ , [
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
] , )
| 10 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841
lowerCamelCase__: List[Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: List[str] =defaultdict(__a )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCamelCase__: List[str] =mst(__a )
lowerCamelCase__: Union[str, Any] =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCamelCase__: Optional[int] =tuple(answer[:2] )
lowerCamelCase__: List[Any] =tuple(edge[::-1] )
assert edge in result or reverse in result
| 10 | 1 |
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =len(__a ), len(grid[0] )
if (
min(__a , __a ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
lowerCamelCase__: Dict =0
count += depth_first_search(__a , row + 1 , __a , __a )
count += depth_first_search(__a , row - 1 , __a , __a )
count += depth_first_search(__a , __a , col + 1 , __a )
count += depth_first_search(__a , __a , col - 1 , __a )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
__A = None
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"},
"tokenizer_file": {
"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json"
},
}
__A = {
"google/pegasus-xsum": 512,
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PegasusTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : int="<mask_2>" , UpperCAmelCase_ : Any="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : int=103 , **UpperCAmelCase_ : Dict , ) ->Any:
'''simple docstring'''
lowerCamelCase__: Dict =offset
if additional_special_tokens is not None:
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
raise TypeError(
F"""additional_special_tokens should be of type {type(UpperCAmelCase_)}, but is"""
F""" {type(UpperCAmelCase_)}""")
lowerCamelCase__: Any =(
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(UpperCAmelCase_) , self.offset - 1)
]
if len(set(UpperCAmelCase_)) != len(UpperCAmelCase_):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""")
lowerCamelCase__: Optional[int] =additional_special_tokens_extended
else:
lowerCamelCase__: Union[str, Any] =[mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset)]
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =vocab_file
lowerCamelCase__: Tuple =False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple) ->int:
'''simple docstring'''
lowerCamelCase__: Dict =set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens) + 3)):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
F""" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}""")
return [1 if x in all_special_ids else 0 for x in seq]
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(UpperCAmelCase_)
elif token_ids_a is None:
return self._special_token_mask(UpperCAmelCase_) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a) + [1]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_):
copyfile(self.vocab_file , UpperCAmelCase_)
return (out_vocab_file,)
| 10 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
"tokenization_convbert": ["ConvBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["ConvBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvBertForMaskedLM",
"ConvBertForMultipleChoice",
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFConvBertForMaskedLM",
"TFConvBertForMultipleChoice",
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 1 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
__A = ["text", "image", "audio"]
def lowerCAmelCase_ ( __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Dict =[]
for input_type in input_types:
if input_type == "text":
inputs.append("Text input" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(__a , __a ):
inputs.append(create_inputs(__a ) )
else:
raise ValueError(F"""Invalid type requested: {input_type}""" )
return inputs
def lowerCAmelCase_ ( __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Any =[]
for output in outputs:
if isinstance(__a , (str, AgentText) ):
output_types.append("text" )
elif isinstance(__a , (Image.Image, AgentImage) ):
output_types.append("image" )
elif isinstance(__a , (torch.Tensor, AgentAudio) ):
output_types.append("audio" )
else:
raise ValueError(F"""Invalid output: {output}""" )
return output_types
@is_tool_test
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
self.assertTrue(hasattr(self.tool , "inputs"))
self.assertTrue(hasattr(self.tool , "outputs"))
lowerCamelCase__: List[Any] =self.tool.inputs
for _input in inputs:
if isinstance(_input , UpperCAmelCase_):
for __input in _input:
self.assertTrue(__input in authorized_types)
else:
self.assertTrue(_input in authorized_types)
lowerCamelCase__: List[str] =self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types)
def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =create_inputs(self.tool.inputs)
lowerCamelCase__: Tuple =self.tool(*UpperCAmelCase_)
# There is a single output
if len(self.tool.outputs) == 1:
lowerCamelCase__: Tuple =[outputs]
self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs)
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
self.assertTrue(hasattr(self.tool , "description"))
self.assertTrue(hasattr(self.tool , "default_checkpoint"))
self.assertTrue(self.tool.description.startswith("This is a tool that"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =create_inputs(self.tool.inputs)
lowerCamelCase__: Tuple =self.tool(*UpperCAmelCase_)
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Optional[int] =[outputs]
self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs):
lowerCamelCase__: Optional[Any] =AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Any) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[Any] =create_inputs(self.tool.inputs)
lowerCamelCase__: Union[str, Any] =[]
for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs):
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type])
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input))
# Should not raise an error
lowerCamelCase__: Optional[int] =self.tool(*UpperCAmelCase_)
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: int =[outputs]
self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
| 10 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 1 |
from collections import defaultdict
def lowerCAmelCase_ ( __a , __a ) -> bool:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =first_str.lower().strip()
lowerCamelCase__: Optional[Any] =second_str.lower().strip()
# Remove whitespace
lowerCamelCase__: int =first_str.replace(" " , "" )
lowerCamelCase__: int =second_str.replace(" " , "" )
# Strings of different lengths are not anagrams
if len(__a ) != len(__a ):
return False
# Default values for count should be 0
lowerCamelCase__: defaultdict[str, int] =defaultdict(__a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
__A = input("Enter the first string ").strip()
__A = input("Enter the second string ").strip()
__A = check_anagrams(input_a, input_b)
print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
| 10 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ""
lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs
def __init__(self : List[str] , UpperCAmelCase_ : Optional[DatasetInfo] = None , UpperCAmelCase_ : Optional[str] = None , **UpperCAmelCase_ : Optional[Any] , ) ->int:
'''simple docstring'''
super().__init__(self , **UpperCAmelCase_)
lowerCamelCase__: List[str] =repo_info
lowerCamelCase__: Optional[Any] =token
lowerCamelCase__: Optional[Any] =None
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
if self.dir_cache is None:
lowerCamelCase__: Any ={}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
lowerCamelCase__: int ={
"name": hf_file.rfilename,
"size": None,
"type": "file",
}
self.dir_cache.update(
{
str(UpperCAmelCase_): {"name": str(UpperCAmelCase_), "size": None, "type": "directory"}
for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1]
})
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , **UpperCAmelCase_ : int , ) ->Optional[int]:
'''simple docstring'''
if not isinstance(self.repo_info , UpperCAmelCase_):
raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""")
lowerCamelCase__: Any =hf_hub_url(self.repo_info.id , UpperCAmelCase_ , revision=self.repo_info.sha)
return fsspec.open(
UpperCAmelCase_ , mode=UpperCAmelCase_ , headers=get_authentication_headers_for_url(UpperCAmelCase_ , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open()
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
self._get_dirs()
lowerCamelCase__: List[str] =self._strip_protocol(UpperCAmelCase_)
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
self._get_dirs()
lowerCamelCase__: List[str] =PurePosixPath(path.strip("/"))
lowerCamelCase__: Union[str, Any] ={}
for p, f in self.dir_cache.items():
lowerCamelCase__: List[str] =PurePosixPath(p.strip("/"))
lowerCamelCase__: List[Any] =p.parent
if root == path:
lowerCamelCase__: Tuple =f
lowerCamelCase__: int =list(paths.values())
if detail:
return out
else:
return sorted(f["name"] for f in out)
| 10 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 1 |
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
__A = HfArgumentParser(InitializationArguments)
__A = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
__A = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
__A = {
"vocab_size": len(tokenizer),
"scale_attn_by_inverse_layer_idx": True,
"reorder_and_upcast_attn": True,
}
# Load model config (GPT-2 large in this case)
__A = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
__A = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| 10 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 1 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=None , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =parent
lowerCamelCase__: Union[str, Any] =batch_size
lowerCamelCase__: List[str] =decoder_seq_length
# For common tests
lowerCamelCase__: Any =self.decoder_seq_length
lowerCamelCase__: Optional[int] =is_training
lowerCamelCase__: str =use_attention_mask
lowerCamelCase__: Optional[int] =use_labels
lowerCamelCase__: int =vocab_size
lowerCamelCase__: Optional[int] =d_model
lowerCamelCase__: str =d_model
lowerCamelCase__: Union[str, Any] =decoder_layers
lowerCamelCase__: str =decoder_layers
lowerCamelCase__: List[Any] =decoder_ffn_dim
lowerCamelCase__: Dict =decoder_attention_heads
lowerCamelCase__: Dict =decoder_attention_heads
lowerCamelCase__: List[Any] =eos_token_id
lowerCamelCase__: Optional[int] =bos_token_id
lowerCamelCase__: List[Any] =pad_token_id
lowerCamelCase__: Dict =decoder_start_token_id
lowerCamelCase__: List[str] =use_cache
lowerCamelCase__: Optional[Any] =max_position_embeddings
lowerCamelCase__: List[Any] =None
lowerCamelCase__: str =decoder_seq_length
lowerCamelCase__: int =2
lowerCamelCase__: Dict =1
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: Any =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size)
lowerCamelCase__: Union[str, Any] =None
if self.use_attention_mask:
lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2)
lowerCamelCase__: int =None
if self.use_labels:
lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size)
lowerCamelCase__: Any =TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , ) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =True
lowerCamelCase__: Optional[int] =TrOCRDecoder(config=UpperCAmelCase_).to(UpperCAmelCase_).eval()
lowerCamelCase__: str =input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , use_cache=UpperCAmelCase_)
lowerCamelCase__: int =model(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , use_cache=UpperCAmelCase_)
self.parent.assertTrue(len(UpperCAmelCase_) == len(UpperCAmelCase_))
self.parent.assertTrue(len(UpperCAmelCase_) == len(UpperCAmelCase_) + 1)
lowerCamelCase__: Optional[int] =outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
lowerCamelCase__: List[str] =ids_tensor((2, 1) , config.vocab_size - 1) + 1
# append to next input_ids and
lowerCamelCase__: str =torch.cat([input_ids, next_tokens] , dim=-1)
lowerCamelCase__: List[Any] =model(UpperCAmelCase_)["last_hidden_state"]
lowerCamelCase__: Dict =model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_)["last_hidden_state"]
# select random slice
lowerCamelCase__: Union[str, Any] =ids_tensor((1,) , output_from_past.shape[-1]).item()
lowerCamelCase__: Tuple =output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
lowerCamelCase__: Dict =output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =config_and_inputs
lowerCamelCase__: int ={"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowercase_ = (TrOCRForCausalLM,) if is_torch_available() else ()
lowercase_ = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {}
lowercase_ = True
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase_)
lowerCamelCase__: str =ConfigTester(self , config_class=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Tuple:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return
@unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
pass
| 10 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 1 |
import os
import string
import sys
__A = 1 << 8
__A = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
__A = KEYMAP["up"]
__A = KEYMAP["left"]
if sys.platform == "win32":
__A = []
__A = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
__A = ord(str(i))
def lowerCAmelCase_ ( ) -> Dict:
"""simple docstring"""
if os.name == "nt":
import msvcrt
lowerCamelCase__: Dict ="mbcs"
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__a ) == 0:
# Read the keystroke
lowerCamelCase__: Any =msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowerCamelCase__: Any =ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowerCamelCase__: int =chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) )
WIN_CH_BUFFER.append(__a )
if ord(__a ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
lowerCamelCase__: Any =chr(KEYMAP["esc"] )
except KeyError:
lowerCamelCase__: Optional[Any] =cha[1]
else:
lowerCamelCase__: Dict =ch.decode(__a )
else:
lowerCamelCase__: Tuple =WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowerCamelCase__: List[Any] =sys.stdin.fileno()
lowerCamelCase__: Dict =termios.tcgetattr(__a )
try:
tty.setraw(__a )
lowerCamelCase__: str =sys.stdin.read(1 )
finally:
termios.tcsetattr(__a , termios.TCSADRAIN , __a )
return ch
def lowerCAmelCase_ ( ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =get_raw_chars()
if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__a ) == KEYMAP["esc"]:
lowerCamelCase__: Optional[int] =get_raw_chars()
if ord(__a ) == KEYMAP["mod_int"]:
lowerCamelCase__: Any =get_raw_chars()
if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__a ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 10 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
__A = logging.getLogger(__name__)
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowercase_ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "The input training data file (a text file)."} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "The number of processes to use for the preprocessing."} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]:
'''simple docstring'''
if self.train_file is not None:
lowerCamelCase__: int =self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
lowerCamelCase__: Dict =self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = 42
lowercase_ = True
lowercase_ = None
lowercase_ = None
def __call__(self : Union[str, Any] , UpperCAmelCase_ : str) ->List[str]:
'''simple docstring'''
lowerCamelCase__: int ="label" if "label" in features[0].keys() else "labels"
lowerCamelCase__: List[Any] =[feature.pop(UpperCAmelCase_) for feature in features]
lowerCamelCase__: Any =len(UpperCAmelCase_)
lowerCamelCase__: str =len(features[0]["input_ids"])
lowerCamelCase__: int =[
[{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase_)] for feature in features
]
lowerCamelCase__: List[Any] =list(chain(*UpperCAmelCase_))
lowerCamelCase__: Optional[Any] =self.tokenizer.pad(
UpperCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
lowerCamelCase__: Optional[Any] ={k: v.view(UpperCAmelCase_ , UpperCAmelCase_ , -1) for k, v in batch.items()}
# Add back labels
lowerCamelCase__: List[str] =torch.tensor(UpperCAmelCase_ , dtype=torch.intaa)
return batch
def lowerCAmelCase_ ( ) -> int:
"""simple docstring"""
lowerCamelCase__: List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Dict =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag" , __a , __a )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase__: int =training_args.get_process_log_level()
logger.setLevel(__a )
datasets.utils.logging.set_verbosity(__a )
transformers.utils.logging.set_verbosity(__a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase__: List[str] =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase__: Optional[Any] =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
lowerCamelCase__: List[Any] ={}
if data_args.train_file is not None:
lowerCamelCase__: List[Any] =data_args.train_file
if data_args.validation_file is not None:
lowerCamelCase__: List[Any] =data_args.validation_file
lowerCamelCase__: Any =data_args.train_file.split("." )[-1]
lowerCamelCase__: Dict =load_dataset(
__a , data_files=__a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
lowerCamelCase__: List[Any] =load_dataset(
"swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase__: Dict =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__: Any =AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__: int =AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
lowerCamelCase__: Tuple =[F"""ending{i}""" for i in range(4 )]
lowerCamelCase__: Optional[int] ="sent1"
lowerCamelCase__: int ="sent2"
if data_args.max_seq_length is None:
lowerCamelCase__: List[Any] =tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
lowerCamelCase__: Optional[Any] =1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase__: int =min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(__a ):
lowerCamelCase__: str =[[context] * 4 for context in examples[context_name]]
lowerCamelCase__: Union[str, Any] =examples[question_header_name]
lowerCamelCase__: Any =[
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__a )
]
# Flatten out
lowerCamelCase__: Any =list(chain(*__a ) )
lowerCamelCase__: Optional[Any] =list(chain(*__a ) )
# Tokenize
lowerCamelCase__: int =tokenizer(
__a , __a , truncation=__a , max_length=__a , padding="max_length" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__a ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
lowerCamelCase__: Optional[Any] =raw_datasets["train"]
if data_args.max_train_samples is not None:
lowerCamelCase__: List[Any] =min(len(__a ) , data_args.max_train_samples )
lowerCamelCase__: List[Any] =train_dataset.select(range(__a ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
lowerCamelCase__: Union[str, Any] =train_dataset.map(
__a , batched=__a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
lowerCamelCase__: List[str] =raw_datasets["validation"]
if data_args.max_eval_samples is not None:
lowerCamelCase__: List[Any] =min(len(__a ) , data_args.max_eval_samples )
lowerCamelCase__: List[str] =eval_dataset.select(range(__a ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
lowerCamelCase__: str =eval_dataset.map(
__a , batched=__a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
lowerCamelCase__: Dict =(
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__a , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(__a ):
lowerCamelCase__ , lowerCamelCase__: str =eval_predictions
lowerCamelCase__: Optional[Any] =np.argmax(__a , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
lowerCamelCase__: List[str] =Trainer(
model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__a , data_collator=__a , compute_metrics=__a , )
# Training
if training_args.do_train:
lowerCamelCase__: Tuple =None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase__: Any =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase__: Optional[Any] =last_checkpoint
lowerCamelCase__: List[str] =trainer.train(resume_from_checkpoint=__a )
trainer.save_model() # Saves the tokenizer too for easy upload
lowerCamelCase__: Any =train_result.metrics
lowerCamelCase__: str =(
data_args.max_train_samples if data_args.max_train_samples is not None else len(__a )
)
lowerCamelCase__: str =min(__a , len(__a ) )
trainer.log_metrics("train" , __a )
trainer.save_metrics("train" , __a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
lowerCamelCase__: List[str] =trainer.evaluate()
lowerCamelCase__: List[str] =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a )
lowerCamelCase__: List[Any] =min(__a , len(__a ) )
trainer.log_metrics("eval" , __a )
trainer.save_metrics("eval" , __a )
lowerCamelCase__: List[str] ={
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**__a )
else:
trainer.create_model_card(**__a )
def lowerCAmelCase_ ( __a ) -> Any:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 10 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BioGptTokenizer
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCamelCase__: Union[str, Any] =[
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
lowerCamelCase__: Dict =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: Tuple =["l o 123", "lo w 1456", "e r</w> 1789", ""]
lowerCamelCase__: List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
lowerCamelCase__: str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file , "w") as fp:
fp.write(json.dumps(UpperCAmelCase_))
with open(self.merges_file , "w") as fp:
fp.write("\n".join(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] ="lower newer"
lowerCamelCase__: Any ="lower newer"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =BioGptTokenizer(self.vocab_file , self.merges_file)
lowerCamelCase__: Dict ="lower"
lowerCamelCase__: Dict =["low", "er</w>"]
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[str] =tokens + ["<unk>"]
lowerCamelCase__: Optional[int] =[14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BioGptTokenizer.from_pretrained("microsoft/biogpt")
lowerCamelCase__: Dict =tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_)
lowerCamelCase__: int =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_)
self.assertTrue(encoded_sentence == [2] + text)
self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
| 10 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A = logging.get_logger(__name__)
__A = {"vocab_file": "spiece.model"}
__A = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
__A = {
"AI-Sweden/gpt-sw3-126m": 2048,
"AI-Sweden/gpt-sw3-350m": 2048,
"AI-Sweden/gpt-sw3-1.6b": 2048,
"AI-Sweden/gpt-sw3-6.7b": 2048,
"AI-Sweden/gpt-sw3-20b": 2048,
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : List[Any] , ) ->None:
'''simple docstring'''
lowerCamelCase__: Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs
lowerCamelCase__: Tuple =kwargs.get("name_or_path")
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored")
lowerCamelCase__: List[str] ="None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
lowerCamelCase__: str ="<|endoftext|>" if eos_token is None else eos_token
lowerCamelCase__: List[str] ="<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
lowerCamelCase__: Optional[Any] =unk_token if pad_token is None else pad_token
lowerCamelCase__: Tuple =eos_token if bos_token is None else bos_token
else:
lowerCamelCase__: List[Any] ="<pad>" if pad_token is None else pad_token
lowerCamelCase__: Union[str, Any] ="<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
lowerCamelCase__: Dict =do_lower_case
lowerCamelCase__: Optional[Any] =remove_space
lowerCamelCase__: Dict =keep_accents
lowerCamelCase__: str =vocab_file
lowerCamelCase__: str =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(UpperCAmelCase_)
# Used for whitespace normalization in input texts
# fmt : off
lowerCamelCase__: Union[str, Any] ={" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
lowerCamelCase__: Optional[int] =re.compile(
F"""[{"".join(map(UpperCAmelCase_ , list(range(0 , 9)) + list(range(11 , 32)) + list(range(127 , 160)) + [160, 173, 8_203]))}]""")
def __getstate__(self : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: str =self.__dict__.copy()
lowerCamelCase__: List[Any] =None
return state
def __setstate__(self : Any , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
lowerCamelCase__: Tuple =d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Optional[int] ={}
lowerCamelCase__: List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def SCREAMING_SNAKE_CASE_ (self : Dict) ->int:
'''simple docstring'''
return len(self.sp_model)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.non_printing_characters_re.sub("" , UpperCAmelCase_)
# Normalize whitespaces
lowerCamelCase__: int ="".join([char if char not in self.whitespaces else " " for char in text])
# NFC Unicode normalization
lowerCamelCase__: Optional[Any] =unicodedata.normalize("NFC" , UpperCAmelCase_)
return text
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , **UpperCAmelCase_ : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.preprocess_text(UpperCAmelCase_)
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str) ->int:
'''simple docstring'''
return self.sp_model.PieceToId(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : int) ->str:
'''simple docstring'''
return self.sp_model.IdToPiece(UpperCAmelCase_)
@staticmethod
def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return out_string
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =[]
lowerCamelCase__: Union[str, Any] =""
lowerCamelCase__: Any =False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase_) + token
lowerCamelCase__: List[Any] =True
lowerCamelCase__: Tuple =[]
else:
current_sub_tokens.append(UpperCAmelCase_)
lowerCamelCase__: str =False
out_string += self.sp_model.decode(UpperCAmelCase_)
return out_string
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict[str, int]:
'''simple docstring'''
lowerCamelCase__: List[str] ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: int =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Any =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[str, bool] = False) ->Union[List[int], List[List[int]], "torch.Tensor"]:
'''simple docstring'''
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: int =self.preprocess_text(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =self.sp_model.encode(UpperCAmelCase_)
else:
lowerCamelCase__: Any =[self.preprocess_text(UpperCAmelCase_) for t in text]
lowerCamelCase__: Tuple =self.sp_model.encode(UpperCAmelCase_)
if return_tensors is True or return_tensors == "pt":
lowerCamelCase__: List[str] =torch.tensor(UpperCAmelCase_)
return token_ids
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[int, List[int]]) ->str:
'''simple docstring'''
return self.sp_model.decode(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : "Conversation") ->List[int]:
'''simple docstring'''
lowerCamelCase__: List[Any] =[F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()]
lowerCamelCase__: List[str] =(
F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCAmelCase_) + F"""{self.bos_token}Bot:"""
)
return self.encode(text=UpperCAmelCase_)
| 10 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase_ = Features({"image": Image()} )
lowercase_ = Features({"labels": ClassLabel} )
lowercase_ = "image"
lowercase_ = "labels"
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""")
lowerCamelCase__: List[Any] =copy.deepcopy(self)
lowerCamelCase__: Optional[int] =self.label_schema.copy()
lowerCamelCase__: int =features[self.label_column]
lowerCamelCase__: int =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 10 | 1 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "new-model"
if is_tf_available():
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = NewModelConfig
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] ="bert-base-cased"
lowerCamelCase__: Tuple =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Any =TFAutoModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Any ="bert-base-cased"
lowerCamelCase__: Tuple =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[str] =TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: Optional[int] =TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict:
'''simple docstring'''
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: List[Any] =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Any =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : Dict) ->int:
'''simple docstring'''
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: Optional[int] =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Dict =TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: List[str] =TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict:
'''simple docstring'''
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: str =TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: List[str] =TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase_ , output_loading_info=UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : str) ->Any:
'''simple docstring'''
for model_name in ["bert-base-uncased"]:
lowerCamelCase__: Dict =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Dict =TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Any:
'''simple docstring'''
for model_name in ["bert-base-uncased"]:
lowerCamelCase__: str =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
@require_tensorflow_probability
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]:
'''simple docstring'''
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
lowerCamelCase__: Tuple =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__: List[str] =TFAutoModelForTableQuestionAnswering.from_pretrained(
UpperCAmelCase_ , output_loading_info=UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int:
'''simple docstring'''
lowerCamelCase__: Dict =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
self.assertEqual(model.num_parameters() , 14_410)
self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
self.assertEqual(model.num_parameters() , 14_410)
self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase_) , 14_410)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str:
'''simple docstring'''
lowerCamelCase__: Tuple =TFAutoModel.from_pretrained("sgugger/funnel-random-tiny")
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: str =copy.deepcopy(model.config)
lowerCamelCase__: Dict =["FunnelBaseModel"]
lowerCamelCase__: List[Any] =TFAutoModel.from_config(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCAmelCase_)
lowerCamelCase__: List[Any] =TFAutoModel.from_pretrained(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int:
'''simple docstring'''
try:
AutoConfig.register("new-model" , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__):
# Wrong config class will raise an error
with self.assertRaises(UpperCAmelCase_):
auto_class.register(UpperCAmelCase_ , UpperCAmelCase_)
auto_class.register(UpperCAmelCase_ , UpperCAmelCase_)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase_):
auto_class.register(UpperCAmelCase_ , UpperCAmelCase_)
# Now that the config is registered, it can be used as any other config with the auto-API
lowerCamelCase__: Tuple =BertModelTester(self).get_config()
lowerCamelCase__: List[str] =NewModelConfig(**tiny_config.to_dict())
lowerCamelCase__: List[Any] =auto_class.from_config(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCAmelCase_)
lowerCamelCase__: Tuple =auto_class.from_pretrained(UpperCAmelCase_)
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase_ , "bert-base is not a local folder and is not a valid model identifier"):
lowerCamelCase__: Optional[Any] =TFAutoModel.from_pretrained("bert-base")
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"):
lowerCamelCase__: Optional[int] =TFAutoModel.from_pretrained(UpperCAmelCase_ , revision="aaaaaa")
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase_ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ):
lowerCamelCase__: Union[str, Any] =TFAutoModel.from_pretrained("hf-internal-testing/config-no-model")
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
with self.assertRaisesRegex(UpperCAmelCase_ , "Use `from_pt=True` to load this model"):
lowerCamelCase__: List[Any] =TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only")
def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
with RequestCounter() as counter:
lowerCamelCase__: List[str] =TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
self.assertEqual(counter.get_request_count , 0)
self.assertEqual(counter.head_request_count , 1)
self.assertEqual(counter.other_request_count , 0)
# With a sharded checkpoint
lowerCamelCase__: Optional[int] =TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
with RequestCounter() as counter:
lowerCamelCase__: List[Any] =TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded")
self.assertEqual(counter.get_request_count , 0)
self.assertEqual(counter.head_request_count , 1)
self.assertEqual(counter.other_request_count , 0)
| 10 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
__A = logging.get_logger(__name__)
# General docstring
__A = "MobileNetV1Config"
# Base docstring
__A = "google/mobilenet_v1_1.0_224"
__A = [1, 1024, 7, 7]
# Image classification docstring
__A = "google/mobilenet_v1_1.0_224"
__A = "tabby, tabby cat"
__A = [
"google/mobilenet_v1_1.0_224",
"google/mobilenet_v1_0.75_192",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def lowerCAmelCase_ ( __a , __a , __a=None ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] ={}
if isinstance(__a , __a ):
lowerCamelCase__: Tuple =model.mobilenet_va
else:
lowerCamelCase__: List[str] =model
lowerCamelCase__: Union[str, Any] ="MobilenetV1/Conv2d_0/"
lowerCamelCase__: Tuple =backbone.conv_stem.convolution.weight
lowerCamelCase__: List[Any] =backbone.conv_stem.normalization.bias
lowerCamelCase__: Union[str, Any] =backbone.conv_stem.normalization.weight
lowerCamelCase__: Optional[Any] =backbone.conv_stem.normalization.running_mean
lowerCamelCase__: Optional[Any] =backbone.conv_stem.normalization.running_var
for i in range(13 ):
lowerCamelCase__: str =i + 1
lowerCamelCase__: List[Any] =i * 2
lowerCamelCase__: Dict =backbone.layer[pt_index]
lowerCamelCase__: Union[str, Any] =F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
lowerCamelCase__: Union[str, Any] =pointer.convolution.weight
lowerCamelCase__: Union[str, Any] =pointer.normalization.bias
lowerCamelCase__: Dict =pointer.normalization.weight
lowerCamelCase__: Tuple =pointer.normalization.running_mean
lowerCamelCase__: Optional[Any] =pointer.normalization.running_var
lowerCamelCase__: Optional[Any] =backbone.layer[pt_index + 1]
lowerCamelCase__: Tuple =F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
lowerCamelCase__: Tuple =pointer.convolution.weight
lowerCamelCase__: str =pointer.normalization.bias
lowerCamelCase__: int =pointer.normalization.weight
lowerCamelCase__: Optional[int] =pointer.normalization.running_mean
lowerCamelCase__: Union[str, Any] =pointer.normalization.running_var
if isinstance(__a , __a ):
lowerCamelCase__: Tuple ="MobilenetV1/Logits/Conv2d_1c_1x1/"
lowerCamelCase__: List[Any] =model.classifier.weight
lowerCamelCase__: int =model.classifier.bias
return tf_to_pt_map
def lowerCAmelCase_ ( __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions." )
raise
# Load weights from TF model
lowerCamelCase__: Optional[Any] =tf.train.list_variables(__a )
lowerCamelCase__: Optional[int] ={}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
lowerCamelCase__: Optional[Any] =tf.train.load_variable(__a , __a )
lowerCamelCase__: List[str] =array
# Build TF to PyTorch weights loading map
lowerCamelCase__: Dict =_build_tf_to_pytorch_map(__a , __a , __a )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
lowerCamelCase__: Optional[int] =tf_weights[name]
if "depthwise_weights" in name:
logger.info("Transposing depthwise" )
lowerCamelCase__: Dict =np.transpose(__a , (2, 3, 0, 1) )
elif "weights" in name:
logger.info("Transposing" )
if len(pointer.shape ) == 2: # copying into linear layer
lowerCamelCase__: Optional[Any] =array.squeeze().transpose()
else:
lowerCamelCase__: Dict =np.transpose(__a , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
lowerCamelCase__: str =torch.from_numpy(__a )
tf_weights.pop(__a , __a )
tf_weights.pop(name + "/RMSProp" , __a )
tf_weights.pop(name + "/RMSProp_1" , __a )
tf_weights.pop(name + "/ExponentialMovingAverage" , __a )
logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" )
return model
def lowerCAmelCase_ ( __a , __a ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =features.shape[-2:]
lowerCamelCase__ , lowerCamelCase__: List[str] =conv_layer.stride
lowerCamelCase__ , lowerCamelCase__: Dict =conv_layer.kernel_size
if in_height % stride_height == 0:
lowerCamelCase__: Optional[int] =max(kernel_height - stride_height , 0 )
else:
lowerCamelCase__: Dict =max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
lowerCamelCase__: int =max(kernel_width - stride_width , 0 )
else:
lowerCamelCase__: str =max(kernel_width - (in_width % stride_width) , 0 )
lowerCamelCase__: Tuple =pad_along_width // 2
lowerCamelCase__: Optional[int] =pad_along_width - pad_left
lowerCamelCase__: Dict =pad_along_height // 2
lowerCamelCase__: int =pad_along_height - pad_top
lowerCamelCase__: List[str] =(pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(__a , __a , "constant" , 0.0 )
class _SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__(self : Optional[int] , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool or str] = True , ) ->None:
'''simple docstring'''
super().__init__()
lowerCamelCase__: Any =config
if in_channels % groups != 0:
raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""")
if out_channels % groups != 0:
raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""")
lowerCamelCase__: Optional[int] =0 if config.tf_padding else int((kernel_size - 1) / 2)
lowerCamelCase__: Any =nn.Convad(
in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="zeros" , )
if use_normalization:
lowerCamelCase__: Optional[Any] =nn.BatchNormad(
num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.9997 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , )
else:
lowerCamelCase__: Any =None
if use_activation:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =ACTaFN[use_activation]
elif isinstance(config.hidden_act , UpperCAmelCase_):
lowerCamelCase__: Dict =ACTaFN[config.hidden_act]
else:
lowerCamelCase__: List[str] =config.hidden_act
else:
lowerCamelCase__: Optional[int] =None
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : torch.Tensor) ->torch.Tensor:
'''simple docstring'''
if self.config.tf_padding:
lowerCamelCase__: Union[str, Any] =apply_tf_padding(UpperCAmelCase_ , self.convolution)
lowerCamelCase__: str =self.convolution(UpperCAmelCase_)
if self.normalization is not None:
lowerCamelCase__: Optional[int] =self.normalization(UpperCAmelCase_)
if self.activation is not None:
lowerCamelCase__: Any =self.activation(UpperCAmelCase_)
return features
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = MobileNetVaConfig
lowercase_ = load_tf_weights_in_mobilenet_va
lowercase_ = "mobilenet_v1"
lowercase_ = "pixel_values"
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Union[nn.Linear, nn.Convad]) ->None:
'''simple docstring'''
if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad)):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(UpperCAmelCase_ , nn.BatchNormad):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
__A = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__A = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __SCREAMING_SNAKE_CASE , )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : int , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : bool = True) ->str:
'''simple docstring'''
super().__init__(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =config
lowerCamelCase__: Optional[int] =32
lowerCamelCase__: Optional[int] =max(int(depth * config.depth_multiplier) , config.min_depth)
lowerCamelCase__: Optional[Any] =MobileNetVaConvLayer(
UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , )
lowerCamelCase__: int =[1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
lowerCamelCase__: Tuple =nn.ModuleList()
for i in range(13):
lowerCamelCase__: Dict =out_channels
if strides[i] == 2 or i == 0:
depth *= 2
lowerCamelCase__: Tuple =max(int(depth * config.depth_multiplier) , config.min_depth)
self.layer.append(
MobileNetVaConvLayer(
UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ))
self.layer.append(
MobileNetVaConvLayer(
UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ))
lowerCamelCase__: str =nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : int) ->Any:
'''simple docstring'''
raise NotImplementedError
@add_start_docstrings_to_model_forward(UpperCAmelCase_)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase__: str =return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
lowerCamelCase__: str =self.conv_stem(UpperCAmelCase_)
lowerCamelCase__: str =() if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
lowerCamelCase__: int =layer_module(UpperCAmelCase_)
if output_hidden_states:
lowerCamelCase__: str =all_hidden_states + (hidden_states,)
lowerCamelCase__: Tuple =hidden_states
if self.pooler is not None:
lowerCamelCase__: List[Any] =torch.flatten(self.pooler(UpperCAmelCase_) , start_dim=1)
else:
lowerCamelCase__: Optional[Any] =None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , )
@add_start_docstrings(
"\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __SCREAMING_SNAKE_CASE , )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : MobileNetVaConfig) ->None:
'''simple docstring'''
super().__init__(UpperCAmelCase_)
lowerCamelCase__: List[str] =config.num_labels
lowerCamelCase__: List[Any] =MobileNetVaModel(UpperCAmelCase_)
lowerCamelCase__: List[Any] =self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
lowerCamelCase__: Any =nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =nn.Linear(UpperCAmelCase_ , config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]:
'''simple docstring'''
lowerCamelCase__: Any =return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase__: Optional[Any] =self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =outputs.pooler_output if return_dict else outputs[1]
lowerCamelCase__: Optional[int] =self.classifier(self.dropout(UpperCAmelCase_))
lowerCamelCase__: Any =None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowerCamelCase__: Optional[int] ="regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowerCamelCase__: Any ="single_label_classification"
else:
lowerCamelCase__: Any ="multi_label_classification"
if self.config.problem_type == "regression":
lowerCamelCase__: List[str] =MSELoss()
if self.num_labels == 1:
lowerCamelCase__: Union[str, Any] =loss_fct(logits.squeeze() , labels.squeeze())
else:
lowerCamelCase__: Union[str, Any] =loss_fct(UpperCAmelCase_ , UpperCAmelCase_)
elif self.config.problem_type == "single_label_classification":
lowerCamelCase__: Optional[Any] =CrossEntropyLoss()
lowerCamelCase__: List[Any] =loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
lowerCamelCase__: str =BCEWithLogitsLoss()
lowerCamelCase__: int =loss_fct(UpperCAmelCase_ , UpperCAmelCase_)
if not return_dict:
lowerCamelCase__: List[Any] =(logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
| 10 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =n
lowerCamelCase__: Tuple =[None] * self.n
lowerCamelCase__: str =0 # index of the first element
lowerCamelCase__: Tuple =0
lowerCamelCase__: Optional[Any] =0
def __len__(self : str) ->int:
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE_ (self : int) ->bool:
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL")
lowerCamelCase__: List[Any] =data
lowerCamelCase__: Dict =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW")
lowerCamelCase__: Optional[Any] =self.array[self.front]
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Dict =(self.front + 1) % self.n
self.size -= 1
return temp
| 10 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[[1, 2, 4], [1, 2, 3, 4]]
lowerCamelCase__: Any =DisjunctiveConstraint(UpperCAmelCase_)
self.assertTrue(isinstance(dc.token_ids , UpperCAmelCase_))
with self.assertRaises(UpperCAmelCase_):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]]))
with self.assertRaises(UpperCAmelCase_):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])])
def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]:
'''simple docstring'''
lowerCamelCase__: str =[[1, 2], [1, 2, 3, 4]]
with self.assertRaises(UpperCAmelCase_):
DisjunctiveConstraint(UpperCAmelCase_) # fails here
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Tuple =[[1, 2, 3], [1, 2, 4]]
lowerCamelCase__: List[Any] =DisjunctiveConstraint(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(1)
lowerCamelCase__: str =stepped is True and completed is False and reset is False
self.assertTrue(UpperCAmelCase_)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =dc.update(2)
lowerCamelCase__: Optional[Any] =stepped is True and completed is False and reset is False
self.assertTrue(UpperCAmelCase_)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1, 2])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =dc.update(3)
lowerCamelCase__: Tuple =stepped is True and completed is True and reset is False
self.assertTrue(UpperCAmelCase_)
self.assertTrue(dc.completed) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3])
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: List[str] =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
lowerCamelCase__: Dict =DisjunctiveConstraint(UpperCAmelCase_)
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =dc.update(1)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(2)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1, 2])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =dc.update(4)
self.assertTrue(not dc.completed)
self.assertTrue(dc.current_seq == [1, 2, 4])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =dc.update(5)
self.assertTrue(dc.completed) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5])
dc.reset()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(1)
self.assertTrue(not dc.completed)
self.assertTrue(dc.remaining() == 3)
self.assertTrue(dc.current_seq == [1])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =dc.update(2)
self.assertTrue(not dc.completed)
self.assertTrue(dc.remaining() == 2)
self.assertTrue(dc.current_seq == [1, 2])
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =dc.update(5)
self.assertTrue(dc.completed) # Completed!
self.assertTrue(dc.remaining() == 0)
self.assertTrue(dc.current_seq == [1, 2, 5])
| 10 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> YolosConfig:
"""simple docstring"""
lowerCamelCase__: str =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase__: int =192
lowerCamelCase__: Optional[int] =768
lowerCamelCase__: Any =12
lowerCamelCase__: str =3
lowerCamelCase__: Optional[int] =[800, 1333]
lowerCamelCase__: Union[str, Any] =False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: int =330
lowerCamelCase__: Optional[Any] =14
lowerCamelCase__: Any =6
lowerCamelCase__: List[str] =1320
elif "yolos_s" in yolos_name:
lowerCamelCase__: List[str] =384
lowerCamelCase__: Union[str, Any] =1536
lowerCamelCase__: List[Any] =12
lowerCamelCase__: Any =6
elif "yolos_b" in yolos_name:
lowerCamelCase__: str =[800, 1344]
lowerCamelCase__: int =91
lowerCamelCase__: str ="huggingface/label-files"
lowerCamelCase__: List[str] ="coco-detection-id2label.json"
lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()}
lowerCamelCase__: List[str] =idalabel
lowerCamelCase__: int ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :]
lowerCamelCase__: str =in_proj_bias[: config.hidden_size]
lowerCamelCase__: str =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__: str =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :]
lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if "backbone" in name:
lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCAmelCase_ ( __a , __a ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Any =orig_state_dict.pop(__a )
if "qkv" in key:
lowerCamelCase__: Tuple =key.split("." )
lowerCamelCase__: List[str] =int(key_split[2] )
lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase__: int =val[:dim, :]
lowerCamelCase__: str =val[
dim : dim * 2, :
]
lowerCamelCase__: Any =val[-dim:, :]
else:
lowerCamelCase__: Tuple =val[:dim]
lowerCamelCase__: Optional[Any] =val[dim : dim * 2]
lowerCamelCase__: str =val[-dim:]
else:
lowerCamelCase__: Dict =val
return orig_state_dict
def lowerCAmelCase_ ( ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =get_yolos_config(__a )
# load original state_dict
lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase__: int =YolosForObjectDetection(__a )
model.eval()
lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512
lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a )
lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Tuple =model(**__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes
lowerCamelCase__ , lowerCamelCase__: Any =None, None
if yolos_name == "yolos_ti":
lowerCamelCase__: Optional[Any] =torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
lowerCamelCase__: List[Any] =torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase__: Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
lowerCamelCase__: Any =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase__: str =torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
lowerCamelCase__: Optional[Any] =torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: str =torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
lowerCamelCase__: Tuple =torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
lowerCamelCase__: Optional[int] =torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
lowerCamelCase__: Any ={
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase__: Optional[int] =model_mapping[yolos_name]
image_processor.push_to_hub(__a , organization="hustvl" )
model.push_to_hub(__a , organization="hustvl" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 10 | 1 |
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
lowerCamelCase__: Any =math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(__a )
def lowerCAmelCase_ ( __a = 1 / 12345 ) -> int:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =0
lowerCamelCase__: List[Any] =0
lowerCamelCase__: str =3
while True:
lowerCamelCase__: Optional[int] =(integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(__a ):
lowerCamelCase__: List[Any] =int(__a )
total_partitions += 1
if check_partition_perfect(__a ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(__a )
integer += 1
if __name__ == "__main__":
print(f'{solution() = }')
| 10 |
from math import ceil, sqrt
def lowerCAmelCase_ ( __a = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__: str =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
if n == 1 or not isinstance(__a , __a ):
return 0
elif n == 2:
return 1
else:
lowerCamelCase__: Optional[int] =[0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Any =0
lowerCamelCase__: List[str] =2
while digits < n:
index += 1
lowerCamelCase__: Union[str, Any] =len(str(fibonacci(__a ) ) )
return index
def lowerCAmelCase_ ( __a = 1000 ) -> int:
"""simple docstring"""
return fibonacci_digits_index(__a )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 10 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =tmp_path / "cache"
lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
lowerCamelCase__: str =parquet_path
elif issubclass(__a , __a ):
lowerCamelCase__: str =[parquet_path]
lowerCamelCase__: Optional[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
lowerCamelCase__: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: List[str] =ParquetDatasetReader(
{"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: int =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]:
"""simple docstring"""
if split:
lowerCamelCase__: Union[str, Any] ={split: parquet_path}
else:
lowerCamelCase__: int ="train"
lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path}
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" )
lowerCamelCase__: Optional[int] =pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" )
lowerCamelCase__: Union[str, Any] ={"image": [image_path]}
lowerCamelCase__: int =Features({"image": Image()} )
lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a )
lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> list[list]:
"""simple docstring"""
lowerCamelCase__: str =current_set.copy()
for row_index, row in enumerate(__a ):
lowerCamelCase__: Tuple =row[0]
for column_index, column in enumerate(__a ):
if magnitude == 0:
lowerCamelCase__: Optional[int] =column
continue
lowerCamelCase__: Any =column / magnitude
# Subtract to cancel term
lowerCamelCase__: List[str] =current_set[0]
lowerCamelCase__: str =[first_row]
lowerCamelCase__: Optional[Any] =current_set[1::]
for row in current_set:
lowerCamelCase__: Dict =[]
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(__a )
continue
for column_index in range(len(__a ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(__a )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
lowerCamelCase__: int =final_set[0]
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: Optional[int] =[]
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
lowerCamelCase__: int =simplify(__a )
for i in range(len(__a ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , __a )
lowerCamelCase__: int =resultant
return final_set
def lowerCAmelCase_ ( __a ) -> list:
"""simple docstring"""
if len(__a ) == 0:
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
lowerCamelCase__: Dict =len(__a ) + 1
if any(len(__a ) != _length for item in equations ):
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
for row in equations:
if any(not isinstance(__a , (int, float) ) for column in row ):
raise ValueError("solve_simultaneous() requires lists of integers" )
if len(__a ) == 1:
return [equations[0][-1] / equations[0][0]]
lowerCamelCase__: Optional[Any] =equations.copy()
if any(0 in row for row in data_set ):
lowerCamelCase__: Tuple =data_set.copy()
lowerCamelCase__: Optional[Any] =[]
for row_index, row in enumerate(__a ):
if 0 not in row:
lowerCamelCase__: Optional[int] =data_set.pop(__a )
break
if not full_row:
raise ValueError("solve_simultaneous() requires at least 1 full equation" )
data_set.insert(0 , __a )
lowerCamelCase__: str =data_set.copy()
lowerCamelCase__: List[str] =simplify(__a )
lowerCamelCase__: Union[str, Any] =simplified[::-1]
lowerCamelCase__: list =[]
for row in simplified:
lowerCamelCase__: Tuple =row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
lowerCamelCase__: List[str] =row.copy()[: len(__a ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(__a ) == 0:
solutions.append(0 )
continue
lowerCamelCase__: List[str] =temp_row[1::]
lowerCamelCase__: int =temp_row[::-1]
for column_index, column in enumerate(__a ):
current_solution -= column * solutions[column_index]
solutions.append(__a )
lowerCamelCase__: int =[]
for item in solutions:
final.append(float(round(__a , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]]))
| 10 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 | 1 |
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def lowerCAmelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =argparse.ArgumentParser()
parser.add_argument(
"-m" , "--pretrained_model_name_or_path" , type=__a , default=__a , required=__a , help="Path to pretrained model or model identifier from huggingface.co/models." , )
parser.add_argument(
"-c" , "--caption" , type=__a , default="robotic cat with wings" , help="Text used to generate images." , )
parser.add_argument(
"-n" , "--images_num" , type=__a , default=4 , help="How much images to generate." , )
parser.add_argument(
"-s" , "--seed" , type=__a , default=42 , help="Seed for random process." , )
parser.add_argument(
"-ci" , "--cuda_id" , type=__a , default=0 , help="cuda_id." , )
lowerCamelCase__: Union[str, Any] =parser.parse_args()
return args
def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple:
"""simple docstring"""
if not len(__a ) == rows * cols:
raise ValueError("The specified number of rows and columns are not correct." )
lowerCamelCase__ , lowerCamelCase__: Optional[int] =imgs[0].size
lowerCamelCase__: Tuple =Image.new("RGB" , size=(cols * w, rows * h) )
lowerCamelCase__ , lowerCamelCase__: Tuple =grid.size
for i, img in enumerate(__a ):
grid.paste(__a , box=(i % cols * w, i // cols * h) )
return grid
def lowerCAmelCase_ ( __a , __a="robotic cat with wings" , __a=7.5 , __a=50 , __a=1 , __a=42 , ) -> str:
"""simple docstring"""
lowerCamelCase__: List[str] =torch.Generator(pipeline.device ).manual_seed(__a )
lowerCamelCase__: List[Any] =pipeline(
__a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images
lowerCamelCase__: List[str] =int(math.sqrt(__a ) )
lowerCamelCase__: Dict =image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__A = parse_args()
# Load models and create wrapper for stable diffusion
__A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
__A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
__A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
__A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
__A = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__A = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")):
__A = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, "unet", unet)
else:
__A = unet.to(torch.device("cuda", args.cuda_id))
__A = pipeline.to(unet.device)
__A , __A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split()))))
__A = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
| 10 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 | 1 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[Any]=6 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=1_000 , ) ->int:
'''simple docstring'''
lowerCamelCase__: List[Any] =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Any =is_training
lowerCamelCase__: Any =use_input_mask
lowerCamelCase__: Optional[Any] =use_token_type_ids
lowerCamelCase__: Optional[int] =use_labels
lowerCamelCase__: str =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: str =num_hidden_layers
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Any =intermediate_size
lowerCamelCase__: Any =hidden_act
lowerCamelCase__: Optional[int] =hidden_dropout_prob
lowerCamelCase__: List[Any] =attention_probs_dropout_prob
lowerCamelCase__: Optional[Any] =max_position_embeddings
lowerCamelCase__: int =type_vocab_size
lowerCamelCase__: int =type_sequence_label_size
lowerCamelCase__: int =initializer_range
lowerCamelCase__: Optional[int] =num_labels
lowerCamelCase__: Optional[int] =scope
lowerCamelCase__: Dict =range_bbox
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox)
# Ensure that bbox is legal
for i in range(bbox.shape[0]):
for j in range(bbox.shape[1]):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCamelCase__: Any =bbox[i, j, 3]
lowerCamelCase__: Any =bbox[i, j, 1]
lowerCamelCase__: List[str] =t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCamelCase__: Dict =bbox[i, j, 2]
lowerCamelCase__: Any =bbox[i, j, 0]
lowerCamelCase__: Any =t
lowerCamelCase__: List[Any] =None
if self.use_input_mask:
lowerCamelCase__: Tuple =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
lowerCamelCase__: List[str] =None
if self.use_token_type_ids:
lowerCamelCase__: List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
lowerCamelCase__: Dict =None
lowerCamelCase__: List[Any] =None
if self.use_labels:
lowerCamelCase__: Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size)
lowerCamelCase__: str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
lowerCamelCase__: List[Any] =self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]:
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , ) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =LiltModel(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: List[Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_)
lowerCamelCase__: int =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , ) ->Any:
'''simple docstring'''
lowerCamelCase__: str =self.num_labels
lowerCamelCase__: Optional[int] =LiltForTokenClassification(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: Tuple =model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , ) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =LiltForQuestionAnswering(config=UpperCAmelCase_)
model.to(UpperCAmelCase_)
model.eval()
lowerCamelCase__: Tuple =model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Any =self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
): Optional[int] =config_and_inputs
lowerCamelCase__: str ={
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowercase_ = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase_ = False
lowercase_ = False
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int) ->Optional[Any]:
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =LiltModelTester(self)
lowerCamelCase__: int =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37)
def SCREAMING_SNAKE_CASE_ (self : str) ->List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: str =self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__: int =type
self.model_tester.create_and_check_model(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple:
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__: int =LiltModel.from_pretrained(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@require_torch
@slow
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: str =LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =torch.tensor([[1, 2]] , device=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_)
# forward pass
with torch.no_grad():
lowerCamelCase__: Optional[Any] =model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =torch.Size([1, 2, 768])
lowerCamelCase__: List[str] =torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3))
| 10 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (DDPMParallelScheduler,)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any ={
"num_train_timesteps": 1_000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**UpperCAmelCase_)
return config
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.dummy_model()
lowerCamelCase__: int =self.dummy_sample_deter
lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1
lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1
lowerCamelCase__: Optional[Any] =samplea.shape[0]
lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0)
lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1))
lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 1153.1833) < 1E-2
assert abs(result_mean.item() - 0.5005) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.dummy_model()
lowerCamelCase__: List[Any] =self.dummy_sample_deter
lowerCamelCase__: int =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: Any =pred_prev_sample
lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 258.9606) < 1E-2
assert abs(result_mean.item() - 0.3372) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction")
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: str =self.dummy_model()
lowerCamelCase__: str =self.dummy_sample_deter
lowerCamelCase__: Dict =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: List[str] =pred_prev_sample
lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 202.0296) < 1E-2
assert abs(result_mean.item() - 0.2631) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.scheduler_classes[0]
lowerCamelCase__: Union[str, Any] =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase_):
if i == len(UpperCAmelCase_) - 1:
lowerCamelCase__: Dict =-1
else:
lowerCamelCase__: Union[str, Any] =timesteps[i + 1]
lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_)
lowerCamelCase__: str =prev_t.item()
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: List[Any] =self.get_scheduler_config()
lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config()
lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0]
lowerCamelCase__: int =len(UpperCAmelCase_)
with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
if not isinstance(__a , __a ):
raise TypeError("only integers accepted as input" )
else:
lowerCamelCase__: Tuple =str(abs(__a ) )
lowerCamelCase__: Union[str, Any] =[list(__a ) for char in range(len(__a ) )]
for index in range(len(__a ) ):
num_transpositions[index].pop(__a )
return max(
int("".join(list(__a ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__("doctest").testmod()
| 10 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841
lowerCamelCase__: List[Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: List[str] =defaultdict(__a )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCamelCase__: List[str] =mst(__a )
lowerCamelCase__: Union[str, Any] =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCamelCase__: Optional[int] =tuple(answer[:2] )
lowerCamelCase__: List[Any] =tuple(edge[::-1] )
assert edge in result or reverse in result
| 10 | 1 |
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
__A = [
{"dataset": "wikipedia", "config_name": "20220301.de"},
{"dataset": "wikipedia", "config_name": "20220301.en"},
{"dataset": "wikipedia", "config_name": "20220301.fr"},
{"dataset": "wikipedia", "config_name": "20220301.frr"},
{"dataset": "wikipedia", "config_name": "20220301.it"},
{"dataset": "wikipedia", "config_name": "20220301.simple"},
{"dataset": "snli", "config_name": "plain_text"},
{"dataset": "eli5", "config_name": "LFQA_reddit"},
{"dataset": "wiki40b", "config_name": "en"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"},
{"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"},
{"dataset": "natural_questions", "config_name": "default"},
]
def lowerCAmelCase_ ( __a=True ) -> int:
"""simple docstring"""
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__SCREAMING_SNAKE_CASE ) )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = None
lowercase_ = None
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
with TemporaryDirectory() as tmp_dir:
lowerCamelCase__: List[str] =dataset_module_factory(UpperCAmelCase_ , cache_dir=UpperCAmelCase_)
lowerCamelCase__: List[Any] =import_main_class(dataset_module.module_path , dataset=UpperCAmelCase_)
lowerCamelCase__: DatasetBuilder =builder_cls(
cache_dir=UpperCAmelCase_ , config_name=UpperCAmelCase_ , hash=dataset_module.hash , )
lowerCamelCase__: int ="/".join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=UpperCAmelCase_).replace(os.sep , "/"),
config.DATASET_INFO_FILENAME,
])
lowerCamelCase__: str =cached_path(UpperCAmelCase_ , cache_dir=UpperCAmelCase_)
self.assertTrue(os.path.exists(UpperCAmelCase_))
@pytest.mark.integration
def lowerCAmelCase_ ( __a ) -> Dict:
"""simple docstring"""
lowerCamelCase__: int =tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple"
lowerCamelCase__: List[str] =dataset_module_factory("wikipedia" , cache_dir=__a )
lowerCamelCase__: Optional[Any] =import_main_class(dataset_module.module_path )
lowerCamelCase__: DatasetBuilder =builder_cls(
cache_dir=__a , config_name="20220301.frr" , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
lowerCamelCase__: Union[str, Any] =None
builder_instance.download_and_prepare()
lowerCamelCase__: int =builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def lowerCAmelCase_ ( __a ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =dataset_module_factory("wikipedia" , cache_dir=__a )
lowerCamelCase__: Dict =import_main_class(dataset_module.module_path , dataset=__a )
lowerCamelCase__: DatasetBuilder =builder_cls(
cache_dir=__a , config_name="20220301.frr" , hash=dataset_module.hash , )
lowerCamelCase__: Tuple =builder_instance.as_streaming_dataset()
assert ds
assert isinstance(__a , __a )
assert "train" in ds
assert isinstance(ds["train"] , __a )
assert next(iter(ds["train"] ) )
| 10 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 | 1 |
import sys
from collections import defaultdict
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Dict) ->int:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[]
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
return self.node_position[vertex]
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =pos
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]) ->Any:
'''simple docstring'''
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
lowerCamelCase__: Any =2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
lowerCamelCase__: List[Any] =2 * start + 1
else:
lowerCamelCase__: Optional[int] =2 * start + 2
if heap[smallest_child] < heap[start]:
lowerCamelCase__ , lowerCamelCase__: Tuple =heap[smallest_child], positions[smallest_child]
lowerCamelCase__ , lowerCamelCase__: Tuple =(
heap[start],
positions[start],
)
lowerCamelCase__ , lowerCamelCase__: Dict =temp, tempa
lowerCamelCase__: Union[str, Any] =self.get_position(positions[smallest_child])
self.set_position(
positions[smallest_child] , self.get_position(positions[start]))
self.set_position(positions[start] , UpperCAmelCase_)
self.top_to_bottom(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =position[index]
while index != 0:
lowerCamelCase__: Tuple =int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2)
if val < heap[parent]:
lowerCamelCase__: List[Any] =heap[parent]
lowerCamelCase__: Dict =position[parent]
self.set_position(position[parent] , UpperCAmelCase_)
else:
lowerCamelCase__: Tuple =val
lowerCamelCase__: List[str] =temp
self.set_position(UpperCAmelCase_ , UpperCAmelCase_)
break
lowerCamelCase__: str =parent
else:
lowerCamelCase__: int =val
lowerCamelCase__: Tuple =temp
self.set_position(UpperCAmelCase_ , 0)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: List[str] =len(UpperCAmelCase_) // 2 - 1
for i in range(UpperCAmelCase_ , -1 , -1):
self.top_to_bottom(UpperCAmelCase_ , UpperCAmelCase_ , len(UpperCAmelCase_) , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: int =positions[0]
lowerCamelCase__: List[str] =sys.maxsize
self.top_to_bottom(UpperCAmelCase_ , 0 , len(UpperCAmelCase_) , UpperCAmelCase_)
return temp
def lowerCAmelCase_ ( __a ) -> Dict:
"""simple docstring"""
lowerCamelCase__: Dict =Heap()
lowerCamelCase__: List[str] =[0] * len(__a )
lowerCamelCase__: List[Any] =[-1] * len(__a ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
lowerCamelCase__: List[Any] =[] # Heap of Distance of vertices from their neighboring vertex
lowerCamelCase__: int =[]
for vertex in range(len(__a ) ):
distance_tv.append(sys.maxsize )
positions.append(__a )
heap.node_position.append(__a )
lowerCamelCase__: Dict =[]
lowerCamelCase__: List[Any] =1
lowerCamelCase__: Optional[Any] =sys.maxsize
for neighbor, distance in adjacency_list[0]:
lowerCamelCase__: Union[str, Any] =0
lowerCamelCase__: Optional[Any] =distance
heap.heapify(__a , __a )
for _ in range(1 , len(__a ) ):
lowerCamelCase__: Optional[int] =heap.delete_minimum(__a , __a )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
lowerCamelCase__: str =1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(__a )]
):
lowerCamelCase__: str =distance
heap.bottom_to_top(
__a , heap.get_position(__a ) , __a , __a )
lowerCamelCase__: Union[str, Any] =vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__A = int(input("Enter number of edges: ").strip())
__A = defaultdict(list)
for _ in range(edges_number):
__A = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 10 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | 1 |
def lowerCAmelCase_ ( __a , __a ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
lowerCamelCase__: Dict =str(bin(__a ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __a , __a ) -> str:
"""simple docstring"""
if number < 0 or shift_amount < 0:
raise ValueError("both inputs must be positive integers" )
lowerCamelCase__: str =str(bin(__a ) )[2:]
if shift_amount >= len(__a ):
return "0b0"
lowerCamelCase__: str =binary_number[: len(__a ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __a , __a ) -> str:
"""simple docstring"""
if number >= 0: # Get binary representation of positive number
lowerCamelCase__: Any ="0" + str(bin(__a ) ).strip("-" )[2:]
else: # Get binary (2's complement) representation of negative number
lowerCamelCase__: Dict =len(bin(__a )[3:] ) # Find 2's complement of number
lowerCamelCase__: Any =bin(abs(__a ) - (1 << binary_number_length) )[3:]
lowerCamelCase__: str =(
"1" + "0" * (binary_number_length - len(__a )) + binary_number
)
if shift_amount >= len(__a ):
return "0b" + binary_number[0] * len(__a )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__a ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> list:
"""simple docstring"""
if len(__a ) <= 1:
return [tuple(__a )]
lowerCamelCase__: Dict =[]
def generate(__a , __a ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , __a )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
lowerCamelCase__ , lowerCamelCase__: Tuple =arr[k - 1], arr[i]
else: # k is odd
lowerCamelCase__ , lowerCamelCase__: str =arr[k - 1], arr[0]
generate(k - 1 , __a )
generate(len(__a ) , __a )
return res
if __name__ == "__main__":
__A = input("Enter numbers separated by a comma:\n").strip()
__A = [int(item) for item in user_input.split(",")]
print(heaps(arr))
| 10 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 1 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__A = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : int , UpperCAmelCase_ : int = 14) ->None:
'''simple docstring'''
if group not in primes:
raise ValueError("Unsupported Group")
lowerCamelCase__: Union[str, Any] =primes[group]["prime"]
lowerCamelCase__: Optional[int] =primes[group]["generator"]
lowerCamelCase__: Dict =int(hexlify(urandom(32)) , base=16)
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
return hex(self.__private_key)[2:]
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: str =pow(self.generator , self.__private_key , self.prime)
return hex(UpperCAmelCase_)[2:]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int) ->bool:
'''simple docstring'''
return (
2 <= key <= self.prime - 2
and pow(UpperCAmelCase_ , (self.prime - 1) // 2 , self.prime) == 1
)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
lowerCamelCase__: int =int(UpperCAmelCase_ , base=16)
if not self.is_valid_public_key(UpperCAmelCase_):
raise ValueError("Invalid public key")
lowerCamelCase__: Dict =pow(UpperCAmelCase_ , self.__private_key , self.prime)
return shaaaa(str(UpperCAmelCase_).encode()).hexdigest()
@staticmethod
def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->bool:
'''simple docstring'''
return (
2 <= remote_public_key_str <= prime - 2
and pow(UpperCAmelCase_ , (prime - 1) // 2 , UpperCAmelCase_) == 1
)
@staticmethod
def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 14) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =int(UpperCAmelCase_ , base=16)
lowerCamelCase__: str =int(UpperCAmelCase_ , base=16)
lowerCamelCase__: Union[str, Any] =primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(UpperCAmelCase_ , UpperCAmelCase_):
raise ValueError("Invalid public key")
lowerCamelCase__: List[Any] =pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return shaaaa(str(UpperCAmelCase_).encode()).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 1 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( __a ) -> Union[str, Any]:
"""simple docstring"""
def is_in_circle(__a , __a ) -> bool:
lowerCamelCase__: Tuple =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
lowerCamelCase__: List[Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(__a ) )
# The ratio of the area for circle to square is pi/4.
lowerCamelCase__: Dict =proportion * 4
print(F"""The estimated value of pi is {pi_estimate}""" )
print(F"""The numpy value of pi is {pi}""" )
print(F"""The total error is {abs(pi - pi_estimate )}""" )
def lowerCAmelCase_ ( __a , __a , __a = 0.0 , __a = 1.0 , ) -> float:
"""simple docstring"""
return mean(
function_to_integrate(uniform(__a , __a ) ) for _ in range(__a ) ) * (max_value - min_value)
def lowerCAmelCase_ ( __a , __a = 0.0 , __a = 1.0 ) -> None:
"""simple docstring"""
def identity_function(__a ) -> float:
return x
lowerCamelCase__: Dict =area_under_curve_estimator(
__a , __a , __a , __a )
lowerCamelCase__: Union[str, Any] =(max_value * max_value - min_value * min_value) / 2
print("******************" )
print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(F"""Estimated value is {estimated_value}""" )
print(F"""Expected value is {expected_value}""" )
print(F"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def lowerCAmelCase_ ( __a ) -> None:
"""simple docstring"""
def function_to_integrate(__a ) -> float:
return sqrt(4.0 - x * x )
lowerCamelCase__: List[Any] =area_under_curve_estimator(
__a , __a , 0.0 , 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(F"""Estimated value is {estimated_value}""" )
print(F"""Expected value is {pi}""" )
print(F"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Any , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False) ->None:
'''simple docstring'''
lowerCamelCase__: dict[str, RadixNode] ={}
# A node will be a leaf if the tree contains its word
lowerCamelCase__: Any =is_leaf
lowerCamelCase__: List[str] =prefix
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->tuple[str, str, str]:
'''simple docstring'''
lowerCamelCase__: Any =0
for q, w in zip(self.prefix , UpperCAmelCase_):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : list[str]) ->None:
'''simple docstring'''
for word in words:
self.insert(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->None:
'''simple docstring'''
if self.prefix == word:
lowerCamelCase__: Optional[int] =True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowerCamelCase__: Any =RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_)
else:
lowerCamelCase__: Union[str, Any] =self.nodes[word[0]]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =incoming_node.match(
UpperCAmelCase_)
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowerCamelCase__: Union[str, Any] =remaining_prefix
lowerCamelCase__: Optional[int] =self.nodes[matching_string[0]]
lowerCamelCase__: Dict =RadixNode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =aux_node
if remaining_word == "":
lowerCamelCase__: Dict =True
else:
self.nodes[matching_string[0]].insert(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : str) ->bool:
'''simple docstring'''
lowerCamelCase__: Dict =self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str =incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str) ->bool:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.nodes.get(word[0] , UpperCAmelCase_)
if not incoming_node:
return False
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[Any] =incoming_node.match(
UpperCAmelCase_)
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(UpperCAmelCase_)
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
lowerCamelCase__: int =list(self.nodes.values())[0]
lowerCamelCase__: Any =merging_node.is_leaf
self.prefix += merging_node.prefix
lowerCamelCase__: Tuple =merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
lowerCamelCase__: Dict =False
# If there is 1 edge, we merge it with its child
else:
lowerCamelCase__: str =list(incoming_node.nodes.values())[0]
lowerCamelCase__: Any =merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowerCamelCase__: Optional[Any] =merging_node.nodes
return True
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : int = 0) ->None:
'''simple docstring'''
if self.prefix != "":
print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "")
for value in self.nodes.values():
value.print_tree(height + 1)
def lowerCAmelCase_ ( ) -> bool:
"""simple docstring"""
lowerCamelCase__: str ="banana bananas bandana band apple all beast".split()
lowerCamelCase__: List[Any] =RadixNode()
root.insert_many(__a )
assert all(root.find(__a ) for word in words )
assert not root.find("bandanas" )
assert not root.find("apps" )
root.delete("all" )
assert not root.find("all" )
root.delete("banana" )
assert not root.find("banana" )
assert root.find("bananas" )
return True
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
assert test_trie()
def lowerCAmelCase_ ( ) -> None:
"""simple docstring"""
lowerCamelCase__: Optional[int] =RadixNode()
lowerCamelCase__: Optional[int] ="banana bananas bandanas bandana band apple all beast".split()
root.insert_many(__a )
print("Words:" , __a )
print("Tree:" )
root.print_tree()
if __name__ == "__main__":
main()
| 10 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 1 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small")
lowerCamelCase__: Optional[int] =AutoTokenizer.from_pretrained("google/mt5-small")
lowerCamelCase__: List[Any] =tokenizer("Hello there" , return_tensors="np").input_ids
lowerCamelCase__: Dict =tokenizer("Hi I am" , return_tensors="np").input_ids
lowerCamelCase__: Tuple =shift_tokens_right(UpperCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id)
lowerCamelCase__: Optional[Any] =model(UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_).logits
lowerCamelCase__: Optional[Any] =optax.softmax_cross_entropy(UpperCAmelCase_ , onehot(UpperCAmelCase_ , logits.shape[-1])).mean()
lowerCamelCase__: Dict =-(labels.shape[-1] * loss.item())
lowerCamelCase__: List[str] =-84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
| 10 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 1 |
def lowerCAmelCase_ ( __a , __a ) -> Dict:
"""simple docstring"""
lowerCamelCase__: Any =[0 for i in range(r + 1 )]
# nc0 = 1
lowerCamelCase__: List[str] =1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
lowerCamelCase__: List[str] =min(__a , __a )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 10 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "vit_mae"
def __init__(self : int , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : int=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[Any]=1E-1_2 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : List[str]=2_048 , UpperCAmelCase_ : Dict=0.75 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : str , ) ->List[str]:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: int =num_hidden_layers
lowerCamelCase__: str =num_attention_heads
lowerCamelCase__: int =intermediate_size
lowerCamelCase__: str =hidden_act
lowerCamelCase__: Optional[int] =hidden_dropout_prob
lowerCamelCase__: int =attention_probs_dropout_prob
lowerCamelCase__: Dict =initializer_range
lowerCamelCase__: int =layer_norm_eps
lowerCamelCase__: List[str] =image_size
lowerCamelCase__: Optional[Any] =patch_size
lowerCamelCase__: Any =num_channels
lowerCamelCase__: Optional[Any] =qkv_bias
lowerCamelCase__: List[str] =decoder_num_attention_heads
lowerCamelCase__: List[Any] =decoder_hidden_size
lowerCamelCase__: str =decoder_num_hidden_layers
lowerCamelCase__: List[Any] =decoder_intermediate_size
lowerCamelCase__: Optional[int] =mask_ratio
lowerCamelCase__: Optional[int] =norm_pix_loss
| 10 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 1 |
import os
from distutils.util import strtobool
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
for e in env_keys:
lowerCamelCase__: List[Any] =int(os.environ.get(__a , -1 ) )
if val >= 0:
return val
return default
def lowerCAmelCase_ ( __a , __a=False ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: str =os.environ.get(__a , str(__a ) )
return strtobool(__a ) == 1 # As its name indicates `strtobool` actually returns an int...
def lowerCAmelCase_ ( __a , __a="no" ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: List[Any] =os.environ.get(__a , str(__a ) )
return value
| 10 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Dict =MobileNetVaConfig(layer_norm_eps=0.0_0_1 )
if "_quant" in model_name:
raise ValueError("Quantized models are not supported." )
lowerCamelCase__: Dict =re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , __a )
if matches:
lowerCamelCase__: Optional[int] =float(matches[1] )
lowerCamelCase__: str =int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
lowerCamelCase__: List[str] =1001
lowerCamelCase__: str ="imagenet-1k-id2label.json"
lowerCamelCase__: List[Any] ="huggingface/label-files"
lowerCamelCase__: Optional[Any] =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: List[str] ={int(__a ) + 1: v for k, v in idalabel.items()}
lowerCamelCase__: str ="background"
lowerCamelCase__: int =idalabel
lowerCamelCase__: List[Any] ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase__: Optional[Any] ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Tuple =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a=False ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =get_mobilenet_va_config(__a )
# Load 🤗 model
lowerCamelCase__: Optional[int] =MobileNetVaForImageClassification(__a ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(__a , __a , __a )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
lowerCamelCase__: Optional[int] =MobileNetVaImageProcessor(
crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , )
lowerCamelCase__: Union[str, Any] =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Dict =model(**__a )
lowerCamelCase__: List[str] =outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
lowerCamelCase__: Tuple =torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] )
elif model_name == "mobilenet_v1_0.75_192":
lowerCamelCase__: Tuple =torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] )
else:
lowerCamelCase__: Optional[int] =None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
print("Pushing to the hub..." )
lowerCamelCase__: Optional[Any] ="google/" + model_name
image_processor.push_to_hub(__a )
model.push_to_hub(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 10 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["MBartTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["MBartTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"MBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"MBartForCausalLM",
"MBartForConditionalGeneration",
"MBartForQuestionAnswering",
"MBartForSequenceClassification",
"MBartModel",
"MBartPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TFMBartForConditionalGeneration",
"TFMBartModel",
"TFMBartPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxMBartForConditionalGeneration",
"FlaxMBartForQuestionAnswering",
"FlaxMBartForSequenceClassification",
"FlaxMBartModel",
"FlaxMBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase_ = Features({"image": Image()} )
lowercase_ = Features({"labels": ClassLabel} )
lowercase_ = "image"
lowercase_ = "labels"
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase_):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""")
lowerCamelCase__: List[Any] =copy.deepcopy(self)
lowerCamelCase__: Optional[int] =self.label_schema.copy()
lowerCamelCase__: int =features[self.label_column]
lowerCamelCase__: int =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> float:
"""simple docstring"""
return 10 - x * x
def lowerCAmelCase_ ( __a , __a ) -> float:
"""simple docstring"""
if equation(__a ) * equation(__a ) >= 0:
raise ValueError("Wrong space!" )
lowerCamelCase__: Dict =a
while (b - a) >= 0.0_1:
# Find middle point
lowerCamelCase__: Union[str, Any] =(a + b) / 2
# Check if middle point is root
if equation(__a ) == 0.0:
break
# Decide the side to repeat the steps
if equation(__a ) * equation(__a ) < 0:
lowerCamelCase__: List[str] =c
else:
lowerCamelCase__: Optional[Any] =c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 10 |
import logging
from transformers.configuration_utils import PretrainedConfig
__A = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "masked_bert"
def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =vocab_size
lowerCamelCase__: Dict =hidden_size
lowerCamelCase__: Optional[int] =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: List[Any] =hidden_act
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: Dict =hidden_dropout_prob
lowerCamelCase__: str =attention_probs_dropout_prob
lowerCamelCase__: int =max_position_embeddings
lowerCamelCase__: Tuple =type_vocab_size
lowerCamelCase__: str =initializer_range
lowerCamelCase__: List[Any] =layer_norm_eps
lowerCamelCase__: str =pruning_method
lowerCamelCase__: Union[str, Any] =mask_init
lowerCamelCase__: Optional[Any] =mask_scale
| 10 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
__A = {
"gpt-neox-20b": 2048,
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Dict , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]="<|endoftext|>" , UpperCAmelCase_ : Dict="<|endoftext|>" , UpperCAmelCase_ : Any="<|endoftext|>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Dict , ) ->Any:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_) != add_prefix_space:
lowerCamelCase__: Union[str, Any] =getattr(UpperCAmelCase_ , pre_tok_state.pop("type"))
lowerCamelCase__: Any =add_prefix_space
lowerCamelCase__: Optional[int] =pre_tok_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =add_prefix_space
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: List[Any] =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : "Conversation") ->List[int]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =[]
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) + [self.eos_token_id])
if len(UpperCAmelCase_) > self.model_max_length:
lowerCamelCase__: List[str] =input_ids[-self.model_max_length :]
return input_ids
| 10 |
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Any =n
lowerCamelCase__: Tuple =[None] * self.n
lowerCamelCase__: str =0 # index of the first element
lowerCamelCase__: Tuple =0
lowerCamelCase__: Optional[Any] =0
def __len__(self : str) ->int:
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE_ (self : int) ->bool:
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[int]) ->str:
'''simple docstring'''
if self.size >= self.n:
raise Exception("QUEUE IS FULL")
lowerCamelCase__: List[Any] =data
lowerCamelCase__: Dict =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple:
'''simple docstring'''
if self.size == 0:
raise Exception("UNDERFLOW")
lowerCamelCase__: Optional[Any] =self.array[self.front]
lowerCamelCase__: Optional[int] =None
lowerCamelCase__: Dict =(self.front + 1) % self.n
self.size -= 1
return temp
| 10 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowerCamelCase__: Optional[Any] =k.replace(__a , __a )
if k.startswith("encoder" ):
lowerCamelCase__: Optional[Any] =k.replace(".attn" , ".self_attn" )
lowerCamelCase__: Union[str, Any] =k.replace("norm1" , "self_attn_layer_norm" )
lowerCamelCase__: Any =k.replace("norm2" , "final_layer_norm" )
elif k.startswith("decoder" ):
lowerCamelCase__: List[str] =k.replace("norm1" , "self_attn_layer_norm" )
lowerCamelCase__: Dict =k.replace("norm2" , "encoder_attn_layer_norm" )
lowerCamelCase__: Union[str, Any] =k.replace("norm3" , "final_layer_norm" )
return k
def lowerCAmelCase_ ( __a ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: Any =[
"model.encoder.layernorm_embedding.weight",
"model.encoder.layernorm_embedding.bias",
"model.decoder.layernorm_embedding.weight",
"model.decoder.layernorm_embedding.bias",
]
for k in keys:
lowerCamelCase__: List[Any] =sd.pop(__a )
lowerCamelCase__: Union[str, Any] =k.replace("layernorm_embedding" , "layer_norm" )
assert new_k not in sd
lowerCamelCase__: Optional[Any] =v
__A = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__: List[Any] =torch.load(__a , map_location="cpu" )
lowerCamelCase__: int =model["model"]
lowerCamelCase__: int =BlenderbotConfig.from_json_file(__a )
lowerCamelCase__: List[Any] =BlenderbotForConditionalGeneration(__a )
lowerCamelCase__: List[str] =m.model.state_dict().keys()
lowerCamelCase__: Dict =[]
lowerCamelCase__: List[str] ={}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowerCamelCase__: Union[str, Any] =rename_state_dict_key(__a )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
lowerCamelCase__: Any =v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__a )
m.model.load_state_dict(__a , strict=__a )
m.half()
m.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
__A = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 10 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a ) -> YolosConfig:
"""simple docstring"""
lowerCamelCase__: str =YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
lowerCamelCase__: int =192
lowerCamelCase__: Optional[int] =768
lowerCamelCase__: Any =12
lowerCamelCase__: str =3
lowerCamelCase__: Optional[int] =[800, 1333]
lowerCamelCase__: Union[str, Any] =False
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: int =330
lowerCamelCase__: Optional[Any] =14
lowerCamelCase__: Any =6
lowerCamelCase__: List[str] =1320
elif "yolos_s" in yolos_name:
lowerCamelCase__: List[str] =384
lowerCamelCase__: Union[str, Any] =1536
lowerCamelCase__: List[Any] =12
lowerCamelCase__: Any =6
elif "yolos_b" in yolos_name:
lowerCamelCase__: str =[800, 1344]
lowerCamelCase__: int =91
lowerCamelCase__: str ="huggingface/label-files"
lowerCamelCase__: List[str] ="coco-detection-id2label.json"
lowerCamelCase__: Tuple =json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) )
lowerCamelCase__: Dict ={int(__a ): v for k, v in idalabel.items()}
lowerCamelCase__: List[str] =idalabel
lowerCamelCase__: int ={v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( __a , __a , __a = False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCamelCase__: Optional[int] =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
lowerCamelCase__: Dict =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
lowerCamelCase__: Union[str, Any] =in_proj_weight[: config.hidden_size, :]
lowerCamelCase__: str =in_proj_bias[: config.hidden_size]
lowerCamelCase__: str =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCamelCase__: str =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCamelCase__: Optional[int] =in_proj_weight[-config.hidden_size :, :]
lowerCamelCase__: List[Any] =in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if "backbone" in name:
lowerCamelCase__: Optional[Any] =name.replace("backbone" , "vit" )
if "cls_token" in name:
lowerCamelCase__: Optional[int] =name.replace("cls_token" , "embeddings.cls_token" )
if "det_token" in name:
lowerCamelCase__: str =name.replace("det_token" , "embeddings.detection_tokens" )
if "mid_pos_embed" in name:
lowerCamelCase__: Tuple =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" )
if "pos_embed" in name:
lowerCamelCase__: Any =name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
lowerCamelCase__: List[Any] =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "blocks" in name:
lowerCamelCase__: Union[str, Any] =name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
lowerCamelCase__: Any =name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
lowerCamelCase__: Optional[int] =name.replace("attn" , "attention.self" )
if "norm1" in name:
lowerCamelCase__: int =name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
lowerCamelCase__: int =name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
lowerCamelCase__: List[str] =name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCamelCase__: Any =name.replace("mlp.fc2" , "output.dense" )
if "class_embed" in name:
lowerCamelCase__: Dict =name.replace("class_embed" , "class_labels_classifier" )
if "bbox_embed" in name:
lowerCamelCase__: List[str] =name.replace("bbox_embed" , "bbox_predictor" )
if "vit.norm" in name:
lowerCamelCase__: Any =name.replace("vit.norm" , "vit.layernorm" )
return name
def lowerCAmelCase_ ( __a , __a ) -> dict:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
lowerCamelCase__: Any =orig_state_dict.pop(__a )
if "qkv" in key:
lowerCamelCase__: Tuple =key.split("." )
lowerCamelCase__: List[str] =int(key_split[2] )
lowerCamelCase__: Tuple =model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
lowerCamelCase__: int =val[:dim, :]
lowerCamelCase__: str =val[
dim : dim * 2, :
]
lowerCamelCase__: Any =val[-dim:, :]
else:
lowerCamelCase__: Tuple =val[:dim]
lowerCamelCase__: Optional[Any] =val[dim : dim * 2]
lowerCamelCase__: str =val[-dim:]
else:
lowerCamelCase__: Dict =val
return orig_state_dict
def lowerCAmelCase_ ( ) -> torch.Tensor:
"""simple docstring"""
lowerCamelCase__: Any ="http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__: Optional[Any] =Image.open(requests.get(__a , stream=__a ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> List[str]:
"""simple docstring"""
lowerCamelCase__: int =get_yolos_config(__a )
# load original state_dict
lowerCamelCase__: Optional[int] =torch.load(__a , map_location="cpu" )["model"]
# load 🤗 model
lowerCamelCase__: int =YolosForObjectDetection(__a )
model.eval()
lowerCamelCase__: Union[str, Any] =convert_state_dict(__a , __a )
model.load_state_dict(__a )
# Check outputs on an image, prepared by YolosImageProcessor
lowerCamelCase__: Any =800 if yolos_name != "yolos_ti" else 512
lowerCamelCase__: Tuple =YolosImageProcessor(format="coco_detection" , size=__a )
lowerCamelCase__: str =image_processor(images=prepare_img() , return_tensors="pt" )
lowerCamelCase__: Tuple =model(**__a )
lowerCamelCase__ , lowerCamelCase__: List[str] =outputs.logits, outputs.pred_boxes
lowerCamelCase__ , lowerCamelCase__: Any =None, None
if yolos_name == "yolos_ti":
lowerCamelCase__: Optional[Any] =torch.tensor(
[[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] )
lowerCamelCase__: List[Any] =torch.tensor(
[[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] )
elif yolos_name == "yolos_s_200_pre":
lowerCamelCase__: Optional[int] =torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] )
lowerCamelCase__: Any =torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] )
elif yolos_name == "yolos_s_300_pre":
lowerCamelCase__: str =torch.tensor(
[[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] )
lowerCamelCase__: Optional[Any] =torch.tensor(
[[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] )
elif yolos_name == "yolos_s_dWr":
lowerCamelCase__: str =torch.tensor(
[[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] )
lowerCamelCase__: Union[str, Any] =torch.tensor(
[[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] )
elif yolos_name == "yolos_base":
lowerCamelCase__: Tuple =torch.tensor(
[[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] )
lowerCamelCase__: Optional[int] =torch.tensor(
[[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] )
else:
raise ValueError(F"""Unknown yolos_name: {yolos_name}""" )
assert torch.allclose(logits[0, :3, :3] , __a , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , __a , atol=1e-4 )
Path(__a ).mkdir(exist_ok=__a )
print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__a )
if push_to_hub:
lowerCamelCase__: Any ={
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
lowerCamelCase__: Optional[int] =model_mapping[yolos_name]
image_processor.push_to_hub(__a , organization="hustvl" )
model.push_to_hub(__a , organization="hustvl" )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--yolos_name",
default="yolos_s_200_pre",
type=str,
help=(
"Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"
" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."
),
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__A = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 10 | 1 |
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
lowerCamelCase__: set[int] =set()
# To detect a back edge, keep track of vertices currently in the recursion stack
lowerCamelCase__: set[int] =set()
return any(
node not in visited and depth_first_search(__a , __a , __a , __a )
for node in graph )
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool:
"""simple docstring"""
visited.add(__a )
rec_stk.add(__a )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(__a , __a , __a , __a ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(__a )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 |
from math import ceil, sqrt
def lowerCAmelCase_ ( __a = 1000000 ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
lowerCamelCase__: Dict =max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
lowerCamelCase__: str =1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a , __a ) -> str:
"""simple docstring"""
lowerCamelCase__: List[Any] =nn.functional.normalize(__a )
lowerCamelCase__: Optional[Any] =nn.functional.normalize(__a )
return torch.mm(__a , normalized_text_embeds.t() )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = CLIPConfig
lowercase_ = ["CLIPEncoderLayer"]
def __init__(self : Dict , UpperCAmelCase_ : CLIPConfig) ->Optional[int]:
'''simple docstring'''
super().__init__(UpperCAmelCase_)
lowerCamelCase__: str =CLIPVisionModel(config.vision_config)
lowerCamelCase__: Tuple =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =nn.Parameter(torch.ones(17 , config.projection_dim) , requires_grad=UpperCAmelCase_)
lowerCamelCase__: Dict =nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=UpperCAmelCase_)
lowerCamelCase__: Any =nn.Parameter(torch.ones(17) , requires_grad=UpperCAmelCase_)
lowerCamelCase__: List[str] =nn.Parameter(torch.ones(3) , requires_grad=UpperCAmelCase_)
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict) ->Any:
'''simple docstring'''
lowerCamelCase__: List[str] =self.vision_model(UpperCAmelCase_)[1] # pooled_output
lowerCamelCase__: Dict =self.visual_projection(UpperCAmelCase_)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowerCamelCase__: Dict =cosine_distance(UpperCAmelCase_ , self.special_care_embeds).cpu().float().numpy()
lowerCamelCase__: List[str] =cosine_distance(UpperCAmelCase_ , self.concept_embeds).cpu().float().numpy()
lowerCamelCase__: Tuple =[]
lowerCamelCase__: str =image_embeds.shape[0]
for i in range(UpperCAmelCase_):
lowerCamelCase__: List[str] ={"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
lowerCamelCase__: List[str] =0.0
for concept_idx in range(len(special_cos_dist[0])):
lowerCamelCase__: int =special_cos_dist[i][concept_idx]
lowerCamelCase__: Optional[Any] =self.special_care_embeds_weights[concept_idx].item()
lowerCamelCase__: Any =round(concept_cos - concept_threshold + adjustment , 3)
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
lowerCamelCase__: Any =0.01
for concept_idx in range(len(cos_dist[0])):
lowerCamelCase__: Tuple =cos_dist[i][concept_idx]
lowerCamelCase__: List[str] =self.concept_embeds_weights[concept_idx].item()
lowerCamelCase__: List[Any] =round(concept_cos - concept_threshold + adjustment , 3)
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(UpperCAmelCase_)
result.append(UpperCAmelCase_)
lowerCamelCase__: Any =[len(res["bad_concepts"]) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.vision_model(UpperCAmelCase_)[1] # pooled_output
lowerCamelCase__: Optional[int] =self.visual_projection(UpperCAmelCase_)
lowerCamelCase__: List[Any] =cosine_distance(UpperCAmelCase_ , self.special_care_embeds)
lowerCamelCase__: str =cosine_distance(UpperCAmelCase_ , self.concept_embeds)
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
lowerCamelCase__: List[str] =0.0
lowerCamelCase__: Optional[Any] =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
lowerCamelCase__: Optional[Any] =torch.any(special_scores > 0 , dim=1)
lowerCamelCase__: Optional[int] =special_care * 0.01
lowerCamelCase__: Optional[int] =special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1])
lowerCamelCase__: List[str] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
lowerCamelCase__: List[Any] =torch.any(concept_scores > 0 , dim=1)
return images, has_nsfw_concepts
| 10 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase_ ( __a , __a ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: Optional[int] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: int =ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Tuple ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Union[str, Any] =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: int =ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =tmp_path / "cache"
lowerCamelCase__: Dict ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase_ ( __a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
lowerCamelCase__: str =parquet_path
elif issubclass(__a , __a ):
lowerCamelCase__: str =[parquet_path]
lowerCamelCase__: Optional[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[int] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def lowerCAmelCase_ ( __a , __a , __a=("train",) ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
lowerCamelCase__: Optional[Any] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: Any =tmp_path / "cache"
lowerCamelCase__: str ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowerCamelCase__: List[str] =ParquetDatasetReader(
{"train": parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[Any] =tmp_path / "cache"
lowerCamelCase__: Any ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: int =features.copy() if features else default_expected_features
lowerCamelCase__: Union[str, Any] =(
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
lowerCamelCase__: Union[str, Any] =ParquetDatasetReader({"train": parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase_ ( __a , __a , __a ) -> List[str]:
"""simple docstring"""
if split:
lowerCamelCase__: Union[str, Any] ={split: parquet_path}
else:
lowerCamelCase__: int ="train"
lowerCamelCase__: Union[str, Any] ={"train": parquet_path, "test": parquet_path}
lowerCamelCase__: int =tmp_path / "cache"
lowerCamelCase__: Union[str, Any] ={"col_1": "string", "col_2": "int64", "col_3": "float64"}
lowerCamelCase__: Optional[Any] =ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
lowerCamelCase__: Tuple =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Tuple =pq.ParquetFile(tmp_path / "foo.parquet" )
lowerCamelCase__: Optional[int] =pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__: List[str] =str(shared_datadir / "test_image_rgb.jpg" )
lowerCamelCase__: Union[str, Any] ={"image": [image_path]}
lowerCamelCase__: int =Features({"image": Image()} )
lowerCamelCase__: Tuple =Dataset.from_dict(__a , features=__a )
lowerCamelCase__: Optional[int] =ParquetDatasetWriter(__a , tmp_path / "foo.parquet" )
assert writer.write() > 0
lowerCamelCase__: Optional[Any] =Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
lowerCamelCase__: List[str] =ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase_ ( __a , __a ) -> Any:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 10 | 1 |
from random import randint, random
def lowerCAmelCase_ ( __a , __a , __a , __a = False , __a = False , __a = 5 , ) -> list:
"""simple docstring"""
lowerCamelCase__: Tuple =[[-1] * number_of_cells] # Create a highway without any car
lowerCamelCase__: Dict =0
lowerCamelCase__: Any =max(__a , 0 )
while i < number_of_cells:
lowerCamelCase__: str =(
randint(0 , __a ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def lowerCAmelCase_ ( __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[int] =0
lowerCamelCase__: Optional[int] =highway_now[car_index + 1 :]
for cell in range(len(__a ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(__a , -1 )
def lowerCAmelCase_ ( __a , __a , __a ) -> list:
"""simple docstring"""
lowerCamelCase__: Optional[int] =len(__a )
# Beforce calculations, the highway is empty
lowerCamelCase__: Dict =[-1] * number_of_cells
for car_index in range(__a ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
lowerCamelCase__: int =min(highway_now[car_index] + 1 , __a )
# Number of empty cell before the next car
lowerCamelCase__: Union[str, Any] =get_distance(__a , __a ) - 1
# We can't have the car causing an accident
lowerCamelCase__: Dict =min(next_highway[car_index] , __a )
if random() < probability:
# Randomly, a driver will slow down
lowerCamelCase__: int =max(next_highway[car_index] - 1 , 0 )
return next_highway
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> list:
"""simple docstring"""
lowerCamelCase__: Dict =len(highway[0] )
for i in range(__a ):
lowerCamelCase__: Dict =update(highway[i] , __a , __a )
lowerCamelCase__: List[str] =[-1] * number_of_cells
for car_index in range(__a ):
lowerCamelCase__: Any =next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
lowerCamelCase__: Dict =(car_index + speed) % number_of_cells
# Commit the change of position
lowerCamelCase__: Optional[Any] =speed
highway.append(__a )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 | 1 |
import math
def lowerCAmelCase_ ( __a , __a = 0 , __a = 0 ) -> list:
"""simple docstring"""
lowerCamelCase__: Optional[int] =end or len(__a )
for i in range(__a , __a ):
lowerCamelCase__: Dict =i
lowerCamelCase__: Union[str, Any] =array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
lowerCamelCase__: Dict =array[temp_index - 1]
temp_index -= 1
lowerCamelCase__: Dict =temp_index_value
return array
def lowerCAmelCase_ ( __a , __a , __a ) -> None: # Max Heap
"""simple docstring"""
lowerCamelCase__: Dict =index
lowerCamelCase__: Union[str, Any] =2 * index + 1 # Left Node
lowerCamelCase__: List[str] =2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
lowerCamelCase__: List[Any] =left_index
if right_index < heap_size and array[largest] < array[right_index]:
lowerCamelCase__: str =right_index
if largest != index:
lowerCamelCase__ , lowerCamelCase__: Any =array[largest], array[index]
heapify(__a , __a , __a )
def lowerCAmelCase_ ( __a ) -> list:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =len(__a )
for i in range(n // 2 , -1 , -1 ):
heapify(__a , __a , __a )
for i in range(n - 1 , 0 , -1 ):
lowerCamelCase__ , lowerCamelCase__: List[Any] =array[0], array[i]
heapify(__a , 0 , __a )
return array
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =low
lowerCamelCase__: Tuple =high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
lowerCamelCase__ , lowerCamelCase__: Tuple =array[j], array[i]
i += 1
def lowerCAmelCase_ ( __a ) -> list:
"""simple docstring"""
if len(__a ) == 0:
return array
lowerCamelCase__: int =2 * math.ceil(math.loga(len(__a ) ) )
lowerCamelCase__: Union[str, Any] =16
return intro_sort(__a , 0 , len(__a ) , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(__a )
max_depth -= 1
lowerCamelCase__: Any =median_of_a(__a , __a , start + ((end - start) // 2) + 1 , end - 1 )
lowerCamelCase__: Optional[int] =partition(__a , __a , __a , __a )
intro_sort(__a , __a , __a , __a , __a )
lowerCamelCase__: Tuple =p
return insertion_sort(__a , __a , __a )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A = input("Enter numbers separated by a comma : ").strip()
__A = [float(item) for item in user_input.split(",")]
print(sort(unsorted))
| 10 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 |
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = (DDPMParallelScheduler,)
def SCREAMING_SNAKE_CASE_ (self : Any , **UpperCAmelCase_ : Any) ->Any:
'''simple docstring'''
lowerCamelCase__: Any ={
"num_train_timesteps": 1_000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**UpperCAmelCase_)
return config
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase_)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_0979)) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1E-5
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: int =self.scheduler_classes[0]
lowerCamelCase__: Tuple =self.get_scheduler_config()
lowerCamelCase__: Tuple =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.dummy_model()
lowerCamelCase__: int =self.dummy_sample_deter
lowerCamelCase__: Union[str, Any] =self.dummy_sample_deter + 0.1
lowerCamelCase__: Optional[Any] =self.dummy_sample_deter - 0.1
lowerCamelCase__: Optional[Any] =samplea.shape[0]
lowerCamelCase__: List[Any] =torch.stack([samplea, samplea, samplea] , dim=0)
lowerCamelCase__: Union[str, Any] =torch.arange(UpperCAmelCase_)[0:3, None].repeat(1 , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
lowerCamelCase__: Tuple =scheduler.batch_step_no_noise(UpperCAmelCase_ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1))
lowerCamelCase__: List[str] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Any =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 1153.1833) < 1E-2
assert abs(result_mean.item() - 0.5005) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[int] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =len(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =self.dummy_model()
lowerCamelCase__: List[Any] =self.dummy_sample_deter
lowerCamelCase__: int =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Tuple =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Optional[Any] =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: Any =pred_prev_sample
lowerCamelCase__: Any =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: List[str] =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 258.9606) < 1E-2
assert abs(result_mean.item() - 0.3372) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config(prediction_type="v_prediction")
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: str =len(UpperCAmelCase_)
lowerCamelCase__: str =self.dummy_model()
lowerCamelCase__: str =self.dummy_sample_deter
lowerCamelCase__: Dict =torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase_)):
# 1. predict noise residual
lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , UpperCAmelCase_)
# 2. predict previous mean of sample x_t-1
lowerCamelCase__: Dict =scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample
lowerCamelCase__: List[str] =pred_prev_sample
lowerCamelCase__: List[Any] =torch.sum(torch.abs(UpperCAmelCase_))
lowerCamelCase__: Tuple =torch.mean(torch.abs(UpperCAmelCase_))
assert abs(result_sum.item() - 202.0296) < 1E-2
assert abs(result_mean.item() - 0.2631) < 1E-3
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.scheduler_classes[0]
lowerCamelCase__: Union[str, Any] =self.get_scheduler_config()
lowerCamelCase__: Any =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: List[Any] =[100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase_):
if i == len(UpperCAmelCase_) - 1:
lowerCamelCase__: Dict =-1
else:
lowerCamelCase__: Union[str, Any] =timesteps[i + 1]
lowerCamelCase__: Tuple =scheduler.previous_timestep(UpperCAmelCase_)
lowerCamelCase__: str =prev_t.item()
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: List[Any] =self.get_scheduler_config()
lowerCamelCase__: Dict =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =[100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.scheduler_classes[0]
lowerCamelCase__: Any =self.get_scheduler_config()
lowerCamelCase__: int =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[100, 87, 50, 1, 0]
lowerCamelCase__: int =len(UpperCAmelCase_)
with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Tuple =self.scheduler_classes[0]
lowerCamelCase__: Optional[Any] =self.get_scheduler_config()
lowerCamelCase__: Optional[Any] =scheduler_class(**UpperCAmelCase_)
lowerCamelCase__: Dict =[scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase_)
| 10 | 1 |
def lowerCAmelCase_ ( __a , __a , __a ) -> int:
"""simple docstring"""
def update_area_of_max_square(__a , __a ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
lowerCamelCase__: Union[str, Any] =update_area_of_max_square(__a , col + 1 )
lowerCamelCase__: Dict =update_area_of_max_square(row + 1 , col + 1 )
lowerCamelCase__: List[str] =update_area_of_max_square(row + 1 , __a )
if mat[row][col]:
lowerCamelCase__: Tuple =1 + min([right, diagonal, down] )
lowerCamelCase__: str =max(largest_square_area[0] , __a )
return sub_problem_sol
else:
return 0
lowerCamelCase__: Dict =[0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def lowerCAmelCase_ ( __a , __a , __a ) -> int:
"""simple docstring"""
def update_area_of_max_square_using_dp_array(
__a , __a , __a ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
lowerCamelCase__: str =update_area_of_max_square_using_dp_array(__a , col + 1 , __a )
lowerCamelCase__: str =update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __a )
lowerCamelCase__: Dict =update_area_of_max_square_using_dp_array(row + 1 , __a , __a )
if mat[row][col]:
lowerCamelCase__: List[Any] =1 + min([right, diagonal, down] )
lowerCamelCase__: Optional[int] =max(largest_square_area[0] , __a )
lowerCamelCase__: Tuple =sub_problem_sol
return sub_problem_sol
else:
return 0
lowerCamelCase__: Union[str, Any] =[0]
lowerCamelCase__: Optional[int] =[[-1] * cols for _ in range(__a )]
update_area_of_max_square_using_dp_array(0 , 0 , __a )
return largest_square_area[0]
def lowerCAmelCase_ ( __a , __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =[[0] * (cols + 1) for _ in range(rows + 1 )]
lowerCamelCase__: Tuple =0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
lowerCamelCase__: int =dp_array[row][col + 1]
lowerCamelCase__: Union[str, Any] =dp_array[row + 1][col + 1]
lowerCamelCase__: Any =dp_array[row + 1][col]
if mat[row][col] == 1:
lowerCamelCase__: str =1 + min(__a , __a , __a )
lowerCamelCase__: Tuple =max(dp_array[row][col] , __a )
else:
lowerCamelCase__: Tuple =0
return largest_square_area
def lowerCAmelCase_ ( __a , __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Union[str, Any] =[0] * (cols + 1)
lowerCamelCase__: Dict =[0] * (cols + 1)
lowerCamelCase__: List[Any] =0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
lowerCamelCase__: Optional[int] =current_row[col + 1]
lowerCamelCase__: int =next_row[col + 1]
lowerCamelCase__: Optional[int] =next_row[col]
if mat[row][col] == 1:
lowerCamelCase__: Dict =1 + min(__a , __a , __a )
lowerCamelCase__: Dict =max(current_row[col] , __a )
else:
lowerCamelCase__: Tuple =0
lowerCamelCase__: List[Any] =current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 10 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__: int =9, 14 # noqa: F841
lowerCamelCase__: List[Any] =[
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowerCamelCase__: List[str] =defaultdict(__a )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowerCamelCase__: List[str] =mst(__a )
lowerCamelCase__: Union[str, Any] =[
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowerCamelCase__: Optional[int] =tuple(answer[:2] )
lowerCamelCase__: List[Any] =tuple(edge[::-1] )
assert edge in result or reverse in result
| 10 | 1 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
__A = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
__A = "main"
# Default branch name
__A = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2"
# One particular commit (not the top of `main`)
__A = "aaaaaaa"
# This commit does not exist, so we should 404.
__A = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684"
# Sha-1 of config.json on the top of `main`, for checking purposes
__A = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3"
@contextlib.contextmanager
def lowerCAmelCase_ ( ) -> List[Any]:
"""simple docstring"""
print("Welcome!" )
yield
print("Bye!" )
@contextlib.contextmanager
def lowerCAmelCase_ ( ) -> int:
"""simple docstring"""
print("Bonjour!" )
yield
print("Au revoir!" )
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
assert transformers.__spec__ is not None
assert importlib.util.find_spec("transformers") is not None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@unittest.mock.patch("sys.stdout" , new_callable=io.StringIO)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : List[Any]) ->Dict:
'''simple docstring'''
with ContextManagers([]):
print("Transformers are awesome!")
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n")
@unittest.mock.patch("sys.stdout" , new_callable=io.StringIO)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[str]) ->Any:
'''simple docstring'''
with ContextManagers([context_en()]):
print("Transformers are awesome!")
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n")
@unittest.mock.patch("sys.stdout" , new_callable=io.StringIO)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict) ->List[Any]:
'''simple docstring'''
with ContextManagers([context_fr(), context_en()]):
print("Transformers are awesome!")
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n")
@require_torch
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"])
self.assertEqual(find_labels(UpperCAmelCase_) , ["labels", "next_sentence_label"])
self.assertEqual(find_labels(UpperCAmelCase_) , ["start_positions", "end_positions"])
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"])
@require_tf
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"])
self.assertEqual(find_labels(UpperCAmelCase_) , ["labels", "next_sentence_label"])
self.assertEqual(find_labels(UpperCAmelCase_) , ["start_positions", "end_positions"])
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
self.assertEqual(find_labels(UpperCAmelCase_) , ["labels"])
@require_flax
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any:
'''simple docstring'''
self.assertEqual(find_labels(UpperCAmelCase_) , [])
self.assertEqual(find_labels(UpperCAmelCase_) , [])
self.assertEqual(find_labels(UpperCAmelCase_) , [])
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
self.assertEqual(find_labels(UpperCAmelCase_) , [])
| 10 |
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
__A = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = BartphoTokenizer
lowercase_ = False
lowercase_ = True
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["▁This", "▁is", "▁a", "▁t", "est"]
lowerCamelCase__: Tuple =dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_))))
lowerCamelCase__: List[Any] ={"unk_token": "<unk>"}
lowerCamelCase__: Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"])
with open(self.monolingual_vocab_file , "w" , encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""")
lowerCamelCase__: Dict =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->str:
'''simple docstring'''
kwargs.update(self.special_tokens_map)
return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] ="This is a là test"
lowerCamelCase__: Optional[Any] ="This is a<unk><unk> test"
return input_text, output_text
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: str =BartphoTokenizer(UpperCAmelCase_ , self.monolingual_vocab_file , **self.special_tokens_map)
lowerCamelCase__: List[Any] ="This is a là test"
lowerCamelCase__: Optional[int] ="▁This ▁is ▁a ▁l à ▁t est".split()
lowerCamelCase__: Optional[int] =tokenizer.tokenize(UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =tokens + [tokenizer.unk_token]
lowerCamelCase__: List[Any] =[4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
| 10 | 1 |
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
__A = "."
if __name__ == "__main__":
__A = os.path.join(REPO_PATH, "utils/documentation_tests.txt")
__A = []
__A = []
with open(doctest_file_path) as fp:
for line in fp:
__A = line.strip()
__A = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
__A = "\n".join(non_existent_paths)
raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}')
if all_paths != sorted(all_paths):
raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
| 10 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
UniSpeechConfig,
UniSpeechForCTC,
UniSpeechForPreTraining,
WavaVecaFeatureExtractor,
WavaVecaPhonemeCTCTokenizer,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__A = logging.get_logger(__name__)
__A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "ctc_proj",
"mask_emb": "masked_spec_embed",
}
__A = [
"ctc_proj",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
for attribute in key.split("." ):
if is_finetuned:
if attribute in ["quantizer", "project_q", "project_hid"]:
# those layers are only relevant for pretraining and should be dropped
return
if attribute == "ctc_proj":
# we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models
lowerCamelCase__: Optional[int] ="lm_head"
lowerCamelCase__: Dict =getattr(__a , __a )
if weight_type is not None:
lowerCamelCase__: str =getattr(__a , __a ).shape
else:
lowerCamelCase__: int =hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
lowerCamelCase__: Dict =value
elif weight_type == "weight_g":
lowerCamelCase__: Optional[Any] =value
elif weight_type == "weight_v":
lowerCamelCase__: int =value
elif weight_type == "bias":
lowerCamelCase__: List[str] =value
else:
lowerCamelCase__: Union[str, Any] =value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
lowerCamelCase__: List[Any] =[]
lowerCamelCase__: List[str] =fairseq_model.state_dict()
lowerCamelCase__: Optional[int] =hf_model.unispeech.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__: int =False
if "conv_layers" in name:
load_conv_layer(
__a , __a , __a , __a , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__: str =True
else:
for key, mapped_key in MAPPING.items():
lowerCamelCase__: List[str] ="unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__: Optional[Any] =True
if "*" in mapped_key:
lowerCamelCase__: Optional[Any] =name.split(__a )[0].split("." )[-2]
lowerCamelCase__: List[str] =mapped_key.replace("*" , __a )
if "weight_g" in name:
lowerCamelCase__: List[str] ="weight_g"
elif "weight_v" in name:
lowerCamelCase__: Union[str, Any] ="weight_v"
elif "bias" in name:
lowerCamelCase__: Dict ="bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__: Tuple ="weight"
else:
lowerCamelCase__: List[Any] =None
set_recursively(__a , __a , __a , __a , __a , __a )
continue
if not is_used:
unused_weights.append(__a )
logger.warning(F"""Unused weights: {unused_weights}""" )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase__: Tuple =full_name.split("conv_layers." )[-1]
lowerCamelCase__: List[str] =name.split("." )
lowerCamelCase__: str =int(items[0] )
lowerCamelCase__: Union[str, Any] =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
lowerCamelCase__: Dict =value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
lowerCamelCase__: List[Any] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
lowerCamelCase__: List[str] =value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(__a )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=True ) -> int:
"""simple docstring"""
if config_path is not None:
lowerCamelCase__: str =UniSpeechConfig.from_pretrained(__a )
else:
lowerCamelCase__: List[Any] =UniSpeechConfig()
if is_finetuned:
if dict_path:
lowerCamelCase__: str =Dictionary.load_from_json(__a )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__: Any =target_dict.pad_index
lowerCamelCase__: int =target_dict.bos_index
lowerCamelCase__: Any =target_dict.eos_index
lowerCamelCase__: Dict =len(target_dict.symbols )
lowerCamelCase__: Optional[int] =os.path.join(__a , "vocab.json" )
if not os.path.isdir(__a ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__a ) )
return
os.makedirs(__a , exist_ok=__a )
lowerCamelCase__: Optional[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__: Optional[Any] =42
lowerCamelCase__: List[Any] =43
with open(__a , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(__a , __a )
lowerCamelCase__: List[str] =WavaVecaPhonemeCTCTokenizer(
__a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__a , )
lowerCamelCase__: Dict =True if config.feat_extract_norm == "layer" else False
lowerCamelCase__: Tuple =WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , )
lowerCamelCase__: List[Any] =WavaVecaProcessor(feature_extractor=__a , tokenizer=__a )
processor.save_pretrained(__a )
lowerCamelCase__: int =UniSpeechForCTC(__a )
else:
lowerCamelCase__: int =UniSpeechForPreTraining(__a )
if is_finetuned:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
lowerCamelCase__: List[str] =model[0].eval()
recursively_load_weights(__a , __a , __a )
hf_unispeech.save_pretrained(__a )
if __name__ == "__main__":
__A = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__A = parser.parse_args()
convert_unispeech_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 10 | 1 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
__A = {
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowerCAmelCase_ ( __a ) -> Tuple:
"""simple docstring"""
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowerCAmelCase_ ( __a , __a ) -> List[str]:
"""simple docstring"""
if args.student_type == "roberta":
lowerCamelCase__: int =False
elif args.student_type == "gpt2":
lowerCamelCase__: Optional[int] =False
def lowerCAmelCase_ ( __a , __a ) -> Tuple:
"""simple docstring"""
if args.student_type == "roberta":
lowerCamelCase__: str =False
def lowerCAmelCase_ ( ) -> int:
"""simple docstring"""
lowerCamelCase__: int =argparse.ArgumentParser(description="Training" )
parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." )
parser.add_argument(
"--dump_path" , type=__a , required=__a , help="The output directory (log, checkpoints, parameters, etc.)" )
parser.add_argument(
"--data_file" , type=__a , required=__a , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , )
parser.add_argument(
"--student_type" , type=__a , choices=["distilbert", "roberta", "gpt2"] , required=__a , help="The student type (DistilBERT, RoBERTa)." , )
parser.add_argument("--student_config" , type=__a , required=__a , help="Path to the student configuration." )
parser.add_argument(
"--student_pretrained_weights" , default=__a , type=__a , help="Load student initialization checkpoint." )
parser.add_argument(
"--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__a , help="Teacher type (BERT, RoBERTa)." )
parser.add_argument("--teacher_name" , type=__a , required=__a , help="The teacher model." )
parser.add_argument("--temperature" , default=2.0 , type=__a , help="Temperature for the softmax temperature." )
parser.add_argument(
"--alpha_ce" , default=0.5 , type=__a , help="Linear weight for the distillation loss. Must be >=0." )
parser.add_argument(
"--alpha_mlm" , default=0.0 , type=__a , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , )
parser.add_argument("--alpha_clm" , default=0.5 , type=__a , help="Linear weight for the CLM loss. Must be >=0." )
parser.add_argument("--alpha_mse" , default=0.0 , type=__a , help="Linear weight of the MSE loss. Must be >=0." )
parser.add_argument(
"--alpha_cos" , default=0.0 , type=__a , help="Linear weight of the cosine embedding loss. Must be >=0." )
parser.add_argument(
"--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." )
parser.add_argument(
"--mlm_mask_prop" , default=0.1_5 , type=__a , help="Proportion of tokens for which we need to make a prediction." , )
parser.add_argument("--word_mask" , default=0.8 , type=__a , help="Proportion of tokens to mask out." )
parser.add_argument("--word_keep" , default=0.1 , type=__a , help="Proportion of tokens to keep." )
parser.add_argument("--word_rand" , default=0.1 , type=__a , help="Proportion of tokens to randomly replace." )
parser.add_argument(
"--mlm_smoothing" , default=0.7 , type=__a , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , )
parser.add_argument("--token_counts" , type=__a , help="The token counts in the data_file for MLM." )
parser.add_argument(
"--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , )
parser.add_argument(
"--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , )
parser.add_argument(
"--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , )
parser.add_argument("--n_epoch" , type=__a , default=3 , help="Number of pass on the whole dataset." )
parser.add_argument("--batch_size" , type=__a , default=5 , help="Batch size (for each process)." )
parser.add_argument(
"--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , )
parser.add_argument(
"--gradient_accumulation_steps" , type=__a , default=50 , help="Gradient accumulation for larger training batches." , )
parser.add_argument("--warmup_prop" , default=0.0_5 , type=__a , help="Linear warmup proportion." )
parser.add_argument("--weight_decay" , default=0.0 , type=__a , help="Weight decay if we apply some." )
parser.add_argument("--learning_rate" , default=5e-4 , type=__a , help="The initial learning rate for Adam." )
parser.add_argument("--adam_epsilon" , default=1e-6 , type=__a , help="Epsilon for Adam optimizer." )
parser.add_argument("--max_grad_norm" , default=5.0 , type=__a , help="Max gradient norm." )
parser.add_argument("--initializer_range" , default=0.0_2 , type=__a , help="Random initialization range." )
parser.add_argument(
"--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , )
parser.add_argument(
"--fp16_opt_level" , type=__a , default="O1" , help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
) , )
parser.add_argument("--n_gpu" , type=__a , default=1 , help="Number of GPUs in the node." )
parser.add_argument("--local_rank" , type=__a , default=-1 , help="Distributed training - Local rank" )
parser.add_argument("--seed" , type=__a , default=56 , help="Random seed" )
parser.add_argument("--log_interval" , type=__a , default=500 , help="Tensorboard logging interval." )
parser.add_argument("--checkpoint_interval" , type=__a , default=4000 , help="Checkpoint interval." )
lowerCamelCase__: int =parser.parse_args()
sanity_checks(__a )
# ARGS #
init_gpu_params(__a )
set_seed(__a )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"""
" itUse `--force` if you want to overwrite it" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" )
# SAVE PARAMS #
logger.info(F"""Param: {args}""" )
with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f:
json.dump(vars(__a ) , __a , indent=4 )
git_log(args.dump_path )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =MODEL_CLASSES[args.student_type]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
lowerCamelCase__: Tuple =teacher_tokenizer_class.from_pretrained(args.teacher_name )
lowerCamelCase__: int ={}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
lowerCamelCase__: str =tokenizer.all_special_tokens.index(__a )
lowerCamelCase__: Optional[int] =tokenizer.all_special_ids[idx]
logger.info(F"""Special tokens {special_tok_ids}""" )
lowerCamelCase__: Tuple =special_tok_ids
lowerCamelCase__: List[Any] =tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F"""Loading data from {args.data_file}""" )
with open(args.data_file , "rb" ) as fp:
lowerCamelCase__: int =pickle.load(__a )
if args.mlm:
logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" )
with open(args.token_counts , "rb" ) as fp:
lowerCamelCase__: Union[str, Any] =pickle.load(__a )
lowerCamelCase__: List[Any] =np.maximum(__a , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
lowerCamelCase__: Optional[Any] =0.0 # do not predict special tokens
lowerCamelCase__: Optional[Any] =torch.from_numpy(__a )
else:
lowerCamelCase__: int =None
lowerCamelCase__: Tuple =LmSeqsDataset(params=__a , data=__a )
logger.info("Data loader created." )
# STUDENT #
logger.info(F"""Loading student config from {args.student_config}""" )
lowerCamelCase__: Optional[Any] =student_config_class.from_pretrained(args.student_config )
lowerCamelCase__: Any =True
if args.student_pretrained_weights is not None:
logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" )
lowerCamelCase__: Optional[Any] =student_model_class.from_pretrained(args.student_pretrained_weights , config=__a )
else:
lowerCamelCase__: int =student_model_class(__a )
if args.n_gpu > 0:
student.to(F"""cuda:{args.local_rank}""" )
logger.info("Student loaded." )
# TEACHER #
lowerCamelCase__: Tuple =teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a )
if args.n_gpu > 0:
teacher.to(F"""cuda:{args.local_rank}""" )
logger.info(F"""Teacher loaded from {args.teacher_name}.""" )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(__a , __a )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(__a , __a )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
lowerCamelCase__: List[Any] =Distiller(
params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a )
distiller.train()
logger.info("Let's go get some drinks." )
if __name__ == "__main__":
main()
| 10 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
__A = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.0_1),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : Optional[Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Tuple =TOKEN
HfFolder.save_token(UpperCAmelCase_)
@classmethod
def SCREAMING_SNAKE_CASE_ (cls : List[str]) ->str:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id="test-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-config-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-config")
except HTTPError:
pass
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub("test-config" , use_auth_token=self._token)
lowerCamelCase__: Dict =BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_))
# Reset repo
delete_repo(token=self._token , repo_id="test-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token)
lowerCamelCase__: Optional[int] =BertConfig.from_pretrained(F"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token)
lowerCamelCase__: Optional[int] =BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_))
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token)
lowerCamelCase__: List[str] =BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
CustomConfig.register_for_auto_class()
lowerCamelCase__: Optional[Any] =CustomConfig(attribute=42)
config.push_to_hub("test-dynamic-config" , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"})
lowerCamelCase__: List[str] =AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCAmelCase_)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , "CustomConfig")
self.assertEqual(new_config.attribute , 42)
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
lowerCamelCase__: Tuple =c.n_embd + 1 # int
lowerCamelCase__: Optional[int] =c.resid_pdrop + 1.0 # float
lowerCamelCase__: Dict =not c.scale_attn_weights # bool
lowerCamelCase__: Any =c.summary_type + "foo" # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd")
self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop")
self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights")
self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type")
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =PretrainedConfig()
lowerCamelCase__: str =[key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"])
lowerCamelCase__: int =[key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_)]
if len(UpperCAmelCase_) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
F""" {", ".join(UpperCAmelCase_)}.""")
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase_):
# config is in subfolder, the following should not work without specifying the subfolder
lowerCamelCase__: Tuple =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder")
lowerCamelCase__: Union[str, Any] =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert")
self.assertIsNotNone(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Tuple =mock.Mock()
lowerCamelCase__: Tuple =500
lowerCamelCase__: Union[str, Any] ={}
lowerCamelCase__: str =HTTPError
lowerCamelCase__: Tuple ={}
# Download this model to make sure it's in the cache.
lowerCamelCase__: str =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_) as mock_head:
lowerCamelCase__: List[str] =BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =BertConfig.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json")
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =AutoConfig.from_pretrained("bert-base-cased")
lowerCamelCase__: Any =["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(UpperCAmelCase_)
lowerCamelCase__: List[Any] =2
json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json") , "w"))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
lowerCamelCase__: Optional[Any] =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
lowerCamelCase__: Any =["config.42.0.0.json"]
lowerCamelCase__: List[Any] =768
configuration.save_pretrained(UpperCAmelCase_)
shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json") , os.path.join(UpperCAmelCase_ , "config.42.0.0.json"))
lowerCamelCase__: Optional[int] =AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertEqual(new_configuration.hidden_size , 768)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: List[str] ="hf-internal-testing/test-two-configs"
import transformers as new_transformers
lowerCamelCase__: Dict ="v4.0.0"
lowerCamelCase__ , lowerCamelCase__: Optional[int] =new_transformers.models.auto.AutoConfig.from_pretrained(
UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(UpperCAmelCase_ , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
lowerCamelCase__: str ="v3.0.0"
lowerCamelCase__: Tuple =old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_)
self.assertEqual(old_configuration.hidden_size , 768)
| 10 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "unispeech"
def __init__(self : Any , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-5 , UpperCAmelCase_ : str="group" , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : str=128 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=320 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=100 , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Optional[int]=80 , UpperCAmelCase_ : Optional[int]=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=0.5 , **UpperCAmelCase_ : Optional[int] , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =hidden_size
lowerCamelCase__: List[str] =feat_extract_norm
lowerCamelCase__: Dict =feat_extract_activation
lowerCamelCase__: Optional[Any] =list(UpperCAmelCase_)
lowerCamelCase__: Any =list(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =list(UpperCAmelCase_)
lowerCamelCase__: Dict =conv_bias
lowerCamelCase__: Optional[Any] =num_conv_pos_embeddings
lowerCamelCase__: Dict =num_conv_pos_embedding_groups
lowerCamelCase__: int =len(self.conv_dim)
lowerCamelCase__: Union[str, Any] =num_hidden_layers
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Dict =hidden_act
lowerCamelCase__: List[Any] =num_attention_heads
lowerCamelCase__: Dict =hidden_dropout
lowerCamelCase__: Optional[Any] =attention_dropout
lowerCamelCase__: Optional[Any] =activation_dropout
lowerCamelCase__: Tuple =feat_proj_dropout
lowerCamelCase__: int =final_dropout
lowerCamelCase__: Optional[Any] =layerdrop
lowerCamelCase__: Dict =layer_norm_eps
lowerCamelCase__: Optional[Any] =initializer_range
lowerCamelCase__: int =num_ctc_classes
lowerCamelCase__: Tuple =vocab_size
lowerCamelCase__: Dict =do_stable_layer_norm
lowerCamelCase__: List[Any] =use_weighted_layer_sum
lowerCamelCase__: Dict =classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""")
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__: int =apply_spec_augment
lowerCamelCase__: List[str] =mask_time_prob
lowerCamelCase__: Union[str, Any] =mask_time_length
lowerCamelCase__: List[Any] =mask_time_min_masks
lowerCamelCase__: Any =mask_feature_prob
lowerCamelCase__: Optional[Any] =mask_feature_length
lowerCamelCase__: List[str] =mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase__: Optional[Any] =num_codevectors_per_group
lowerCamelCase__: str =num_codevector_groups
lowerCamelCase__: Tuple =contrastive_logits_temperature
lowerCamelCase__: int =feat_quantizer_dropout
lowerCamelCase__: Any =num_negatives
lowerCamelCase__: List[str] =codevector_dim
lowerCamelCase__: Union[str, Any] =proj_codevector_dim
lowerCamelCase__: Any =diversity_loss_weight
# ctc loss
lowerCamelCase__: Any =ctc_loss_reduction
lowerCamelCase__: Dict =ctc_zero_infinity
# pretraining loss
lowerCamelCase__: Dict =replace_prob
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1)
| 10 | 1 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
__A = logging.get_logger(__name__)
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Tuple , **UpperCAmelCase_ : Tuple) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
if self.framework == "tf":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""")
requires_backends(self , "vision")
self.check_model_type(UpperCAmelCase_)
def __call__(self : Optional[int] , UpperCAmelCase_ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase_ : Union[str, List[str]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
if "text_queries" in kwargs:
lowerCamelCase__: Any =kwargs.pop("text_queries")
if isinstance(UpperCAmelCase_ , (str, Image.Image)):
lowerCamelCase__: List[Any] ={"image": image, "candidate_labels": candidate_labels}
else:
lowerCamelCase__: Any =image
lowerCamelCase__: Dict =super().__call__(UpperCAmelCase_ , **UpperCAmelCase_)
return results
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[str] ={}
if "threshold" in kwargs:
lowerCamelCase__: List[Any] =kwargs["threshold"]
if "top_k" in kwargs:
lowerCamelCase__: Any =kwargs["top_k"]
return {}, {}, postprocess_params
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =load_image(inputs["image"])
lowerCamelCase__: Dict =inputs["candidate_labels"]
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =candidate_labels.split(",")
lowerCamelCase__: Optional[int] =torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(UpperCAmelCase_):
lowerCamelCase__: Dict =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework)
lowerCamelCase__: Union[str, Any] =self.image_processor(UpperCAmelCase_ , return_tensors=self.framework)
yield {
"is_last": i == len(UpperCAmelCase_) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Dict =model_inputs.pop("target_size")
lowerCamelCase__: Dict =model_inputs.pop("candidate_label")
lowerCamelCase__: Dict =model_inputs.pop("is_last")
lowerCamelCase__: Union[str, Any] =self.model(**UpperCAmelCase_)
lowerCamelCase__: Dict ={"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=None) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =[]
for model_output in model_outputs:
lowerCamelCase__: Optional[Any] =model_output["candidate_label"]
lowerCamelCase__: Tuple =BaseModelOutput(UpperCAmelCase_)
lowerCamelCase__: Dict =self.image_processor.post_process_object_detection(
outputs=UpperCAmelCase_ , threshold=UpperCAmelCase_ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
lowerCamelCase__: Dict =outputs["scores"][index].item()
lowerCamelCase__: Dict =self._get_bounding_box(outputs["boxes"][index][0])
lowerCamelCase__: Optional[Any] ={"score": score, "label": label, "box": box}
results.append(UpperCAmelCase_)
lowerCamelCase__: List[str] =sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)
if top_k:
lowerCamelCase__: Dict =results[:top_k]
return results
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : "torch.Tensor") ->Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[Any] =box.int().tolist()
lowerCamelCase__: Optional[int] ={
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 10 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def lowerCAmelCase_ ( __a , __a , __a = 10**-10 ) -> float:
"""simple docstring"""
lowerCamelCase__: str =a
while True:
lowerCamelCase__: Optional[Any] =Decimal(__a ) - (
Decimal(eval(__a ) ) / Decimal(eval(str(diff(__a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__a ) ) < precision: # noqa: S307
return float(__a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 10 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Optional[Any]=18 , UpperCAmelCase_ : Any=30 , UpperCAmelCase_ : int=400 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=[0.4814_5466, 0.457_8275, 0.4082_1073] , UpperCAmelCase_ : str=[0.2686_2954, 0.2613_0258, 0.2757_7711] , UpperCAmelCase_ : int=True , ) ->int:
'''simple docstring'''
lowerCamelCase__: Tuple =size if size is not None else {"height": 224, "width": 224}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 18, "width": 18}
lowerCamelCase__: Dict =parent
lowerCamelCase__: Union[str, Any] =batch_size
lowerCamelCase__: Any =num_channels
lowerCamelCase__: Any =image_size
lowerCamelCase__: Dict =min_resolution
lowerCamelCase__: int =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize
lowerCamelCase__: Any =size
lowerCamelCase__: Union[str, Any] =do_center_crop
lowerCamelCase__: Optional[int] =crop_size
lowerCamelCase__: Dict =do_normalize
lowerCamelCase__: Optional[int] =image_mean
lowerCamelCase__: int =image_std
lowerCamelCase__: int =do_convert_rgb
def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Union[str, Any]=False) ->Optional[int]:
'''simple docstring'''
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
lowerCamelCase__: str =[]
for i in range(self.batch_size):
image_inputs.append(
np.random.randint(
255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta))
else:
lowerCamelCase__: int =[]
for i in range(self.batch_size):
lowerCamelCase__ , lowerCamelCase__: Tuple =np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2)
image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
lowerCamelCase__: List[str] =[Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs]
if torchify:
lowerCamelCase__: Any =[torch.from_numpy(UpperCAmelCase_) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : str) ->Tuple:
'''simple docstring'''
lowerCamelCase__: List[Any] =ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCAmelCase_)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_convert_rgb"))
def SCREAMING_SNAKE_CASE_ (self : int) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"height": 224, "width": 224})
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: List[Any] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any:
'''simple docstring'''
lowerCamelCase__: int =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: List[str] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Optional[int] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: Optional[int] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Union[str, Any] =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = ChineseCLIPImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[Any] =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCAmelCase_)
lowerCamelCase__: Dict =3
@property
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_convert_rgb"))
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int:
'''simple docstring'''
lowerCamelCase__: str =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: str =self.image_processor_tester.prepare_inputs(equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: Optional[int] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 |
import itertools
import math
def lowerCAmelCase_ ( __a ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase_ ( ) -> str:
"""simple docstring"""
lowerCamelCase__: Optional[int] =2
while True:
if is_prime(__a ):
yield num
num += 1
def lowerCAmelCase_ ( __a = 10001 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , __a ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 10 | 1 |
from queue import PriorityQueue
from typing import Any
import numpy as np
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> float | int:
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
lowerCamelCase__: Any =cst_fwd.get(__a , np.inf )
lowerCamelCase__: Any =cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
lowerCamelCase__: Optional[int] =new_cost_f
lowerCamelCase__: Optional[Any] =v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
lowerCamelCase__: List[Any] =cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> int:
"""simple docstring"""
lowerCamelCase__: int =-1
lowerCamelCase__: Optional[int] =set()
lowerCamelCase__: Optional[Any] =set()
lowerCamelCase__: int ={source: 0}
lowerCamelCase__: Optional[Any] ={destination: 0}
lowerCamelCase__: Union[str, Any] ={source: None}
lowerCamelCase__: Any ={destination: None}
lowerCamelCase__: PriorityQueue[Any] =PriorityQueue()
lowerCamelCase__: PriorityQueue[Any] =PriorityQueue()
lowerCamelCase__: Any =np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
lowerCamelCase__ , lowerCamelCase__: Tuple =queue_forward.get()
visited_forward.add(__a )
lowerCamelCase__ , lowerCamelCase__: Optional[int] =queue_backward.get()
visited_backward.add(__a )
lowerCamelCase__: Optional[Any] =pass_and_relaxation(
__a , __a , __a , __a , __a , __a , __a , __a , __a , )
lowerCamelCase__: Tuple =pass_and_relaxation(
__a , __a , __a , __a , __a , __a , __a , __a , __a , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
lowerCamelCase__: Tuple =shortest_distance
return shortest_path_distance
__A = {
"B": [["C", 1]],
"C": [["D", 1]],
"D": [["F", 1]],
"E": [["B", 1], ["G", 2]],
"F": [],
"G": [["F", 1]],
}
__A = {
"B": [["E", 1]],
"C": [["B", 1]],
"D": [["C", 1]],
"F": [["D", 1], ["G", 1]],
"E": [[None, np.inf]],
"G": [["E", 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__(self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : str=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=0.9 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ) ->str:
'''simple docstring'''
lowerCamelCase__: List[Any] =size if size is not None else {"shortest_edge": 30}
lowerCamelCase__: Dict =crop_size if crop_size is not None else {"height": 30, "width": 30}
lowerCamelCase__: Any =parent
lowerCamelCase__: Any =batch_size
lowerCamelCase__: Optional[Any] =num_channels
lowerCamelCase__: Tuple =min_resolution
lowerCamelCase__: Union[str, Any] =max_resolution
lowerCamelCase__: Union[str, Any] =do_resize_and_center_crop
lowerCamelCase__: Optional[int] =size
lowerCamelCase__: str =crop_pct
lowerCamelCase__: Any =crop_size
lowerCamelCase__: List[str] =do_normalize
lowerCamelCase__: List[str] =image_mean
lowerCamelCase__: Tuple =image_std
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[int]:
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = PoolFormerImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =PoolFormerImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop"))
self.assertTrue(hasattr(UpperCAmelCase_ , "size"))
self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct"))
self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean"))
self.assertTrue(hasattr(UpperCAmelCase_ , "image_std"))
def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]:
'''simple docstring'''
lowerCamelCase__: List[str] =self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"shortest_edge": 30})
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30})
lowerCamelCase__: Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84})
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.image_processing_class(**self.image_processor_dict)
# create random PIL images
lowerCamelCase__: Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , Image.Image)
# Test not batched input
lowerCamelCase__: Dict =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: int =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Any =self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
lowerCamelCase__: Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , np.ndarray)
# Test not batched input
lowerCamelCase__: Union[str, Any] =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: List[str] =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
lowerCamelCase__: Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_ , torch.Tensor)
# Test not batched input
lowerCamelCase__: Any =image_processing(image_inputs[0] , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__: str =image_processing(UpperCAmelCase_ , return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 10 | 1 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
__A = logging.getLogger(__name__)
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = field(
default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
lowercase_ = field(
default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , )
lowercase_ = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the training data."} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} )
lowercase_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the test data."} )
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
else:
lowerCamelCase__: Tuple =self.train_file.split(".")[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowerCamelCase__: Dict =self.validation_file.split(".")[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowercase_ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowercase_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def lowerCAmelCase_ ( ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__: Dict =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: int =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
lowerCamelCase__: Any =training_args.get_process_log_level()
logger.setLevel(__a )
datasets.utils.logging.set_verbosity(__a )
transformers.utils.logging.set_verbosity(__a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
lowerCamelCase__: Dict =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase__: str =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowerCamelCase__: List[Any] =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowerCamelCase__: str ={"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowerCamelCase__: Any =data_args.train_file.split("." )[-1]
lowerCamelCase__: Any =data_args.test_file.split("." )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowerCamelCase__: Tuple =data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`." )
for key in data_files.keys():
logger.info(F"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith(".csv" ):
# Loading a dataset from local csv files
lowerCamelCase__: int =load_dataset("csv" , data_files=__a , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowerCamelCase__: str =load_dataset("json" , data_files=__a , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowerCamelCase__: Union[str, Any] =raw_datasets["train"].features["label"].names
lowerCamelCase__: int =len(__a )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase__: Union[str, Any] =AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
lowerCamelCase__: Any =TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__a , )
lowerCamelCase__: Union[str, Any] =BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase__: Optional[Any] ="max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase__: str =False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowerCamelCase__: List[Any] ={"Refused": 0, "Entailed": 1}
lowerCamelCase__: int ={0: "Refused", 1: "Entailed"}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
lowerCamelCase__: Optional[Any] =min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__a ):
# Tokenize the texts
def _convert_table_text_to_pandas(__a ):
lowerCamelCase__: int =[_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )]
lowerCamelCase__: Dict =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
lowerCamelCase__: List[str] =examples["statement"]
lowerCamelCase__: Any =list(map(_convert_table_text_to_pandas , examples["table_text"] ) )
lowerCamelCase__: int =tokenizer(__a , __a , padding=__a , max_length=__a , truncation=__a )
lowerCamelCase__: Tuple =examples["label"]
return result
with training_args.main_process_first(desc="dataset map pre-processing" ):
lowerCamelCase__: Any =raw_datasets.map(
__a , batched=__a , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
lowerCamelCase__: Optional[Any] =raw_datasets["train"]
if data_args.max_train_samples is not None:
lowerCamelCase__: List[str] =train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
lowerCamelCase__: str =raw_datasets["validation"]
if data_args.max_eval_samples is not None:
lowerCamelCase__: Dict =eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset" )
lowerCamelCase__: Optional[int] =raw_datasets["test"]
if data_args.max_predict_samples is not None:
lowerCamelCase__: str =predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__a ) ) , 3 ):
logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__a ):
lowerCamelCase__: List[str] =p.predictions[0] if isinstance(p.predictions , __a ) else p.predictions
lowerCamelCase__: Tuple =np.argmax(__a , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase__: Optional[int] =default_data_collator
elif training_args.fpaa:
lowerCamelCase__: Optional[Any] =DataCollatorWithPadding(__a , pad_to_multiple_of=8 )
else:
lowerCamelCase__: List[Any] =None
# Initialize our Trainer
lowerCamelCase__: Optional[int] =Trainer(
model=__a , args=__a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__a , tokenizer=__a , data_collator=__a , )
# Training
if training_args.do_train:
lowerCamelCase__: Union[str, Any] =None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase__: Any =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase__: Union[str, Any] =last_checkpoint
lowerCamelCase__: Optional[int] =trainer.train(resume_from_checkpoint=__a )
lowerCamelCase__: int =train_result.metrics
lowerCamelCase__: Optional[int] =(
data_args.max_train_samples if data_args.max_train_samples is not None else len(__a )
)
lowerCamelCase__: List[str] =min(__a , len(__a ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , __a )
trainer.save_metrics("train" , __a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
lowerCamelCase__: Tuple =trainer.evaluate(eval_dataset=__a )
lowerCamelCase__: List[Any] =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__a )
lowerCamelCase__: Union[str, Any] =min(__a , len(__a ) )
trainer.log_metrics("eval" , __a )
trainer.save_metrics("eval" , __a )
if training_args.do_predict:
logger.info("*** Predict ***" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowerCamelCase__: Dict =predict_dataset.remove_columns("label" )
lowerCamelCase__: int =trainer.predict(__a , metric_key_prefix="predict" ).predictions
lowerCamelCase__: List[str] =np.argmax(__a , axis=1 )
lowerCamelCase__: List[str] =os.path.join(training_args.output_dir , "predict_results_tabfact.txt" )
if trainer.is_world_process_zero():
with open(__a , "w" ) as writer:
logger.info("***** Predict Results *****" )
writer.write("index\tprediction\n" )
for index, item in enumerate(__a ):
lowerCamelCase__: Dict =label_list[item]
writer.write(F"""{index}\t{item}\n""" )
lowerCamelCase__: List[str] ={"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if training_args.push_to_hub:
trainer.push_to_hub(**__a )
else:
trainer.create_model_card(**__a )
def lowerCAmelCase_ ( __a ) -> List[Any]:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 10 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
__A = logging.get_logger(__name__)
__A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
__A = {
"yjernite/retribert-base-uncased": 512,
}
__A = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = RetriBertTokenizer
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : int , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]="[UNK]" , UpperCAmelCase_ : Any="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Optional[Any]="[CLS]" , UpperCAmelCase_ : Optional[Any]="[MASK]" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : str , ) ->List[Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase" , UpperCAmelCase_) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase_) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase_) != tokenize_chinese_chars
):
lowerCamelCase__: Dict =getattr(UpperCAmelCase_ , normalizer_state.pop("type"))
lowerCamelCase__: int =do_lower_case
lowerCamelCase__: int =strip_accents
lowerCamelCase__: List[str] =tokenize_chinese_chars
lowerCamelCase__: Tuple =normalizer_class(**UpperCAmelCase_)
lowerCamelCase__: Any =do_lower_case
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any]=None) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =[self.sep_token_id]
lowerCamelCase__: Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
lowerCamelCase__: Tuple =self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_)
return tuple(UpperCAmelCase_)
| 10 | 1 |
import re
def lowerCAmelCase_ ( __a ) -> str:
"""simple docstring"""
if len(re.findall("[ATCG]" , __a ) ) != len(__a ):
raise ValueError("Invalid Strand" )
return dna.translate(dna.maketrans("ATCG" , "TAGC" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 10 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__A = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCAmelCase_ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
lowerCamelCase__: Optional[Any] =np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowerCamelCase__: Dict =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowerCamelCase__: Optional[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCamelCase__: Any =np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCamelCase__: List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=99 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Any=0.02 , ) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =parent
lowerCamelCase__: List[str] =batch_size
lowerCamelCase__: Optional[int] =seq_length
lowerCamelCase__: Optional[Any] =is_training
lowerCamelCase__: str =use_labels
lowerCamelCase__: Optional[Any] =vocab_size
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: str =intermediate_size
lowerCamelCase__: int =hidden_act
lowerCamelCase__: Tuple =hidden_dropout_prob
lowerCamelCase__: List[str] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =max_position_embeddings
lowerCamelCase__: int =eos_token_id
lowerCamelCase__: Union[str, Any] =pad_token_id
lowerCamelCase__: List[str] =bos_token_id
lowerCamelCase__: int =initializer_range
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
lowerCamelCase__: str =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
lowerCamelCase__: int =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: Dict =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase_ , )
lowerCamelCase__: Any =prepare_blenderbot_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Dict =self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =20
lowerCamelCase__: Optional[int] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: str =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: List[Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4")
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: Union[str, Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: Dict =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: List[Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: List[str] =20
lowerCamelCase__: Optional[Any] =model_class_name(UpperCAmelCase_)
lowerCamelCase__: Any =model.encode(inputs_dict["input_ids"])
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =(
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
lowerCamelCase__: Optional[int] =jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
lowerCamelCase__: Union[str, Any] =model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Tuple =jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowerCamelCase__: List[Any] =model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Dict =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4")
lowerCamelCase__: str =model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase_ , decoder_position_ids=UpperCAmelCase_ , )
lowerCamelCase__: Union[str, Any] =model.decode(UpperCAmelCase_ , UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_)
lowerCamelCase__: str =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""")
@require_flax
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = 99
def SCREAMING_SNAKE_CASE_ (self : Any) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowerCamelCase__: Optional[Any] =input_ids.shape[0]
lowerCamelCase__: List[str] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =self._get_config_and_data()
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Dict =lm_model(input_ids=UpperCAmelCase_)
lowerCamelCase__: Dict =(batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowerCamelCase__: str =FlaxBlenderbotForConditionalGeneration(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
lowerCamelCase__: List[str] =lm_model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =(*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
lowerCamelCase__: Optional[int] =shift_tokens_right(UpperCAmelCase_ , 1 , 2)
lowerCamelCase__: List[str] =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
lowerCamelCase__: Tuple =np.equal(UpperCAmelCase_ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase_ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = True
lowercase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: List[Any] =FlaxBlenderbotModelTester(self)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[str] =self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: List[str] =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =model_class(UpperCAmelCase_)
@jax.jit
def encode_jitted(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : List[str]):
return model.encode(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_)
with self.subTest("JIT Enabled"):
lowerCamelCase__: Any =encode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: Tuple =encode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
lowerCamelCase__: Optional[Any] =model_class(UpperCAmelCase_)
lowerCamelCase__: List[Any] =model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"])
lowerCamelCase__: int ={
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]):
return model.decode(
decoder_input_ids=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , encoder_outputs=UpperCAmelCase_ , )
with self.subTest("JIT Enabled"):
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
lowerCamelCase__: int =decode_jitted(**UpperCAmelCase_).to_tuple()
self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_))
for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE_ (self : Any) ->Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__: Optional[int] =model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowerCamelCase__: int =np.ones((1, 1)) * model.config.eos_token_id
lowerCamelCase__: str =model(UpperCAmelCase_)
self.assertIsNotNone(UpperCAmelCase_)
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.")
@slow
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict ={"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
lowerCamelCase__: Union[str, Any] ={"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
lowerCamelCase__: Dict =FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=UpperCAmelCase_)
lowerCamelCase__: List[str] =BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
lowerCamelCase__: Any =["Sam"]
lowerCamelCase__: Tuple =tokenizer(UpperCAmelCase_ , return_tensors="jax")
lowerCamelCase__: Optional[Any] =model.generate(**UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Any ="Sam is a great name. It means \"sun\" in Gaelic."
lowerCamelCase__: Optional[Any] =tokenizer.batch_decode(UpperCAmelCase_ , **UpperCAmelCase_)
assert generated_txt[0].strip() == tgt_text
| 10 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = "audio-spectrogram-transformer"
def __init__(self : Optional[Any] , UpperCAmelCase_ : str=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : str=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : int=1_024 , UpperCAmelCase_ : str=128 , **UpperCAmelCase_ : Optional[Any] , ) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase_)
lowerCamelCase__: int =hidden_size
lowerCamelCase__: Dict =num_hidden_layers
lowerCamelCase__: Any =num_attention_heads
lowerCamelCase__: Union[str, Any] =intermediate_size
lowerCamelCase__: Tuple =hidden_act
lowerCamelCase__: Optional[int] =hidden_dropout_prob
lowerCamelCase__: Union[str, Any] =attention_probs_dropout_prob
lowerCamelCase__: Optional[int] =initializer_range
lowerCamelCase__: Tuple =layer_norm_eps
lowerCamelCase__: Dict =patch_size
lowerCamelCase__: List[str] =qkv_bias
lowerCamelCase__: Optional[Any] =frequency_stride
lowerCamelCase__: int =time_stride
lowerCamelCase__: Optional[Any] =max_length
lowerCamelCase__: Union[str, Any] =num_mel_bins
| 10 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A = logging.get_logger(__name__)
__A = "▁"
__A = {"vocab_file": "prophetnet.tokenizer"}
__A = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__A = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def lowerCAmelCase_ ( __a ) -> int:
"""simple docstring"""
lowerCamelCase__: Optional[Any] =collections.OrderedDict()
with open(__a , "r" , encoding="utf-8" ) as reader:
lowerCamelCase__: int =reader.readlines()
for index, token in enumerate(__a ):
lowerCamelCase__: List[str] =token.rstrip("\n" )
lowerCamelCase__: List[Any] =index
return vocab
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = ["input_ids", "attention_mask"]
def __init__(self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : List[Any]="[SEP]" , UpperCAmelCase_ : Optional[Any]="[SEP]" , UpperCAmelCase_ : int="[UNK]" , UpperCAmelCase_ : Optional[Any]="[PAD]" , UpperCAmelCase_ : Dict="[CLS]" , UpperCAmelCase_ : Dict="[MASK]" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ) ->None:
'''simple docstring'''
lowerCamelCase__: int ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
lowerCamelCase__: Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(UpperCAmelCase_))
lowerCamelCase__: Optional[int] =vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase__: Optional[int] ={"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4}
for i in range(10):
lowerCamelCase__: Optional[int] =F"""[unused{i}]"""
lowerCamelCase__: int =5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase__: int =12
lowerCamelCase__: Optional[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(UpperCAmelCase_)
def __getstate__(self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.__dict__.copy()
lowerCamelCase__: Dict =None
return state
def __setstate__(self : List[str] , UpperCAmelCase_ : Union[str, Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece")
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
lowerCamelCase__: Dict ={}
lowerCamelCase__: Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_)
if token_ids_a is None:
return ([0] * len(UpperCAmelCase_)) + [1]
return ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1]
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
lowerCamelCase__: Any =[self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE_ (self : str) ->Dict:
'''simple docstring'''
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str ={self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str) ->str:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : List[Any]) ->str:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase__: str =self.sp_model.PieceToId(UpperCAmelCase_)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->Optional[int]:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] ="".join(UpperCAmelCase_).replace(UpperCAmelCase_ , " ").strip()
return out_string
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase_):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""")
return
lowerCamelCase__: List[str] =os.path.join(
UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase_)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase_ , "wb") as fi:
lowerCamelCase__: Dict =self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase_)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase__: Union[str, Any] =[self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 10 | 1 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def lowerCAmelCase_ ( __a , __a , __a ) -> Any:
"""simple docstring"""
if isinstance(__a , torch.Tensor ):
return image
elif isinstance(__a , PIL.Image.Image ):
lowerCamelCase__: str =[image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCamelCase__: List[str] =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
lowerCamelCase__: Any =np.concatenate(__a , axis=0 )
lowerCamelCase__: str =np.array(__a ).astype(np.floataa ) / 2_5_5.0
lowerCamelCase__: Tuple =image.transpose(0 , 3 , 1 , 2 )
lowerCamelCase__: Union[str, Any] =2.0 * image - 1.0
lowerCamelCase__: Any =torch.from_numpy(__a )
elif isinstance(image[0] , torch.Tensor ):
lowerCamelCase__: Dict =torch.cat(__a , dim=0 )
return image
def lowerCAmelCase_ ( __a , __a , __a , __a=0.9_9_9_5 ) -> str:
"""simple docstring"""
if not isinstance(__a , np.ndarray ):
lowerCamelCase__: int =True
lowerCamelCase__: Dict =va.device
lowerCamelCase__: List[Any] =va.cpu().numpy()
lowerCamelCase__: List[str] =va.cpu().numpy()
lowerCamelCase__: Optional[int] =np.sum(va * va / (np.linalg.norm(__a ) * np.linalg.norm(__a )) )
if np.abs(__a ) > DOT_THRESHOLD:
lowerCamelCase__: str =(1 - t) * va + t * va
else:
lowerCamelCase__: List[str] =np.arccos(__a )
lowerCamelCase__: Tuple =np.sin(__a )
lowerCamelCase__: str =theta_a * t
lowerCamelCase__: List[Any] =np.sin(__a )
lowerCamelCase__: Tuple =np.sin(theta_a - theta_t ) / sin_theta_a
lowerCamelCase__: int =sin_theta_t / sin_theta_a
lowerCamelCase__: List[Any] =sa * va + sa * va
if inputs_are_torch:
lowerCamelCase__: int =torch.from_numpy(__a ).to(__a )
return va
def lowerCAmelCase_ ( __a , __a ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase__: str =F.normalize(__a , dim=-1 )
lowerCamelCase__: Union[str, Any] =F.normalize(__a , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def lowerCAmelCase_ ( __a , __a ) -> List[Any]:
"""simple docstring"""
for param in model.parameters():
lowerCamelCase__: Any =value
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__(self : Optional[Any] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , UpperCAmelCase_ : CLIPFeatureExtractor , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[Any]=None , ) ->List[str]:
'''simple docstring'''
super().__init__()
self.register_modules(
vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , clip_model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , coca_model=UpperCAmelCase_ , coca_tokenizer=UpperCAmelCase_ , coca_transform=UpperCAmelCase_ , )
lowerCamelCase__: Tuple =(
feature_extractor.size
if isinstance(feature_extractor.size , UpperCAmelCase_)
else feature_extractor.size["shortest_edge"]
)
lowerCamelCase__: int =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std)
set_requires_grad(self.text_encoder , UpperCAmelCase_)
set_requires_grad(self.clip_model , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Optional[Union[str, int]] = "auto") ->Union[str, Any]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCamelCase__: List[str] =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Union[str, Any]:
'''simple docstring'''
self.enable_attention_slicing(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str) ->Any:
'''simple docstring'''
set_requires_grad(self.vae , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->str:
'''simple docstring'''
set_requires_grad(self.vae , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict:
'''simple docstring'''
set_requires_grad(self.unet , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->List[Any]:
'''simple docstring'''
set_requires_grad(self.unet , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple) ->str:
'''simple docstring'''
lowerCamelCase__: str =min(int(num_inference_steps * strength) , UpperCAmelCase_)
lowerCamelCase__: Tuple =max(num_inference_steps - init_timestep , 0)
lowerCamelCase__: List[str] =self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=None) ->Union[str, Any]:
'''simple docstring'''
if not isinstance(UpperCAmelCase_ , torch.Tensor):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase_)}""")
lowerCamelCase__: Optional[int] =image.to(device=UpperCAmelCase_ , dtype=UpperCAmelCase_)
if isinstance(UpperCAmelCase_ , UpperCAmelCase_):
lowerCamelCase__: Any =[
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(UpperCAmelCase_)
]
lowerCamelCase__: List[Any] =torch.cat(UpperCAmelCase_ , dim=0)
else:
lowerCamelCase__: Tuple =self.vae.encode(UpperCAmelCase_).latent_dist.sample(UpperCAmelCase_)
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
lowerCamelCase__: List[str] =0.1_8215 * init_latents
lowerCamelCase__: Optional[int] =init_latents.repeat_interleave(UpperCAmelCase_ , dim=0)
lowerCamelCase__: List[Any] =randn_tensor(init_latents.shape , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_)
# get latents
lowerCamelCase__: str =self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[int] =init_latents
return latents
def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Dict) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =self.coca_transform(UpperCAmelCase_).unsqueeze(0)
with torch.no_grad(), torch.cuda.amp.autocast():
lowerCamelCase__: str =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype))
lowerCamelCase__: str =self.coca_tokenizer.decode(generated[0].cpu().numpy())
return generated.split("<end_of_text>")[0].replace("<start_of_text>" , "").rstrip(" .,")
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =self.feature_extractor.preprocess(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half()
lowerCamelCase__: Any =self.clip_model.get_image_features(UpperCAmelCase_)
lowerCamelCase__: int =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =image_embeddings_clip.repeat_interleave(UpperCAmelCase_ , dim=0)
return image_embeddings_clip
@torch.enable_grad()
def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , ) ->Any:
'''simple docstring'''
lowerCamelCase__: str =latents.detach().requires_grad_()
lowerCamelCase__: int =self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_)
# predict the noise residual
lowerCamelCase__: str =self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
lowerCamelCase__: List[Any] =self.scheduler.alphas_cumprod[timestep]
lowerCamelCase__: Tuple =1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
lowerCamelCase__: int =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
lowerCamelCase__: Any =torch.sqrt(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , UpperCAmelCase_):
lowerCamelCase__: Any =self.scheduler.sigmas[index]
lowerCamelCase__: List[str] =latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler)} not supported""")
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
lowerCamelCase__: Any =1 / 0.1_8215 * sample
lowerCamelCase__: Any =self.vae.decode(UpperCAmelCase_).sample
lowerCamelCase__: List[Any] =(image / 2 + 0.5).clamp(0 , 1)
lowerCamelCase__: List[Any] =transforms.Resize(self.feature_extractor_size)(UpperCAmelCase_)
lowerCamelCase__: Dict =self.normalize(UpperCAmelCase_).to(latents.dtype)
lowerCamelCase__: Union[str, Any] =self.clip_model.get_image_features(UpperCAmelCase_)
lowerCamelCase__: List[str] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase_)
lowerCamelCase__: List[Any] =spherical_dist_loss(UpperCAmelCase_ , UpperCAmelCase_).mean() * clip_guidance_scale
lowerCamelCase__: Dict =-torch.autograd.grad(UpperCAmelCase_ , UpperCAmelCase_)[0]
if isinstance(self.scheduler , UpperCAmelCase_):
lowerCamelCase__: Dict =latents.detach() + grads * (sigma**2)
lowerCamelCase__: List[str] =noise_pred_original
else:
lowerCamelCase__: int =noise_pred_original - torch.sqrt(UpperCAmelCase_) * grads
return noise_pred, latents
@torch.no_grad()
def __call__(self : Dict , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[int] = 512 , UpperCAmelCase_ : Optional[int] = 512 , UpperCAmelCase_ : float = 0.6 , UpperCAmelCase_ : Optional[int] = 50 , UpperCAmelCase_ : Optional[float] = 7.5 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[float] = 100 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : float = 0.8 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , ) ->Any:
'''simple docstring'''
if isinstance(UpperCAmelCase_ , UpperCAmelCase_) and len(UpperCAmelCase_) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase_)} generators.""")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""")
if isinstance(UpperCAmelCase_ , torch.Generator) and batch_size > 1:
lowerCamelCase__: Optional[Any] =[generator] + [None] * (batch_size - 1)
lowerCamelCase__: Optional[Any] =[
("model", self.coca_model is None),
("tokenizer", self.coca_tokenizer is None),
("transform", self.coca_transform is None),
]
lowerCamelCase__: str =[x[0] for x in coca_is_none if x[1]]
lowerCamelCase__: Optional[int] =", ".join(UpperCAmelCase_)
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(UpperCAmelCase_):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""")
lowerCamelCase__: List[str] =self.get_image_description(UpperCAmelCase_)
if style_prompt is None:
if len(UpperCAmelCase_):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""")
lowerCamelCase__: Optional[int] =self.get_image_description(UpperCAmelCase_)
# get prompt text embeddings for content and style
lowerCamelCase__: int =self.tokenizer(
UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="pt" , )
lowerCamelCase__: Optional[Any] =self.text_encoder(content_text_input.input_ids.to(self.device))[0]
lowerCamelCase__: Tuple =self.tokenizer(
UpperCAmelCase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="pt" , )
lowerCamelCase__: Any =self.text_encoder(style_text_input.input_ids.to(self.device))[0]
lowerCamelCase__: Tuple =slerp(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
# duplicate text embeddings for each generation per prompt
lowerCamelCase__: Dict =text_embeddings.repeat_interleave(UpperCAmelCase_ , dim=0)
# set timesteps
lowerCamelCase__: Dict ="offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
lowerCamelCase__: str ={}
if accepts_offset:
lowerCamelCase__: Tuple =1
self.scheduler.set_timesteps(UpperCAmelCase_ , **UpperCAmelCase_)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device)
lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.get_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , self.device)
lowerCamelCase__: Optional[Any] =timesteps[:1].repeat(UpperCAmelCase_)
# Preprocess image
lowerCamelCase__: List[Any] =preprocess(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[str] =self.prepare_latents(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , text_embeddings.dtype , self.device , UpperCAmelCase_)
lowerCamelCase__: Tuple =preprocess(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: int =self.prepare_latents(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , text_embeddings.dtype , self.device , UpperCAmelCase_)
lowerCamelCase__: Tuple =slerp(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
if clip_guidance_scale > 0:
lowerCamelCase__: Optional[int] =self.get_clip_image_embeddings(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: List[Any] =self.get_clip_image_embeddings(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =slerp(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lowerCamelCase__: str =guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
lowerCamelCase__: Optional[Any] =content_text_input.input_ids.shape[-1]
lowerCamelCase__: int =self.tokenizer([""] , padding="max_length" , max_length=UpperCAmelCase_ , return_tensors="pt")
lowerCamelCase__: Any =self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt
lowerCamelCase__: Optional[Any] =uncond_embeddings.repeat_interleave(UpperCAmelCase_ , dim=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
lowerCamelCase__: str =torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
lowerCamelCase__: Any =(batch_size, self.unet.config.in_channels, height // 8, width // 8)
lowerCamelCase__: Tuple =text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
lowerCamelCase__: int =torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device="cpu" , dtype=UpperCAmelCase_).to(
self.device)
else:
lowerCamelCase__: Any =torch.randn(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_)
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""")
lowerCamelCase__: List[str] =latents.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
lowerCamelCase__: Union[str, Any] =latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCamelCase__: Optional[Any] ="eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
lowerCamelCase__: Dict ={}
if accepts_eta:
lowerCamelCase__: Optional[Any] =eta
# check if the scheduler accepts generator
lowerCamelCase__: str ="generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
lowerCamelCase__: Optional[int] =generator
with self.progress_bar(total=UpperCAmelCase_):
for i, t in enumerate(UpperCAmelCase_):
# expand the latents if we are doing classifier free guidance
lowerCamelCase__: Any =torch.cat([latents] * 2) if do_classifier_free_guidance else latents
lowerCamelCase__: Dict =self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_)
# predict the noise residual
lowerCamelCase__: int =self.unet(UpperCAmelCase_ , UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_).sample
# perform classifier free guidance
if do_classifier_free_guidance:
lowerCamelCase__ , lowerCamelCase__: Any =noise_pred.chunk(2)
lowerCamelCase__: Dict =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
lowerCamelCase__: str =(
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
)
lowerCamelCase__ , lowerCamelCase__: Tuple =self.cond_fn(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , )
# compute the previous noisy sample x_t -> x_t-1
lowerCamelCase__: Optional[int] =self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
lowerCamelCase__: int =1 / 0.1_8215 * latents
lowerCamelCase__: str =self.vae.decode(UpperCAmelCase_).sample
lowerCamelCase__: List[Any] =(image / 2 + 0.5).clamp(0 , 1)
lowerCamelCase__: Optional[int] =image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
lowerCamelCase__: Union[str, Any] =self.numpy_to_pil(UpperCAmelCase_)
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=UpperCAmelCase_ , nsfw_content_detected=UpperCAmelCase_)
| 10 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 10 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.