code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def a_ ( lowerCAmelCase_ : int = 10 ): if not isinstance(A__, A__ ) or n < 0: raise ValueError('Invalid input' ) __lowerCAmelCase = 10**n __lowerCAmelCase = 2_8433 * (pow(2, 783_0457, A__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
284
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: str ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __lowerCamelCase = model __lowerCamelCase = kwargs.get("""model_save_dir""" , UpperCamelCase_ ) __lowerCamelCase = kwargs.get("""latest_model_name""" , UpperCamelCase_ ) def __call__( self: Dict , **UpperCamelCase_: Any ): __lowerCamelCase = {k: np.array(UpperCamelCase_ ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase_ , UpperCamelCase_ ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Tuple=None , UpperCamelCase_: Tuple=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __lowerCamelCase = """CPUExecutionProvider""" return ort.InferenceSession(UpperCamelCase_ , providers=[provider] , sess_options=UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: Optional[int] ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME __lowerCamelCase = self.model_save_dir.joinpath(self.latest_model_name ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __lowerCamelCase = self.model_save_dir.joinpath(UpperCamelCase_ ) if src_path.exists(): __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(UpperCamelCase_ ) try: shutil.copyfile(UpperCamelCase_ , UpperCamelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: Optional[Any] , ): if os.path.isfile(UpperCamelCase_ ): logger.error(F'Provided path ({save_directory}) should be a directory, not a file' ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) # saving model weights/files self._save_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: Optional[Union[bool, str, None]] = None , UpperCamelCase_: Optional[Union[str, None]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional["ort.SessionOptions"] = None , **UpperCamelCase_: int , ): __lowerCamelCase = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase_ ): __lowerCamelCase = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) # load model from hub else: # download model __lowerCamelCase = hf_hub_download( repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , ) __lowerCamelCase = Path(UpperCamelCase_ ).parent __lowerCamelCase = Path(UpperCamelCase_ ).name __lowerCamelCase = OnnxRuntimeModel.load_model(UpperCamelCase_ , provider=UpperCamelCase_ , sess_options=UpperCamelCase_ ) return cls(model=UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: Optional[int] , UpperCamelCase_: Union[str, Path] , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , **UpperCamelCase_: int , ): __lowerCamelCase = None if len(str(UpperCamelCase_ ).split("""@""" ) ) == 2: __lowerCamelCase, __lowerCamelCase = model_id.split("""@""" ) return cls._from_pretrained( model_id=UpperCamelCase_ , revision=UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , **UpperCamelCase_ , )
12
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Dict = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __lowercase ( __lowerCamelCase ): """simple docstring""" _UpperCAmelCase : Dict = 'data2vec-audio' def __init__( self : Any , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : Optional[Any]=768 , lowerCAmelCase__ : str=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : Optional[Any]=3072 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : int=1E-5 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__ : int=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ : int=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Tuple=16 , lowerCAmelCase__ : Union[str, Any]=19 , lowerCAmelCase__ : List[str]=5 , lowerCAmelCase__ : Optional[Any]=0.05 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Dict=10 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Tuple="sum" , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=(512, 512, 512, 512, 1500) , lowerCAmelCase__ : List[str]=(5, 3, 3, 1, 1) , lowerCAmelCase__ : Any=(1, 2, 3, 1, 1) , lowerCAmelCase__ : Dict=512 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : int , ): super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_) SCREAMING_SNAKE_CASE_: Tuple = hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] = feat_extract_activation SCREAMING_SNAKE_CASE_: Optional[Any] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Optional[int] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Optional[Any] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Tuple = conv_bias SCREAMING_SNAKE_CASE_: List[str] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_: List[str] = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_: Union[str, Any] = conv_pos_kernel_size SCREAMING_SNAKE_CASE_: Any = len(self.conv_dim) SCREAMING_SNAKE_CASE_: Dict = num_hidden_layers SCREAMING_SNAKE_CASE_: List[str] = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] = hidden_dropout SCREAMING_SNAKE_CASE_: Optional[int] = attention_dropout SCREAMING_SNAKE_CASE_: Tuple = activation_dropout SCREAMING_SNAKE_CASE_: Any = feat_proj_dropout SCREAMING_SNAKE_CASE_: List[str] = final_dropout SCREAMING_SNAKE_CASE_: Optional[Any] = layerdrop SCREAMING_SNAKE_CASE_: Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_: str = initializer_range SCREAMING_SNAKE_CASE_: Tuple = vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," F" `len(config.conv_kernel) = {len(self.conv_kernel)}`.") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_: List[Any] = mask_time_prob SCREAMING_SNAKE_CASE_: Dict = mask_time_length SCREAMING_SNAKE_CASE_: int = mask_time_min_masks SCREAMING_SNAKE_CASE_: Optional[Any] = mask_feature_prob SCREAMING_SNAKE_CASE_: Any = mask_feature_length SCREAMING_SNAKE_CASE_: Optional[int] = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE_: int = ctc_loss_reduction SCREAMING_SNAKE_CASE_: str = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE_: Optional[int] = add_adapter SCREAMING_SNAKE_CASE_: int = adapter_kernel_size SCREAMING_SNAKE_CASE_: Optional[int] = adapter_stride SCREAMING_SNAKE_CASE_: str = num_adapter_layers SCREAMING_SNAKE_CASE_: List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_: List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_: Optional[int] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Optional[Any] = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Any = list(UpperCamelCase_) SCREAMING_SNAKE_CASE_: Any = xvector_output_dim @property def _SCREAMING_SNAKE_CASE ( self : str): return math.prod(self.conv_stride)
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
0
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __A = 4 __A = 3 class UpperCAmelCase (__lowerCamelCase ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> int: for shard in shards: for i in range(A__ ): yield {"i": i, "shard": shard} def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: lowercase__: Union[str, Any] = int(os.environ['''RANK'''] ) lowercase__: Union[str, Any] = int(os.environ['''WORLD_SIZE'''] ) lowercase__: List[str] = ArgumentParser() parser.add_argument('''--streaming''' , type=A__ ) parser.add_argument('''--local_rank''' , type=A__ ) parser.add_argument('''--num_workers''' , type=A__ , default=0 ) lowercase__: List[str] = parser.parse_args() lowercase__: Dict = args.streaming lowercase__: List[Any] = args.num_workers lowercase__: Any = {'''shards''': [F"""shard_{shard_idx}""" for shard_idx in range(A__ )]} lowercase__: List[Any] = IterableDataset.from_generator(A__ , gen_kwargs=A__ ) if not streaming: lowercase__: int = Dataset.from_list(list(A__ ) ) lowercase__: Tuple = split_dataset_by_node(A__ , rank=A__ , world_size=A__ ) lowercase__: str = torch.utils.data.DataLoader(A__ , num_workers=A__ ) lowercase__: List[str] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__: Dict = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__: Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
177
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( __lowerCamelCase ): '''simple docstring''' A = 'bert-generation' def __init__(self , _UpperCAmelCase=5_0_3_5_8 , _UpperCAmelCase=1_0_2_4 , _UpperCAmelCase=2_4 , _UpperCAmelCase=1_6 , _UpperCAmelCase=4_0_9_6 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_1_2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> Any: super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCamelCase : Tuple = vocab_size __UpperCamelCase : int = hidden_size __UpperCamelCase : int = num_hidden_layers __UpperCamelCase : Union[str, Any] = num_attention_heads __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : str = intermediate_size __UpperCamelCase : Dict = hidden_dropout_prob __UpperCamelCase : List[Any] = attention_probs_dropout_prob __UpperCamelCase : Optional[Any] = max_position_embeddings __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Dict = layer_norm_eps __UpperCamelCase : Any = position_embedding_type __UpperCamelCase : Dict = use_cache
298
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } UpperCamelCase_ = { """Salesforce/codegen-350M-mono""": 20_48, } class a_ (__lowerCamelCase ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = ['input_ids', 'attention_mask'] __lowerCAmelCase : Dict = CodeGenTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_="<|endoftext|>" , snake_case_=False , **snake_case_ , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) if kwargs.pop("""add_bos_token""" , UpperCamelCase_ ): _lowerCAmelCase : Optional[Any] = kwargs.pop("""name_or_path""" , """""" ) raise ValueError( """Currenty GPT2's fast tokenizer does NOT support adding a BOS token.""" """Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n""" f'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' f'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' """This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.""" """ so that the fast tokenizer works correctly.""" ) _lowerCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase_ ) != add_prefix_space: _lowerCAmelCase : Optional[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop("""type""" ) ) _lowerCAmelCase : Optional[Any] = add_prefix_space _lowerCAmelCase : Tuple = pre_tok_class(**UpperCamelCase_ ) _lowerCAmelCase : str = add_prefix_space def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): _lowerCAmelCase : Optional[int] = kwargs.get("""is_split_into_words""" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): _lowerCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = None ): _lowerCAmelCase : Any = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def __UpperCamelCase ( self , snake_case_ , snake_case_ = False , snake_case_ = None , snake_case_ = None , **snake_case_ , ): _lowerCAmelCase : str = super().decode( token_ids=UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ , **UpperCamelCase_ , ) if truncate_before_pattern is not None and len(UpperCamelCase_ ) > 0: _lowerCAmelCase : Optional[Any] = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) return decoded_text def __UpperCamelCase ( self , snake_case_ , snake_case_ ): def find_re(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Tuple = pattern.search(UpperCamelCase_ , UpperCamelCase_ ) return m.start() if m else -1 _lowerCAmelCase : Union[str, Any] = [re.compile(UpperCamelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] _lowerCAmelCase : Optional[int] = list(re.finditer("""^print""" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: _lowerCAmelCase : Optional[Any] = completion[: prints[1].start()] _lowerCAmelCase : List[str] = list(re.finditer("""^def""" , UpperCamelCase_ , re.MULTILINE ) ) if len(UpperCamelCase_ ) > 1: _lowerCAmelCase : Any = completion[: defs[1].start()] _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[Any] = [ pos for pos in [find_re(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCamelCase_ ) > 0: return completion[: min(UpperCamelCase_ )] else: return completion
309
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Optional[int] , A__ : Dict , A__ : Optional[int]=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: int ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) __lowerCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.movq.config.latent_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds, """hint""": hint} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
12
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __lowerCAmelCase : int = logging.get_logger(__name__) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __magic_name__ = question_encoder __magic_name__ = generator __magic_name__ = self.question_encoder def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __magic_name__ = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __magic_name__ = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def _lowercase ( cls : List[Any] , UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer __magic_name__ = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __magic_name__ = RagConfig.from_pretrained(UpperCamelCase_ ) __magic_name__ = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __magic_name__ = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self : Tuple , *UpperCamelCase__ : int , **UpperCamelCase__ : int ) -> str: """simple docstring""" return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self : Tuple , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self : Optional[Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.question_encoder def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.generator def _lowercase ( self : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "longest" , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = True , **UpperCamelCase__ : int , ) -> Union[str, Any]: """simple docstring""" warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __magic_name__ = self.current_tokenizer.model_max_length __magic_name__ = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __magic_name__ = self.current_tokenizer.model_max_length __magic_name__ = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = labels["""input_ids"""] return model_inputs
88
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
0
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''') if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''') return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
211
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' __lowerCamelCase = len(A__ ) for _ in range(A__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __lowerCamelCase, __lowerCamelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCAmelCase_ = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
12
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __A ='\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' __A ='\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' __A ='\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' __A ='\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' __A ='The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def snake_case__ ( self): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""")), """references""": datasets.Value("""string"""), }) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=[1, 10, 100] , _lowerCamelCase=4 , _lowerCamelCase=3.0): if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""") with ThreadPoolExecutor(max_workers=UpperCamelCase_) as executor: UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = Counter() UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : str = defaultdict(UpperCamelCase_) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase_ , UpperCamelCase_)): for candidate in candidates: UpperCAmelCase__ : Optional[int] = candidate + """\n""" + test_case UpperCAmelCase__ : List[str] = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase__ : Optional[int] = executor.submit(UpperCamelCase_ , *UpperCamelCase_) futures.append(UpperCamelCase_) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase_): UpperCAmelCase__ : Any = future.result() results[result["task_id"]].append((result["""completion_id"""], result)) UpperCAmelCase__ , UpperCAmelCase__ : int = [], [] for result in results.values(): result.sort() UpperCAmelCase__ : int = [r[1]["""passed"""] for r in result] total.append(len(UpperCamelCase_)) correct.append(sum(UpperCamelCase_)) UpperCAmelCase__ : str = np.array(UpperCamelCase_) UpperCAmelCase__ : str = np.array(UpperCamelCase_) UpperCAmelCase__ : Dict = k UpperCAmelCase__ : int = {f'''pass@{k}''': estimate_pass_at_k(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): def estimator(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A__ , A__ ): UpperCAmelCase__ : List[Any] = itertools.repeat(A__ , len(A__ ) ) else: assert len(A__ ) == len(A__ ) UpperCAmelCase__ : Optional[Any] = iter(A__ ) return np.array([estimator(int(A__ ) , int(A__ ) , A__ ) for n, c in zip(A__ , A__ )] )
163
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: str , UpperCamelCase_: Dict ): __lowerCamelCase = question_encoder __lowerCamelCase = generator __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] ): if os.path.isfile(UpperCamelCase_ ): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """question_encoder_tokenizer""" ) __lowerCamelCase = os.path.join(UpperCamelCase_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(UpperCamelCase_ ) self.generator.save_pretrained(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[Any] , UpperCamelCase_: Dict , **UpperCamelCase_: Union[str, Any] ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __lowerCamelCase = kwargs.pop("""config""" , UpperCamelCase_ ) if config is None: __lowerCamelCase = RagConfig.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) __lowerCamelCase = AutoTokenizer.from_pretrained( UpperCamelCase_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=UpperCamelCase_ , generator=UpperCamelCase_ ) def __call__( self: Tuple , *UpperCamelCase_: int , **UpperCamelCase_: int ): return self.current_tokenizer(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ): return self.generator.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , *UpperCamelCase_: str , **UpperCamelCase_: Union[str, Any] ): return self.generator.decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.question_encoder def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.generator def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: str = "longest" , UpperCamelCase_: str = None , UpperCamelCase_: bool = True , **UpperCamelCase_: int , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , UpperCamelCase_ , ) if max_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , max_length=UpperCamelCase_ , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __lowerCamelCase = self.current_tokenizer.model_max_length __lowerCamelCase = self( text_target=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding=UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = labels["""input_ids"""] return model_inputs
12
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ : Tuple = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ : int = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } lowerCAmelCase__ : Optional[int] = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class snake_case ( __lowerCamelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = RealmTokenizer def __init__( self : int ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : List[str]=None ,lowerCamelCase__ : List[str]=True ,lowerCamelCase__ : Any="[UNK]" ,lowerCamelCase__ : List[Any]="[SEP]" ,lowerCamelCase__ : Tuple="[PAD]" ,lowerCamelCase__ : Dict="[CLS]" ,lowerCamelCase__ : Optional[int]="[MASK]" ,lowerCamelCase__ : List[Any]=True ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Any ,): super().__init__( UpperCamelCase_ ,tokenizer_file=UpperCamelCase_ ,do_lower_case=UpperCamelCase_ ,unk_token=UpperCamelCase_ ,sep_token=UpperCamelCase_ ,pad_token=UpperCamelCase_ ,cls_token=UpperCamelCase_ ,mask_token=UpperCamelCase_ ,tokenize_chinese_chars=UpperCamelCase_ ,strip_accents=UpperCamelCase_ ,**UpperCamelCase_ ,) UpperCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,UpperCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' ,UpperCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,UpperCamelCase_ ) != tokenize_chinese_chars ): UpperCAmelCase__ = getattr(UpperCamelCase_ ,normalizer_state.pop('type' ) ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = strip_accents UpperCAmelCase__ = tokenize_chinese_chars UpperCAmelCase__ = normalizer_class(**UpperCamelCase_ ) UpperCAmelCase__ = do_lower_case def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : int ,**lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = PaddingStrategy.MAX_LENGTH UpperCAmelCase__ = text UpperCAmelCase__ = kwargs.pop('text_pair' ,UpperCamelCase_ ) UpperCAmelCase__ = kwargs.pop('return_tensors' ,UpperCamelCase_ ) UpperCAmelCase__ = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase_ ): if batch_text_pair is not None: UpperCAmelCase__ = batch_text_pair[idx] else: UpperCAmelCase__ = None UpperCAmelCase__ = super().__call__(UpperCamelCase_ ,UpperCamelCase_ ,return_tensors=UpperCamelCase_ ,**UpperCamelCase_ ) UpperCAmelCase__ = encoded_candidates.get('input_ids' ) UpperCAmelCase__ = encoded_candidates.get('attention_mask' ) UpperCAmelCase__ = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase_ ) UpperCAmelCase__ = {key: item for key, item in output_data.items() if len(UpperCamelCase_ ) != 0} return BatchEncoding(UpperCamelCase_ ,tensor_type=UpperCamelCase_ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[Any]=None ): UpperCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): UpperCAmelCase__ = self._tokenizer.model.save(UpperCamelCase_ ,name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
98
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} UpperCAmelCase_ = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] UpperCAmelCase_ = 0 for log in Path().glob('*.log'): UpperCAmelCase_ = 0 with open(log, 'r') as f: for line in f: UpperCAmelCase_ = json.loads(line) if line.get('nodeid', '') != "": UpperCAmelCase_ = line['nodeid'] if line.get('duration', None) is not None: UpperCAmelCase_ = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase_ = [] log.unlink() UpperCAmelCase_ = '' UpperCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase_ = [] UpperCAmelCase_ = {} for test in failed_tests: UpperCAmelCase_ = test[0].split('::') UpperCAmelCase_ = data[0].split('/')[-1] if data[0] not in filesafailed: UpperCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase_ = [test[0] for test in failed_table] UpperCAmelCase_ = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase_ = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_000: UpperCAmelCase_ = 'Too many failed tests, please see the full report in the Action results.' UpperCAmelCase_ = len(err) + 10 UpperCAmelCase_ = message[: 3_000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: UpperCAmelCase_ = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient UpperCAmelCase_ = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase_ = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase_ = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) UpperCAmelCase_ = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase_ = '' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase_ = row[0] else: UpperCAmelCase_ = '' UpperCAmelCase_ = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
12
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : str = logging.get_logger(__name__) lowerCAmelCase__ : str = '''https://openaipublic.azureedge.net/jukebox/models/''' lowerCAmelCase__ : int = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def UpperCamelCase__ ( A__ ) -> Any: if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: snake_case__ : str = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: snake_case__ : Optional[Any] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: snake_case__ : Dict = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: snake_case__ : Tuple = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: snake_case__ : Optional[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: snake_case__ : Dict = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: snake_case__ : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: snake_case__ : Optional[Any] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def UpperCamelCase__ ( A__ , A__ , A__ , A__ ) -> Tuple: snake_case__ : Optional[Any] = {} import re snake_case__ : Tuple = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) snake_case__ : Tuple = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) snake_case__ : int = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) snake_case__ : Optional[int] = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) snake_case__ : Optional[Any] = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) snake_case__ : Any = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) snake_case__ : str = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) snake_case__ : Optional[Any] = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) snake_case__ : str = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): snake_case__ : Dict = re_encoder_block_conv_in.match(A__ ) snake_case__ : int = regex_match.groups() snake_case__ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) snake_case__ : int = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" snake_case__ : List[str] = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): snake_case__ : List[Any] = re_encoder_block_resnet.match(A__ ) snake_case__ : Any = regex_match.groups() snake_case__ : int = int(groups[2] ) * 2 + int(groups[3] ) snake_case__ : Any = {'1': 1, '3': 2}[groups[-2]] snake_case__ : Optional[int] = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" snake_case__ : Dict = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case__ : str = prefix + resnet_block snake_case__ : str = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): snake_case__ : Union[str, Any] = re_encoder_block_proj_out.match(A__ ) snake_case__ : Any = regex_match.groups() snake_case__ : Dict = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" snake_case__ : Optional[int] = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): snake_case__ : str = re_decoder_block_conv_out.match(A__ ) snake_case__ : Union[str, Any] = regex_match.groups() snake_case__ : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case__ : Tuple = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" snake_case__ : int = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): snake_case__ : Dict = re_decoder_block_resnet.match(A__ ) snake_case__ : Optional[Any] = regex_match.groups() snake_case__ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 snake_case__ : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] snake_case__ : Dict = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" snake_case__ : Optional[int] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case__ : Tuple = prefix + resnet_block snake_case__ : List[str] = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): snake_case__ : List[str] = re_decoder_block_proj_in.match(A__ ) snake_case__ : str = regex_match.groups() snake_case__ : Tuple = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" snake_case__ : Optional[int] = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): snake_case__ : List[Any] = re_prior_cond_conv_out.match(A__ ) snake_case__ : Dict = regex_match.groups() snake_case__ : Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case__ : List[Any] = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" snake_case__ : int = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): snake_case__ : Optional[int] = re_prior_cond_resnet.match(A__ ) snake_case__ : Union[str, Any] = regex_match.groups() snake_case__ : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 snake_case__ : int = {'1': 1, '3': 2}[groups[-2]] snake_case__ : Optional[int] = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" snake_case__ : List[str] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" snake_case__ : int = prefix + resnet_block snake_case__ : List[Any] = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): snake_case__ : Optional[int] = re_prior_cond_proj_in.match(A__ ) snake_case__ : Optional[int] = regex_match.groups() snake_case__ : Any = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" snake_case__ : Optional[int] = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: snake_case__ : Any = original_key snake_case__ : int = replace_key(A__ ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: snake_case__ : List[str] = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) snake_case__ : Union[str, Any] = original_key snake_case__ : Tuple = original_key snake_case__ : Dict = value return new_dict @torch.no_grad() def UpperCamelCase__ ( A__=None , A__=None ) -> Any: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): snake_case__ : Optional[Any] = requests.get(F"""{PREFIX}{file}""" , allow_redirects=A__ ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=A__ ) open(F"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" , 'wb' ).write(r.content ) snake_case__ : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] snake_case__ : int = JukeboxConfig.from_pretrained(A__ ) snake_case__ : Optional[int] = JukeboxModel(A__ ) snake_case__ : Dict = [] snake_case__ : Dict = {} for i, dict_name in enumerate(A__ ): snake_case__ : Dict = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] snake_case__ : Optional[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): snake_case__ : Union[str, Any] = old_dic[k] elif k.endswith('.w' ): snake_case__ : Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: snake_case__ : Union[str, Any] = old_dic[k] else: snake_case__ : Union[str, Any] = old_dic[k] snake_case__ : str = 'vqvae' if i == 0 else F"""priors.{3 - i}""" snake_case__ : Optional[int] = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) snake_case__ : Optional[int] = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(A__ , A__ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": lowerCAmelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
143
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): @register_to_config def __init__( self: Optional[Any] , UpperCamelCase_: bool , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None ): super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : VQModel UpperCAmelCase__ : CLIPTextModel UpperCAmelCase__ : CLIPTokenizer UpperCAmelCase__ : TransformeraDModel UpperCAmelCase__ : LearnedClassifierFreeSamplingEmbeddings UpperCAmelCase__ : VQDiffusionScheduler def __init__( self: str , UpperCamelCase_: VQModel , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: TransformeraDModel , UpperCamelCase_: VQDiffusionScheduler , UpperCamelCase_: LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=UpperCamelCase_ , transformer=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , scheduler=UpperCamelCase_ , learned_classifier_free_sampling_embeddings=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = len(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(UpperCamelCase_ , 1 , 1 ) else: __lowerCamelCase = [""""""] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=UpperCamelCase_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , UpperCamelCase_ , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , UpperCamelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self: Tuple , UpperCamelCase_: Union[str, List[str]] , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 5.0 , UpperCamelCase_: float = 1.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(UpperCamelCase_ , UpperCamelCase_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" F' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase_ , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , timestep=UpperCamelCase_ ).sample if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(UpperCamelCase_ , dim=1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = self.truncate(UpperCamelCase_ , UpperCamelCase_ ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = self.vqvae.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: float ): __lowerCamelCase, __lowerCamelCase = torch.sort(UpperCamelCase_ , 1 , descending=UpperCamelCase_ ) __lowerCamelCase = torch.exp(UpperCamelCase_ ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , UpperCamelCase_ ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
12
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCamelCase__ ( unittest.TestCase): def __init__( self :Optional[int] , _A :Any , _A :int=2 , _A :Optional[Any]=56 , _A :Tuple=True , _A :Union[str, Any]=True , _A :Optional[Any]=True , _A :str=True , _A :str=99 , _A :Tuple=32 , _A :int=2 , _A :Optional[int]=2 , _A :Tuple=7 , _A :Optional[int]="gelu_new" , _A :Any=0.1 , _A :List[str]=0.1 , _A :List[Any]=512 , _A :Union[str, Any]=16 , _A :int=2 , _A :Dict=0.02 , _A :Tuple=4 , _A :Union[str, Any]="block_sparse" , _A :Optional[Any]=True , _A :Any=False , _A :Any=2 , _A :int=3 , ) -> Optional[int]: '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices __A = rescale_embeddings __A = attention_type __A = use_bias __A = block_size __A = num_random_blocks def lowercase_ ( self :int ) -> Dict: '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self :Dict ) -> Dict: '''simple docstring''' __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class UpperCamelCase__ ( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowercase_ ( self :List[str] ) -> Optional[Any]: '''simple docstring''' __A = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self :List[Any] ) -> List[str]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self :List[str] ) -> Optional[Any]: '''simple docstring''' super().test_hidden_states_output() @slow def lowercase_ ( self :Optional[Any] ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(UpperCamelCase_ ) def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase_ ( self :List[Any] ) -> List[Any]: '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __A = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(_A :Tuple , _A :List[Any]=None , **_A :Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest('JIT Enabled' ): __A = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __A = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self :List[Any] , _A :int , _A :List[str] , _A :Any , _A :Dict=1E-5 , _A :List[str]="outputs" , _A :List[str]=None ) -> str: '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
161
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = DistilBertTokenizer UpperCAmelCase__ : Dict = DistilBertTokenizerFast UpperCAmelCase__ : Tuple = True @slow def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
12
0
_snake_case : Dict = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def a_ ( ): __lowerCAmelCase = input('Enter message: ' ) __lowerCAmelCase = input('Enter key [alphanumeric]: ' ) __lowerCAmelCase = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): __lowerCAmelCase = 'encrypt' __lowerCAmelCase = encrypt_message(A__, A__ ) elif mode.lower().startswith('d' ): __lowerCAmelCase = 'decrypt' __lowerCAmelCase = decrypt_message(A__, A__ ) print(F"""\n{mode.title()}ed message:""" ) print(A__ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): return translate_message(A__, A__, 'encrypt' ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): return translate_message(A__, A__, 'decrypt' ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = key.upper() for symbol in message: __lowerCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): __lowerCAmelCase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
284
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 , A__ : str = "bert-base-cased" ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained(A__ ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=A__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(A__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' model.eval() __lowerCamelCase = 0 for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase, __lowerCamelCase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A__ ) - 1: __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = args.model_name_or_path set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=A__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(A__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , ) else: __lowerCamelCase = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase = int(A__ ) + 1 __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) accelerator.print("""resumed checkpoint performance:""" , A__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase = {} for epoch in range(A__ , A__ ): model.train() for step, batch in enumerate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase = f'epoch_{epoch}' __lowerCamelCase = os.path.join(args.output_dir , A__ ) accelerator.save_state(A__ ) __lowerCamelCase = evaluation_loop(A__ , A__ , A__ , A__ ) __lowerCamelCase = accuracy __lowerCamelCase = lr_scheduler.get_lr()[0] __lowerCamelCase = optimizer.param_groups[0]["""lr"""] __lowerCamelCase = epoch __lowerCamelCase = overall_step accelerator.print(f'epoch {epoch}:' , A__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'state_{epoch}.json' ) , """w""" ) as f: json.dump(A__ , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=A__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=A__ , ) parser.add_argument( """--output_dir""" , type=A__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=A__ , default=A__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=A__ , default=A__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=A__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
12
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : str = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowercase__, lowercase__: Optional[int] = len(A__ ), len(grid[0] ) if ( min(A__ , A__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase__: List[str] = 0 count += depth_first_search(A__ , row + 1 , A__ , A__ ) count += depth_first_search(A__ , row - 1 , A__ , A__ ) count += depth_first_search(A__ , A__ , col + 1 , A__ ) count += depth_first_search(A__ , A__ , col - 1 , A__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
177
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase_ = get_logger(__name__) class lowerCamelCase__: UpperCAmelCase__ : List[Any] = 'dummy_data' UpperCAmelCase__ : str = 'datasets' UpperCAmelCase__ : Tuple = False def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ): __lowerCamelCase = 0 __lowerCamelCase = dataset_name __lowerCamelCase = cache_dir __lowerCamelCase = use_local_dummy_data __lowerCamelCase = config # download_callbacks take a single url as input __lowerCamelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowerCamelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowerCamelCase = str(UpperCamelCase_ ) # to be downloaded __lowerCamelCase = None __lowerCamelCase = None @property def lowerCAmelCase__ ( self: List[Any] ): if self._dummy_file is None: __lowerCamelCase = self.download_dummy_data() return self._dummy_file @property def lowerCAmelCase__ ( self: str ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowerCamelCase = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCAmelCase__ ( self: Optional[Any] ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCAmelCase__ ( self: Tuple ): if self._bucket_url is None: __lowerCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowerCAmelCase__ ( self: str ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , *UpperCamelCase_: str ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowerCamelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowerCamelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str ): return self.download_and_extract(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , *UpperCamelCase_: List[str] , **UpperCamelCase_: str ): return path def lowerCAmelCase__ ( self: Dict ): return {} def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: __lowerCamelCase = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: __lowerCamelCase = single_urls __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) __lowerCamelCase = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowerCamelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowerCamelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , UpperCamelCase_ ) ) for url in data_url ) __lowerCamelCase = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowerCamelCase = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] ): for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowerCamelCase = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCAmelCase__ ( self: Optional[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict ): def _iter_archive_members(UpperCamelCase_: Any ): # this preserves the order of the members inside the ZIP archive __lowerCamelCase = Path(self.dummy_file ).parent __lowerCamelCase = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowerCamelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) __lowerCamelCase = Path(UpperCamelCase_ ) __lowerCamelCase = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open("""rb""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
12
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class A ( unittest.TestCase ): '''simple docstring''' A = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: __UpperCamelCase : Optional[Any] = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) __UpperCamelCase : int = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 ) __UpperCamelCase : int = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: for example in examples: __UpperCamelCase : Any = video_classifier(UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ {"score": ANY(UpperCamelCase_ ), "label": ANY(UpperCamelCase_ )}, {"score": ANY(UpperCamelCase_ ), "label": ANY(UpperCamelCase_ )}, ] , ) @require_torch def a_ (self ) -> Any: __UpperCamelCase : int = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" __UpperCamelCase : Union[str, Any] = VideoMAEFeatureExtractor( size={"shortest_edge": 1_0} , crop_size={"height": 1_0, "width": 1_0} ) __UpperCamelCase : Any = pipeline( "video-classification" , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 ) __UpperCamelCase : List[Any] = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) __UpperCamelCase : Optional[int] = video_classifier(UpperCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}] , ) __UpperCamelCase : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ] , ) @require_tf def a_ (self ) -> str: pass
298
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class a_ (__lowerCamelCase ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
309
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCamelCase__: UpperCAmelCase__ : int UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase__ : TreeNode | None = None UpperCAmelCase_ = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( A__ : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A__ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A__ ) != count_coins(A__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(A__ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.left ) __lowerCamelCase, __lowerCamelCase = get_distrib(node.right ) __lowerCamelCase = 1 - left_distrib_excess __lowerCamelCase = 1 - right_distrib_excess __lowerCamelCase = ( left_distrib_moves + right_distrib_moves + abs(A__ ) + abs(A__ ) ) __lowerCamelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A__ , A__ ) return get_distrib(A__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
12
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a__ = DebertaTokenizer a__ = True a__ = DebertaTokenizerFast def _lowercase ( self : str ) -> List[str]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __magic_name__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] __magic_name__ = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __magic_name__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __magic_name__ = {"""unk_token""": """[UNK]"""} __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def _lowercase ( self : List[Any] , **UpperCamelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def _lowercase ( self : Dict , UpperCamelCase__ : Dict ) -> Dict: """simple docstring""" __magic_name__ = """lower newer""" __magic_name__ = """lower newer""" return input_text, output_text def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = """lower newer""" __magic_name__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __magic_name__ = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = tokens + [tokenizer.unk_token] __magic_name__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = tokenizer("""Hello""" , """World""" ) __magic_name__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , UpperCamelCase_ ) @slow def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" __magic_name__ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __magic_name__ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __magic_name__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __magic_name__ = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __magic_name__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __magic_name__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __magic_name__ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self : str ) -> int: """simple docstring""" __magic_name__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __magic_name__ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __magic_name__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] __magic_name__ = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) __magic_name__ = [tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for seq in encoding["""input_ids"""]] # fmt: off __magic_name__ = { """input_ids""": [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __magic_name__ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , UpperCamelCase_ ) for expected, decoded in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
88
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __A ( __lowerCamelCase ): '''simple docstring''' __lowerCamelCase : List[str] = 'umt5' __lowerCamelCase : Optional[int] = ['past_key_values'] def __init__(self , A=250_112 , A=512 , A=64 , A=1_024 , A=8 , A=None , A=6 , A=32 , A=128 , A=0.1 , A=1E-6 , A=1.0 , A="gated-gelu" , A=True , A=True , A="T5Tokenizer" , A=True , A=0 , A=1 , A=0 , **A , ) -> int: """simple docstring""" super().__init__( is_encoder_decoder=UpperCamelCase_ , tokenizer_class=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _a = vocab_size _a = d_model _a = d_kv _a = d_ff _a = num_layers _a = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _a = num_heads _a = relative_attention_num_buckets _a = relative_attention_max_distance _a = dropout_rate _a = layer_norm_epsilon _a = initializer_factor _a = feed_forward_proj _a = use_cache _a = self.feed_forward_proj.split('''-''' ) _a = act_info[-1] _a = act_info[0] == '''gated''' if len(UpperCamelCase_ ) > 1 and act_info[0] != "gated" or len(UpperCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": _a = '''gelu_new''' @property def a__ (self ) -> str: """simple docstring""" return self.d_model @property def a__ (self ) -> Optional[int]: """simple docstring""" return self.num_heads @property def a__ (self ) -> Optional[int]: """simple docstring""" return self.num_layers class __A ( __lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ (self ) -> Tuple: """simple docstring""" _a = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _a = '''past_encoder_sequence + sequence''' _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ (self ) -> Any: """simple docstring""" return 13 @property def a__ (self ) -> str: """simple docstring""" return 5E-4
211
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
0
'''simple docstring''' import math import os import sys def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = """""" try: with open(A__ , """rb""" ) as binary_file: UpperCAmelCase__ : Optional[Any] = binary_file.read() for dat in data: UpperCAmelCase__ : List[str] = f'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): lexicon.pop(A__ ) UpperCAmelCase__ : int = last_match_id if math.loga(A__ ).is_integer(): for curr_key in lexicon: UpperCAmelCase__ : Optional[int] = """0""" + lexicon[curr_key] UpperCAmelCase__ : Union[str, Any] = bin(A__ )[2:] def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = {"""0""": """0""", """1""": """1"""} UpperCAmelCase__ , UpperCAmelCase__ : int = """""", """""" UpperCAmelCase__ : Union[str, Any] = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase__ : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(A__ , A__ , A__ , A__ ) index += 1 UpperCAmelCase__ : str = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCAmelCase__ : Optional[Any] = lexicon[curr_string] result += last_match_id return result def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Dict = os.path.getsize(A__ ) UpperCAmelCase__ : Union[str, Any] = bin(A__ )[2:] UpperCAmelCase__ : Tuple = len(A__ ) return "0" * (length_length - 1) + file_length_binary + compressed def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Optional[int] = 8 try: with open(A__ , """wb""" ) as opened_file: UpperCAmelCase__ : Tuple = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : Union[str, Any] = read_file_binary(A__ ) UpperCAmelCase__ : Union[str, Any] = compress_data(A__ ) UpperCAmelCase__ : Dict = add_file_length(A__ , A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
163
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = SMALL_MODEL_IDENTIFIER __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCamelCase_ ) model_tf.save_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """mock_framework""" # Framework provided - return whatever the user provides __lowerCamelCase = FeaturesManager.determine_framework(self.test_model , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCamelCase_ ) __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_tf ) # Both in environment -> use PyTorch __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(UpperCamelCase_ , self.framework_pt ) # Both not in environment -> raise error __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) __lowerCamelCase = MagicMock(return_value=UpperCamelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , UpperCamelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , UpperCamelCase_ ): with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
12
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a_ ( lowerCamelCase , lowerCamelCase=False ): UpperCAmelCase__ = OmegaConf.load(A__ ) if display: print(yaml.dump(OmegaConf.to_container(A__ ) ) ) return config def a_ ( lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): if conf_path is None: UpperCAmelCase__ = './model_checkpoints/vqgan_only.yaml' UpperCAmelCase__ = load_config(A__ , display=A__ ) UpperCAmelCase__ = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase__ = './model_checkpoints/vqgan_only.pt' UpperCAmelCase__ = torch.load(A__ , map_location=A__ ) if ".ckpt" in ckpt_path: UpperCAmelCase__ = sd['state_dict'] model.load_state_dict(A__ , strict=A__ ) model.to(A__ ) del sd return model def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model.encode(A__ ) print(f'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) UpperCAmelCase__ = model.decode(A__ ) return xrec def a_ ( lowerCamelCase , lowerCamelCase=False ): UpperCAmelCase__ , UpperCAmelCase__ = string.rsplit('.' , 1 ) if reload: UpperCAmelCase__ = importlib.import_module(A__ ) importlib.reload(A__ ) return getattr(importlib.import_module(A__ , package=A__ ) , cls ) def a_ ( lowerCamelCase ): if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True , lowerCamelCase=True ): UpperCAmelCase__ = instantiate_from_config(A__ ) if sd is not None: model.load_state_dict(A__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if ckpt: UpperCAmelCase__ = torch.load(A__ , map_location='cpu' ) UpperCAmelCase__ = pl_sd['global_step'] print(f'''loaded model from global step {global_step}.''' ) else: UpperCAmelCase__ = {'state_dict': None} UpperCAmelCase__ = None UpperCAmelCase__ = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=A__ , eval_mode=A__ )['model'] return model, global_step
98
from __future__ import annotations from PIL import Image # Define glider example UpperCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(A__ ) ): __lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(A__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A__ ) return next_generation def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int ): '''simple docstring''' __lowerCamelCase = [] for _ in range(A__ ): # Create output image __lowerCamelCase = Image.new("""RGB""" , (len(cells[0] ), len(A__ )) ) __lowerCamelCase = img.load() # Save cells to image for x in range(len(A__ ) ): for y in range(len(cells[0] ) ): __lowerCamelCase = 255 - cells[y][x] * 255 __lowerCamelCase = (colour, colour, colour) # Save image images.append(A__ ) __lowerCamelCase = new_generation(A__ ) return images if __name__ == "__main__": UpperCAmelCase_ = generate_images(GLIDER, 16) images[0].save('out.gif', save_all=True, append_images=images[1:])
12
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : str=[10, 20, 30, 40] , lowerCAmelCase__ : Tuple=[1, 1, 2, 1] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : int="relu" , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Dict=None , ): SCREAMING_SNAKE_CASE_: Any = parent SCREAMING_SNAKE_CASE_: Optional[int] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_: List[str] = embeddings_size SCREAMING_SNAKE_CASE_: str = hidden_sizes SCREAMING_SNAKE_CASE_: Optional[Any] = depths SCREAMING_SNAKE_CASE_: Tuple = is_training SCREAMING_SNAKE_CASE_: Dict = use_labels SCREAMING_SNAKE_CASE_: List[str] = hidden_act SCREAMING_SNAKE_CASE_: Dict = num_labels SCREAMING_SNAKE_CASE_: str = scope SCREAMING_SNAKE_CASE_: Optional[int] = len(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE_: Dict = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_: List[str] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : str): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = RegNetModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: Dict = self.num_labels SCREAMING_SNAKE_CASE_: List[str] = RegNetForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE_: Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : str = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _UpperCAmelCase : int = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : Dict = False _UpperCAmelCase : str = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = RegNetModelTester(self) SCREAMING_SNAKE_CASE_: Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Any): return @unittest.skip(reason="RegNet does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Tuple): pass @unittest.skip(reason="RegNet does not support input and output embeddings") def _SCREAMING_SNAKE_CASE ( self : Any): pass def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = model_class(config=lowerCAmelCase__) for name, module in model.named_modules(): if isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): def check_hidden_states_output(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE_: Any = layer_type SCREAMING_SNAKE_CASE_: List[str] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] = RegNetModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: Any = prepare_img() SCREAMING_SNAKE_CASE_: Any = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[Any] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([-0.4180, -1.5051, -3.4836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4))
13
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : """simple docstring""" @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : int): pass @is_pipeline_test @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE_: Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: List[str] = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCAmelCase__) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE_: Tuple = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf") SCREAMING_SNAKE_CASE_: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: Tuple = image_classifier(lowerCAmelCase__ , candidate_labels=["a", "b", "c"]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, {"score": 0.333, "label": ANY(lowerCAmelCase__)}, ], ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: str = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_: str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: int = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE_: Dict = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf") # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_: Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: str = image_classifier(lowerCAmelCase__ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE_: str = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , **lowerCAmelCase__ : Tuple): super().__init__(**lowerCAmelCase__) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch.") requires_backends(self , "vision") self.check_model_type(lowerCAmelCase__) def __call__( self : Union[str, Any] , lowerCAmelCase__ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowerCAmelCase__ : Union[str, List[str]] = None , **lowerCAmelCase__ : Optional[int] , ): if "text_queries" in kwargs: SCREAMING_SNAKE_CASE_: Tuple = kwargs.pop("text_queries") if isinstance(lowerCAmelCase__ , (str, Image.Image)): SCREAMING_SNAKE_CASE_: str = {"image": image, "candidate_labels": candidate_labels} else: SCREAMING_SNAKE_CASE_: Tuple = image SCREAMING_SNAKE_CASE_: List[Any] = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) return results def _SCREAMING_SNAKE_CASE ( self : Dict , **lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE_: str = kwargs["threshold"] if "top_k" in kwargs: SCREAMING_SNAKE_CASE_: Optional[Any] = kwargs["top_k"] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Union[str, Any] = load_image(inputs["image"]) SCREAMING_SNAKE_CASE_: Tuple = inputs["candidate_labels"] if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: int = candidate_labels.split(",") SCREAMING_SNAKE_CASE_: str = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_: Union[str, Any] = self.image_processor(lowerCAmelCase__ , return_tensors=self.framework) yield { "is_last": i == len(lowerCAmelCase__) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: int = model_inputs.pop("target_size") SCREAMING_SNAKE_CASE_: List[str] = model_inputs.pop("candidate_label") SCREAMING_SNAKE_CASE_: Optional[int] = model_inputs.pop("is_last") SCREAMING_SNAKE_CASE_: List[str] = self.model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=None): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE_: Optional[int] = model_output["candidate_label"] SCREAMING_SNAKE_CASE_: Any = BaseModelOutput(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.image_processor.post_process_object_detection( outputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ , target_sizes=model_output["target_size"])[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE_: int = outputs["scores"][index].item() SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_bounding_box(outputs["boxes"][index][0]) SCREAMING_SNAKE_CASE_: Tuple = {"score": score, "label": label, "box": box} results.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__: x["score"] , reverse=lowerCAmelCase__) if top_k: SCREAMING_SNAKE_CASE_: int = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : "torch.Tensor"): if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.") SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = box.int().tolist() SCREAMING_SNAKE_CASE_: Dict = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
13
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = '''gpt_neo''' _UpperCAmelCase : Dict = ['''past_key_values'''] _UpperCAmelCase : List[Any] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Tuple , lowerCAmelCase__ : List[Any]=5_0257 , lowerCAmelCase__ : Dict=2048 , lowerCAmelCase__ : List[Any]=2048 , lowerCAmelCase__ : int=24 , lowerCAmelCase__ : List[Any]=[[["global", "local"], 12]] , lowerCAmelCase__ : Optional[Any]=16 , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : List[Any]="gelu_new" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=1E-5 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : int=5_0256 , lowerCAmelCase__ : Tuple=5_0256 , **lowerCAmelCase__ : List[str] , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_: Dict = max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_: Any = num_layers SCREAMING_SNAKE_CASE_: Any = num_heads SCREAMING_SNAKE_CASE_: Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_: int = window_size SCREAMING_SNAKE_CASE_: Tuple = activation_function SCREAMING_SNAKE_CASE_: Union[str, Any] = resid_dropout SCREAMING_SNAKE_CASE_: Optional[int] = embed_dropout SCREAMING_SNAKE_CASE_: Any = attention_dropout SCREAMING_SNAKE_CASE_: Tuple = classifier_dropout SCREAMING_SNAKE_CASE_: int = layer_norm_epsilon SCREAMING_SNAKE_CASE_: Tuple = initializer_range SCREAMING_SNAKE_CASE_: Tuple = use_cache SCREAMING_SNAKE_CASE_: Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE_: Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_: List[Any] = attention_types SCREAMING_SNAKE_CASE_: int = self.expand_attention_types_params(lowerCAmelCase__) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " F"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument.") super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__) @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): import torch SCREAMING_SNAKE_CASE_: str = input.size() SCREAMING_SNAKE_CASE_: Union[str, Any] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = shape[dimension] SCREAMING_SNAKE_CASE_: List[str] = torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = torch.div(sizedim - size , _UpperCAmelCase , rounding_mode="floor" ) + 1 SCREAMING_SNAKE_CASE_: Optional[int] = torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] SCREAMING_SNAKE_CASE_: List[str] = [slice(_UpperCAmelCase )] * rank SCREAMING_SNAKE_CASE_: List[str] = indices SCREAMING_SNAKE_CASE_: List[Any] = input[s] SCREAMING_SNAKE_CASE_: List[Any] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): import torch SCREAMING_SNAKE_CASE_: Dict = torch.arange(1 , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = remainders == 0 SCREAMING_SNAKE_CASE_: List[Any] = candidates[divisor_indices] SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode="floor" ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs") SCREAMING_SNAKE_CASE_: Dict = {0: "batch", 1: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_: Tuple = {0: "batch", 1: "sequence"} return common_inputs @property def _SCREAMING_SNAKE_CASE ( self : str): return self._config.num_heads def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE_: str = super(lowerCAmelCase__ , self).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_: Tuple = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_: int = seqlen + 2 SCREAMING_SNAKE_CASE_: List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_: Optional[int] = [ (torch.zeros(lowerCAmelCase__), torch.zeros(lowerCAmelCase__)) for _ in range(self.num_layers) ] SCREAMING_SNAKE_CASE_: Optional[Any] = common_inputs["attention_mask"] if self.use_past: SCREAMING_SNAKE_CASE_: Optional[Any] = ordered_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_: Tuple = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__)] , dim=1) return ordered_inputs @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return 13
13
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Union[str, Any] = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""ViTFeatureExtractor"""] lowerCAmelCase : Any = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
1
from __future__ import annotations lowerCAmelCase : List[Any] = """Muhammad Umer Farooq""" lowerCAmelCase : Tuple = """MIT""" lowerCAmelCase : List[str] = """1.0.0""" lowerCAmelCase : Any = """Muhammad Umer Farooq""" lowerCAmelCase : Optional[Any] = """[email protected]""" lowerCAmelCase : Optional[Any] = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : str): super().__init__() SCREAMING_SNAKE_CASE_: list[str] = [] SCREAMING_SNAKE_CASE_: List[Any] = domain def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : list[tuple[str, str | None]]): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: SCREAMING_SNAKE_CASE_: str = parse.urljoin(self.domain , lowerCAmelCase__) self.urls.append(lowerCAmelCase__) def A_ ( _UpperCAmelCase ): return ".".join(get_sub_domain_name(_UpperCAmelCase ).split("." )[-2:] ) def A_ ( _UpperCAmelCase ): return parse.urlparse(_UpperCAmelCase ).netloc def A_ ( _UpperCAmelCase = "https://github.com" ): SCREAMING_SNAKE_CASE_: Optional[int] = get_domain_name(_UpperCAmelCase ) # Initialize the parser SCREAMING_SNAKE_CASE_: Any = Parser(_UpperCAmelCase ) try: # Open URL SCREAMING_SNAKE_CASE_: Any = requests.get(_UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through SCREAMING_SNAKE_CASE_: Dict = set() for link in parser.urls: # open URL. # read = requests.get(link) try: SCREAMING_SNAKE_CASE_: Optional[Any] = requests.get(_UpperCAmelCase ) # Get the valid email. SCREAMING_SNAKE_CASE_: Dict = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : List[Any] = emails_from_url("""https://github.com""") print(f'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = image.size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE_: Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) SCREAMING_SNAKE_CASE_: str = np.array(_UpperCAmelCase ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE_: Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_: str = torch.from_numpy(_UpperCAmelCase ) return 2.0 * image - 1.0 class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : VQModel , lowerCAmelCase__ : UNetaDModel , lowerCAmelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__) @torch.no_grad() def __call__( self : str , lowerCAmelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 100 , lowerCAmelCase__ : Optional[float] = 0.0 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , ): if isinstance(lowerCAmelCase__ , PIL.Image.Image): SCREAMING_SNAKE_CASE_: List[str] = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor): SCREAMING_SNAKE_CASE_: str = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__)}") if isinstance(lowerCAmelCase__ , PIL.Image.Image): SCREAMING_SNAKE_CASE_: Dict = preprocess(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE_: List[str] = (batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE_: List[str] = next(self.unet.parameters()).dtype SCREAMING_SNAKE_CASE_: Dict = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = image.to(device=self.device , dtype=lowerCAmelCase__) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device) SCREAMING_SNAKE_CASE_: List[str] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE_: List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE_: List[str] = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) SCREAMING_SNAKE_CASE_: Optional[Any] = {} if accepts_eta: SCREAMING_SNAKE_CASE_: int = eta for t in self.progress_bar(lowerCAmelCase__): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE_: Optional[Any] = torch.cat([latents, image] , dim=1) SCREAMING_SNAKE_CASE_: List[Any] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__) # predict the noise residual SCREAMING_SNAKE_CASE_: Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_: int = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE_: int = self.vqvae.decode(lowerCAmelCase__).sample SCREAMING_SNAKE_CASE_: Optional[Any] = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0) SCREAMING_SNAKE_CASE_: Optional[int] = image / 2 + 0.5 SCREAMING_SNAKE_CASE_: Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_: Dict = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__)
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase : Optional[Any] = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE_: Dict = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_: int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_: str = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_: Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_: Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowercase : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=13 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : List[str]=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Optional[int]=0.02 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: List[str] = batch_size SCREAMING_SNAKE_CASE_: str = seq_length SCREAMING_SNAKE_CASE_: int = is_training SCREAMING_SNAKE_CASE_: List[str] = use_labels SCREAMING_SNAKE_CASE_: List[Any] = vocab_size SCREAMING_SNAKE_CASE_: Any = hidden_size SCREAMING_SNAKE_CASE_: str = num_hidden_layers SCREAMING_SNAKE_CASE_: Tuple = num_attention_heads SCREAMING_SNAKE_CASE_: List[str] = intermediate_size SCREAMING_SNAKE_CASE_: int = hidden_act SCREAMING_SNAKE_CASE_: Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_: str = eos_token_id SCREAMING_SNAKE_CASE_: List[str] = pad_token_id SCREAMING_SNAKE_CASE_: List[str] = bos_token_id SCREAMING_SNAKE_CASE_: Optional[Any] = initializer_range def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) SCREAMING_SNAKE_CASE_: Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) SCREAMING_SNAKE_CASE_: str = shift_tokens_right(lowerCAmelCase__ , 1 , 2) SCREAMING_SNAKE_CASE_: int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = model_class_name(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.encode(inputs_dict["input_ids"]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE_: Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") SCREAMING_SNAKE_CASE_: Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE_: List[str] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Tuple = model.decode(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}") def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[str] = 20 SCREAMING_SNAKE_CASE_: int = model_class_name(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.encode(inputs_dict["input_ids"]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) SCREAMING_SNAKE_CASE_: List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_: Dict = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_: List[Any] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE_: str = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[str] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}") @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = 99 def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_: Tuple = input_ids.shape[0] SCREAMING_SNAKE_CASE_: List[str] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_config_and_data() SCREAMING_SNAKE_CASE_: Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = lm_model(input_ids=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_: Any = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_: int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_: str = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) SCREAMING_SNAKE_CASE_: Union[str, Any] = shift_tokens_right(lowerCAmelCase__ , 1 , 2) SCREAMING_SNAKE_CASE_: int = np.equal(lowerCAmelCase__ , 1).astype(np.floataa).sum() SCREAMING_SNAKE_CASE_: Dict = np.equal(lowerCAmelCase__ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase__ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class __lowercase ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : str = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCAmelCase : Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = FlaxBlenderbotSmallModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_: Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) @jax.jit def encode_jitted(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : List[str]): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__) with self.subTest("JIT Enabled"): SCREAMING_SNAKE_CASE_: Union[str, Any] = encode_jitted(**lowerCAmelCase__).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): SCREAMING_SNAKE_CASE_: str = encode_jitted(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertEqual(jitted_output.shape , output.shape) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest("JIT Enabled"): SCREAMING_SNAKE_CASE_: Optional[Any] = decode_jitted(**lowerCAmelCase__).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): SCREAMING_SNAKE_CASE_: List[Any] = decode_jitted(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertEqual(jitted_output.shape , output.shape) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = model_class_name.from_pretrained("facebook/blenderbot_small-90M") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_: Optional[Any] = np.ones((1, 1)) * model.config.eos_token_id SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__)
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=13 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : List[Any]=32 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : List[str]=37 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Tuple=512 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : List[str]=4 , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_: Tuple = seq_length SCREAMING_SNAKE_CASE_: Optional[Any] = is_training SCREAMING_SNAKE_CASE_: int = use_attention_mask SCREAMING_SNAKE_CASE_: Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE_: Tuple = use_labels SCREAMING_SNAKE_CASE_: List[Any] = vocab_size SCREAMING_SNAKE_CASE_: Any = hidden_size SCREAMING_SNAKE_CASE_: str = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: List[str] = intermediate_size SCREAMING_SNAKE_CASE_: Dict = hidden_act SCREAMING_SNAKE_CASE_: Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Any = max_position_embeddings SCREAMING_SNAKE_CASE_: str = type_vocab_size SCREAMING_SNAKE_CASE_: Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = initializer_range SCREAMING_SNAKE_CASE_: Dict = num_choices def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_: Dict = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_: str = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_: Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_: int = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_: Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = True _UpperCAmelCase : str = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Tuple = FlaxRoFormerModelTester(self) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model(np.ones((1, 1))) self.assertIsNotNone(lowerCAmelCase__) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") SCREAMING_SNAKE_CASE_: Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]]) SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__)[0] SCREAMING_SNAKE_CASE_: str = 5_0000 SCREAMING_SNAKE_CASE_: Optional[int] = (1, 6, vocab_size) self.assertEqual(output.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4))
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) _UpperCAmelCase : Dict = '''CIDAS/clipseg-rd64-refined''' _UpperCAmelCase : List[str] = '''image_segmenter''' _UpperCAmelCase : Dict = CLIPSegForImageSegmentation _UpperCAmelCase : Optional[int] = ['''image''', '''text'''] _UpperCAmelCase : List[str] = ['''image'''] def __init__( self : List[str] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Dict): requires_backends(self , ["vision"]) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : "Image" , lowerCAmelCase__ : str): return self.pre_processor(text=[label] , images=[image] , padding=lowerCAmelCase__ , return_tensors="pt") def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any): with torch.no_grad(): SCREAMING_SNAKE_CASE_: int = self.model(**lowerCAmelCase__).logits return logits def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = outputs.cpu().detach().numpy() SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: int = 1 return Image.fromarray((array * 255).astype(np.uinta))
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_: Optional[Any] = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_: Tuple = False SCREAMING_SNAKE_CASE_: str = is_small_dataset(_UpperCAmelCase ) assert result == expected
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=13 , lowerCAmelCase__ : Optional[int]=10 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Optional[Any]=37 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Optional[Any]=10 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : str=0.9 , lowerCAmelCase__ : int=None , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: int = batch_size SCREAMING_SNAKE_CASE_: Dict = image_size SCREAMING_SNAKE_CASE_: Any = num_channels SCREAMING_SNAKE_CASE_: int = patch_size SCREAMING_SNAKE_CASE_: int = tubelet_size SCREAMING_SNAKE_CASE_: Optional[int] = num_frames SCREAMING_SNAKE_CASE_: int = is_training SCREAMING_SNAKE_CASE_: Dict = use_labels SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: str = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Any = mask_ratio SCREAMING_SNAKE_CASE_: Dict = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE_: Any = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE_: Dict = int(mask_ratio * self.seq_length) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : int): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = VideoMAEModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[Any] = VideoMAEForPreTraining(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE_: Dict = torch.ones((self.num_masks,)) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) SCREAMING_SNAKE_CASE_: List[str] = mask.expand(self.batch_size , -1).bool() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE_: Optional[int] = mask.sum().item() SCREAMING_SNAKE_CASE_: str = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _UpperCAmelCase : Dict = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : List[str] = False def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[Any] = VideoMAEModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=False): SCREAMING_SNAKE_CASE_: Any = copy.deepcopy(lowerCAmelCase__) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE_: List[str] = torch.ones((self.model_tester.num_masks,)) SCREAMING_SNAKE_CASE_: List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) SCREAMING_SNAKE_CASE_: Dict = mask.expand(self.model_tester.batch_size , -1).bool() SCREAMING_SNAKE_CASE_: Union[str, Any] = bool_masked_pos.to(lowerCAmelCase__) if return_labels: if model_class in [ *get_values(lowerCAmelCase__), ]: SCREAMING_SNAKE_CASE_: Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : int): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Dict = VideoMAEModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple): if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Union[str, Any] = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE_: Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE_: Union[str, Any] = True SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE_: Dict = True SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = len(lowerCAmelCase__) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE_: Any = True SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) self.assertEqual(out_len + 1 , len(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: str = outputs.attentions self.assertEqual(len(lowerCAmelCase__) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _SCREAMING_SNAKE_CASE ( self : Any): def check_hidden_states_output(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Dict = outputs.hidden_states SCREAMING_SNAKE_CASE_: Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE_: Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) SCREAMING_SNAKE_CASE_: Optional[Any] = np.load(_UpperCAmelCase ) return list(_UpperCAmelCase ) @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to( lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_: int = prepare_video() SCREAMING_SNAKE_CASE_: Tuple = image_processor(lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: str = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([0.3669, -0.0688, -0.2421]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[int] = prepare_video() SCREAMING_SNAKE_CASE_: Optional[int] = image_processor(lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE_: List[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt") SCREAMING_SNAKE_CASE_: str = torch.load(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Optional[int] = torch.Size([1, 1408, 1536]) SCREAMING_SNAKE_CASE_: Optional[int] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowerCAmelCase__) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.5142] , device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase__ , atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE_: int = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowerCAmelCase__).to( lowerCAmelCase__) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor(torch.tensor([0.6469]) , device=lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase__ , atol=1E-4))
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : int=1024 , lowerCAmelCase__ : Optional[Any]=3.6): SCREAMING_SNAKE_CASE_: List[Any] = tokenizer SCREAMING_SNAKE_CASE_: str = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_: Optional[Any] = dataset SCREAMING_SNAKE_CASE_: Tuple = seq_length SCREAMING_SNAKE_CASE_: str = seq_length * chars_per_token * num_of_sequences def __iter__( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = iter(self.dataset) SCREAMING_SNAKE_CASE_: Union[str, Any] = True while more_examples: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCAmelCase__)["content"]) buffer_len += len(buffer[-1]) except StopIteration: SCREAMING_SNAKE_CASE_: str = False break SCREAMING_SNAKE_CASE_: str = tokenizer(lowerCAmelCase__ , truncation=lowerCAmelCase__)["input_ids"] SCREAMING_SNAKE_CASE_: Optional[Any] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id]) for i in range(0 , len(lowerCAmelCase__) , self.seq_length): SCREAMING_SNAKE_CASE_: Tuple = all_token_ids[i : i + self.seq_length] if len(lowerCAmelCase__) == self.seq_length: yield torch.tensor(lowerCAmelCase__) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {"streaming": True} SCREAMING_SNAKE_CASE_: Any = load_dataset(args.dataset_name , split="train" , **_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = ConstantLengthDataset(_UpperCAmelCase , _UpperCAmelCase , seq_length=args.seq_length ) SCREAMING_SNAKE_CASE_: Tuple = DataLoader(_UpperCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _UpperCAmelCase ): model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = [] for step, batch in enumerate(_UpperCAmelCase ): with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_UpperCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break SCREAMING_SNAKE_CASE_: Optional[int] = torch.mean(torch.cat(_UpperCAmelCase ) ) try: SCREAMING_SNAKE_CASE_: Dict = torch.exp(_UpperCAmelCase ) except OverflowError: SCREAMING_SNAKE_CASE_: Any = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase : Optional[Any] = Accelerator() # Parse configuration lowerCAmelCase : List[str] = HfArgumentParser(EvaluationArguments) lowerCAmelCase : List[str] = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase : List[str] = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase , lowerCAmelCase : List[str] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") lowerCAmelCase , lowerCAmelCase : List[str] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """sentencepiece.model"""} lowerCAmelCase : int = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } lowerCAmelCase : Any = { """google/rembert""": 256, } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]="[CLS]" , lowerCAmelCase__ : Tuple="[SEP]" , lowerCAmelCase__ : List[str]="[UNK]" , lowerCAmelCase__ : Union[str, Any]="[SEP]" , lowerCAmelCase__ : List[Any]="[PAD]" , lowerCAmelCase__ : int="[CLS]" , lowerCAmelCase__ : Optional[Any]="[MASK]" , **lowerCAmelCase__ : Tuple , ): super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[int] = do_lower_case SCREAMING_SNAKE_CASE_: Any = remove_space SCREAMING_SNAKE_CASE_: Tuple = keep_accents SCREAMING_SNAKE_CASE_: int = vocab_file SCREAMING_SNAKE_CASE_: List[Any] = spm.SentencePieceProcessor() self.sp_model.Load(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return len(self.sp_model) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int): SCREAMING_SNAKE_CASE_: int = self.__dict__.copy() SCREAMING_SNAKE_CASE_: Any = None return state def __setstate__( self : str , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = d SCREAMING_SNAKE_CASE_: Dict = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=False): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.sp_model.EncodeAsPieces(lowerCAmelCase__) return pieces def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any): return self.sp_model.PieceToId(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.sp_model.IdToPiece(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = self.sp_model.decode_pieces(lowerCAmelCase__) return out_string def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_: str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model.") return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Any = [self.sep_token_id] SCREAMING_SNAKE_CASE_: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__)) return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file , lowerCAmelCase__) return (out_vocab_file,)
13
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
1
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
13
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase : Union[str, Any] = """true""" def A_ ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16 ): set_seed(42 ) SCREAMING_SNAKE_CASE_: Optional[int] = RegressionModel() SCREAMING_SNAKE_CASE_: List[str] = deepcopy(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = RegressionDataset(length=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Dict = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) SCREAMING_SNAKE_CASE_: int = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: int = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) SCREAMING_SNAKE_CASE_: Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = get_dataloader(_UpperCAmelCase , not dispatch_batches ) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = [] for batch in dataloader: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def A_ ( _UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}" def A_ ( _UpperCAmelCase = False , _UpperCAmelCase = False ): SCREAMING_SNAKE_CASE_: int = evaluate.load("glue" , "mrpc" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = setup["no"] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch["labels"] ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_: Any = batch["labels"] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE_: int = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) SCREAMING_SNAKE_CASE_: Optional[int] = Accelerator() test_torch_metrics(_UpperCAmelCase , 5_12 ) accelerator.state._reset_state() def A_ ( _UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=13 , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=99 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Dict=512 , lowerCAmelCase__ : List[str]=12 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : str="last" , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: str = batch_size SCREAMING_SNAKE_CASE_: Optional[int] = seq_length SCREAMING_SNAKE_CASE_: List[Any] = is_training SCREAMING_SNAKE_CASE_: int = use_input_lengths SCREAMING_SNAKE_CASE_: Any = use_token_type_ids SCREAMING_SNAKE_CASE_: List[Any] = use_labels SCREAMING_SNAKE_CASE_: Optional[int] = gelu_activation SCREAMING_SNAKE_CASE_: Tuple = sinusoidal_embeddings SCREAMING_SNAKE_CASE_: List[str] = causal SCREAMING_SNAKE_CASE_: int = asm SCREAMING_SNAKE_CASE_: Optional[int] = n_langs SCREAMING_SNAKE_CASE_: str = vocab_size SCREAMING_SNAKE_CASE_: List[Any] = n_special SCREAMING_SNAKE_CASE_: str = hidden_size SCREAMING_SNAKE_CASE_: Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_: Tuple = initializer_range SCREAMING_SNAKE_CASE_: Optional[int] = num_labels SCREAMING_SNAKE_CASE_: Tuple = num_choices SCREAMING_SNAKE_CASE_: Any = summary_type SCREAMING_SNAKE_CASE_: Any = use_proj SCREAMING_SNAKE_CASE_: List[str] = scope def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_: List[str] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_: Tuple = None if self.use_input_lengths: SCREAMING_SNAKE_CASE_: Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE_: Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: Optional[int] = None SCREAMING_SNAKE_CASE_: Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: int = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size] , 2).float() SCREAMING_SNAKE_CASE_: Dict = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_: str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : int): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , ): SCREAMING_SNAKE_CASE_: Optional[Any] = FlaubertModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__ , lengths=lowerCAmelCase__ , langs=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__ , langs=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , ): SCREAMING_SNAKE_CASE_: str = FlaubertWithLMHeadModel(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , ): SCREAMING_SNAKE_CASE_: List[str] = FlaubertForQuestionAnsweringSimple(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , ): SCREAMING_SNAKE_CASE_: str = FlaubertForQuestionAnswering(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model( lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , p_mask=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[Any] = model( lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , ) ((SCREAMING_SNAKE_CASE_) , ): Union[str, Any] = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__) ((SCREAMING_SNAKE_CASE_) , ): Optional[int] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , ): SCREAMING_SNAKE_CASE_: Any = FlaubertForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: List[str] = self.num_labels SCREAMING_SNAKE_CASE_: Dict = FlaubertForTokenClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE_: List[str] = FlaubertForMultipleChoice(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_: List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_: List[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_: Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE_: Any = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase : List[str] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : str): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=False): SCREAMING_SNAKE_CASE_: str = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE_: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = FlaubertModelTester(self) SCREAMING_SNAKE_CASE_: List[str] = ConfigTester(self , config_class=lowerCAmelCase__ , emb_dim=37) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Any = FlaubertModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @slow @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE_: int = True SCREAMING_SNAKE_CASE_: Optional[int] = model_class(config=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.jit.trace( lowerCAmelCase__ , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "traced_model.pt")) SCREAMING_SNAKE_CASE_: List[str] = torch.jit.load(os.path.join(lowerCAmelCase__ , "traced_model.pt") , map_location=lowerCAmelCase__) loaded(inputs_dict["input_ids"].to(lowerCAmelCase__) , inputs_dict["attention_mask"].to(lowerCAmelCase__)) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) with torch.no_grad(): SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__)[0] SCREAMING_SNAKE_CASE_: List[Any] = torch.Size((1, 11, 768)) self.assertEqual(output.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4))
13
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
1
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase : int = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowerCAmelCase : List[Any] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_UpperCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = ['''pixel_values'''] def __init__( self : Union[str, Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE_: Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size") SCREAMING_SNAKE_CASE_: Any = do_resize SCREAMING_SNAKE_CASE_: str = size SCREAMING_SNAKE_CASE_: Tuple = do_center_crop SCREAMING_SNAKE_CASE_: Optional[int] = crop_size SCREAMING_SNAKE_CASE_: Any = resample SCREAMING_SNAKE_CASE_: Union[str, Any] = do_rescale SCREAMING_SNAKE_CASE_: str = rescale_factor SCREAMING_SNAKE_CASE_: Dict = offset SCREAMING_SNAKE_CASE_: Any = do_normalize SCREAMING_SNAKE_CASE_: List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_: List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : List[str] , ): SCREAMING_SNAKE_CASE_: Optional[int] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "shortest_edge" in size: SCREAMING_SNAKE_CASE_: Optional[Any] = get_resize_output_image_size(lowerCAmelCase__ , size["shortest_edge"] , default_to_square=lowerCAmelCase__) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE_: Optional[Any] = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : int , ): SCREAMING_SNAKE_CASE_: Optional[Any] = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}") return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: List[str] = image.astype(np.floataa) if offset: SCREAMING_SNAKE_CASE_: str = image - (scale / 2) return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : int , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True.") # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Optional[int] = to_numpy_array(lowerCAmelCase__) if do_resize: SCREAMING_SNAKE_CASE_: List[Any] = self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) if do_center_crop: SCREAMING_SNAKE_CASE_: Any = self.center_crop(lowerCAmelCase__ , size=lowerCAmelCase__) if do_rescale: SCREAMING_SNAKE_CASE_: List[Any] = self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ , offset=lowerCAmelCase__) if do_normalize: SCREAMING_SNAKE_CASE_: Tuple = self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) return image def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: Any = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_: str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: int = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Dict = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE_: str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Optional[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: Union[str, Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: Tuple = size if size is not None else self.size SCREAMING_SNAKE_CASE_: str = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size") if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") SCREAMING_SNAKE_CASE_: List[Any] = make_batched(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = [ [ self._preprocess_image( image=lowerCAmelCase__ , do_resize=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , do_center_crop=lowerCAmelCase__ , crop_size=lowerCAmelCase__ , do_rescale=lowerCAmelCase__ , rescale_factor=lowerCAmelCase__ , offset=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ , image_mean=lowerCAmelCase__ , image_std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE_: Any = {"pixel_values": videos} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
13
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : List[Any]=32 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Optional[Any]=10 , lowerCAmelCase__ : Any=[8, 16, 32, 64] , lowerCAmelCase__ : Tuple=[1, 1, 2, 1] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]="relu" , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[Any]=["stage2", "stage3", "stage4"] , lowerCAmelCase__ : List[str]=[2, 3, 4] , lowerCAmelCase__ : int=1 , ): SCREAMING_SNAKE_CASE_: Tuple = parent SCREAMING_SNAKE_CASE_: str = batch_size SCREAMING_SNAKE_CASE_: List[Any] = image_size SCREAMING_SNAKE_CASE_: Optional[int] = num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = embeddings_size SCREAMING_SNAKE_CASE_: Tuple = hidden_sizes SCREAMING_SNAKE_CASE_: str = depths SCREAMING_SNAKE_CASE_: Dict = is_training SCREAMING_SNAKE_CASE_: Tuple = use_labels SCREAMING_SNAKE_CASE_: List[str] = hidden_act SCREAMING_SNAKE_CASE_: Optional[int] = num_labels SCREAMING_SNAKE_CASE_: Optional[int] = scope SCREAMING_SNAKE_CASE_: Union[str, Any] = len(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = out_features SCREAMING_SNAKE_CASE_: Any = out_indices SCREAMING_SNAKE_CASE_: str = num_groups def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: int = None if self.use_labels: SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_: str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = BitModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = model(lowerCAmelCase__) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_: Tuple = BitForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = BitBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE_: Optional[Any] = None SCREAMING_SNAKE_CASE_: Optional[int] = BitBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_: str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _UpperCAmelCase : Optional[Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[Any] = False _UpperCAmelCase : List[str] = False _UpperCAmelCase : int = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : str = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = BitModelTester(self) SCREAMING_SNAKE_CASE_: Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Dict): return @unittest.skip(reason="Bit does not output attentions") def _SCREAMING_SNAKE_CASE ( self : Dict): pass @unittest.skip(reason="Bit does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Any): pass @unittest.skip(reason="Bit does not support input and output embeddings") def _SCREAMING_SNAKE_CASE ( self : Tuple): pass def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(config=lowerCAmelCase__) for name, module in model.named_modules(): if isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def _SCREAMING_SNAKE_CASE ( self : List[str]): def check_hidden_states_output(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Union[str, Any] = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE_: Optional[Any] = layer_type SCREAMING_SNAKE_CASE_: Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) @unittest.skip(reason="Bit does not use feedforward chunking") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Any): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: List[Any] = BitModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[str] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: int = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: int = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @require_torch class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = (BitBackbone,) if is_torch_available() else () _UpperCAmelCase : List[str] = BitConfig _UpperCAmelCase : str = False def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Union[str, Any] = BitModelTester(self)
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : str): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : int , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Dict): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : List[str]): requires_backends(cls , ["torch", "transformers", "onnx"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : List[Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : List[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Optional[Any]): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Optional[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any): requires_backends(cls , ["torch", "transformers", "onnx"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Union[str, Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[int] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Tuple): requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : List[Any]): requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Union[str, Any]): requires_backends(cls , ["torch", "transformers", "onnx"])
13
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCAmelCase : Union[str, Any] = HUGGINGFACE_HUB_CACHE lowerCAmelCase : int = """config.json""" lowerCAmelCase : str = """diffusion_pytorch_model.bin""" lowerCAmelCase : Dict = """diffusion_flax_model.msgpack""" lowerCAmelCase : Optional[int] = """model.onnx""" lowerCAmelCase : List[str] = """diffusion_pytorch_model.safetensors""" lowerCAmelCase : List[Any] = """weights.pb""" lowerCAmelCase : List[str] = """https://huggingface.co""" lowerCAmelCase : Optional[int] = default_cache_path lowerCAmelCase : List[str] = """diffusers_modules""" lowerCAmelCase : Dict = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) lowerCAmelCase : Dict = ["""fp16""", """non-ema"""] lowerCAmelCase : Optional[int] = """.self_attn"""
13
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase : Any = False class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[Any]=32): set_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = UNetaDModel(sample_size=lowerCAmelCase__ , in_channels=3 , out_channels=3) SCREAMING_SNAKE_CASE_: str = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable SCREAMING_SNAKE_CASE_: Dict = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="linear" , clip_sample=lowerCAmelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) SCREAMING_SNAKE_CASE_: Tuple = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(lowerCAmelCase__) for _ in range(4)] SCREAMING_SNAKE_CASE_: List[str] = [torch.randn((4, 3, 32, 32)).to(lowerCAmelCase__) for _ in range(4)] SCREAMING_SNAKE_CASE_: Union[str, Any] = [torch.randint(0 , 1000 , (4,)).long().to(lowerCAmelCase__) for _ in range(4)] # train with a DDPM scheduler SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.get_model_optimizer(resolution=32) model.train().to(lowerCAmelCase__) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_: Tuple = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__ , timesteps[i]).sample SCREAMING_SNAKE_CASE_: str = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(lowerCAmelCase__) for i in range(4): optimizer.zero_grad() SCREAMING_SNAKE_CASE_: List[Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__ , timesteps[i]).sample SCREAMING_SNAKE_CASE_: Optional[int] = torch.nn.functional.mse_loss(lowerCAmelCase__ , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5)) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5))
13
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = IFInpaintingPipeline _UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCAmelCase : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _SCREAMING_SNAKE_CASE ( self : int): return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Dict = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Optional[int] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _SCREAMING_SNAKE_CASE ( self : List[str]): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : Tuple): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[Any]): self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Tuple): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small") SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("google/mt5-small") SCREAMING_SNAKE_CASE_: int = tokenizer("Hello there" , return_tensors="tf").input_ids SCREAMING_SNAKE_CASE_: Any = tokenizer("Hi I am" , return_tensors="tf").input_ids SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__).loss SCREAMING_SNAKE_CASE_: str = -tf.math.reduce_mean(lowerCAmelCase__).numpy() SCREAMING_SNAKE_CASE_: Tuple = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2E-4)
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
from __future__ import annotations from math import pi def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = '''timm_backbone''' def __init__( self : str , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : Optional[Any] , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = backbone SCREAMING_SNAKE_CASE_: Dict = num_channels SCREAMING_SNAKE_CASE_: Optional[Any] = features_only SCREAMING_SNAKE_CASE_: Optional[Any] = use_pretrained_backbone SCREAMING_SNAKE_CASE_: List[Any] = True SCREAMING_SNAKE_CASE_: List[str] = out_indices if out_indices is not None else (-1,)
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
from __future__ import annotations def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # noqa: E741 while r - l > 1: SCREAMING_SNAKE_CASE_: Tuple = (l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE_: int = m else: SCREAMING_SNAKE_CASE_: Any = m # noqa: E741 return r def A_ ( _UpperCAmelCase ): if len(_UpperCAmelCase ) == 0: return 0 SCREAMING_SNAKE_CASE_: Union[str, Any] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Optional[Any] = v[0] for i in range(1 , len(_UpperCAmelCase ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE_: int = v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE_: int = v[i] length += 1 else: SCREAMING_SNAKE_CASE_: List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Base Case if curr_ind == len(_UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase ) ): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Insert current vertex into path as next transition SCREAMING_SNAKE_CASE_: Optional[int] = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1 ): return True # Backtrack SCREAMING_SNAKE_CASE_: Optional[int] = -1 return False def A_ ( _UpperCAmelCase , _UpperCAmelCase = 0 ): SCREAMING_SNAKE_CASE_: Dict = [-1] * (len(_UpperCAmelCase ) + 1) # initialize start and end of path with starting index SCREAMING_SNAKE_CASE_: int = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1 ) else []
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowercase : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str]=14 , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[str]=99 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Union[str, Any]=37 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=512 , lowerCAmelCase__ : Tuple=0.02 , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: Optional[int] = batch_size SCREAMING_SNAKE_CASE_: Dict = seq_length SCREAMING_SNAKE_CASE_: Union[str, Any] = is_training SCREAMING_SNAKE_CASE_: List[Any] = use_input_mask SCREAMING_SNAKE_CASE_: Tuple = use_token_type_ids SCREAMING_SNAKE_CASE_: Any = use_labels SCREAMING_SNAKE_CASE_: Optional[int] = vocab_size SCREAMING_SNAKE_CASE_: Optional[int] = hidden_size SCREAMING_SNAKE_CASE_: int = rotary_dim SCREAMING_SNAKE_CASE_: Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] = intermediate_size SCREAMING_SNAKE_CASE_: List[str] = hidden_act SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[int] = initializer_range SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: Tuple = vocab_size - 1 SCREAMING_SNAKE_CASE_: Any = vocab_size - 1 SCREAMING_SNAKE_CASE_: Dict = vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_: Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Tuple = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_: List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = config_and_inputs SCREAMING_SNAKE_CASE_: List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = 20 SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class_name(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.init_cache(input_ids.shape[0] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4") SCREAMING_SNAKE_CASE_: Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) SCREAMING_SNAKE_CASE_: int = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE_: Union[str, Any] = model( input_ids[:, -1:] , attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}") def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[int] = 20 SCREAMING_SNAKE_CASE_: List[Any] = model_class_name(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) SCREAMING_SNAKE_CASE_: Optional[int] = model.init_cache(input_ids.shape[0] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) SCREAMING_SNAKE_CASE_: Dict = model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4") SCREAMING_SNAKE_CASE_: Optional[Any] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}") @require_flax class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _UpperCAmelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = FlaxGPTJModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) @tooslow def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Any = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left") SCREAMING_SNAKE_CASE_: Any = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: int = model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = jax.jit(model.generate) SCREAMING_SNAKE_CASE_: int = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id).sequences SCREAMING_SNAKE_CASE_: str = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs SCREAMING_SNAKE_CASE_: int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_: Optional[int] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: Optional[int] = 1 SCREAMING_SNAKE_CASE_: Any = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__ , dtype=jnp.floataa) SCREAMING_SNAKE_CASE_: List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model(**lowerCAmelCase__).to_tuple() SCREAMING_SNAKE_CASE_: List[Any] = fx_model(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = model_class.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = fx_model_loaded(**lowerCAmelCase__).to_tuple() self.assertEqual( len(lowerCAmelCase__) , len(lowerCAmelCase__) , "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_: int = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__ , dtype=jnp.floataa) SCREAMING_SNAKE_CASE_: List[str] = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_: List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = 0 SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: List[str] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] = pt_model(**lowerCAmelCase__).to_tuple() SCREAMING_SNAKE_CASE_: Union[str, Any] = fx_model(**lowerCAmelCase__).to_tuple() self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = pt_model_class.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = pt_model_loaded(**lowerCAmelCase__).to_tuple() self.assertEqual( len(lowerCAmelCase__) , len(lowerCAmelCase__) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2) @tooslow def _SCREAMING_SNAKE_CASE ( self : str): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class_name.from_pretrained("EleutherAI/gpt-j-6B") SCREAMING_SNAKE_CASE_: List[Any] = model(np.ones((1, 1))) self.assertIsNotNone(lowerCAmelCase__)
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
from __future__ import annotations import collections import pprint from pathlib import Path def A_ ( _UpperCAmelCase ): return "".join(sorted(_UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): return word_by_signature[signature(_UpperCAmelCase )] lowerCAmelCase : str = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") lowerCAmelCase : Any = sorted({word.strip().lower() for word in data.splitlines()}) lowerCAmelCase : List[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCAmelCase : List[str] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
from ..utils import DummyObject, requires_backends class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = ['''speech'''] def __init__( self : Optional[int] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Union[str, Any]): requires_backends(self , ["speech"]) class __lowercase ( metaclass=UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = ['''speech'''] def __init__( self : str , *lowerCAmelCase__ : int , **lowerCAmelCase__ : List[str]): requires_backends(self , ["speech"])
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") lowerCAmelCase : Optional[int] = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCAmelCase : List[Any] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCAmelCase : List[Any] = sorted(arg_to_scheduler.keys()) lowerCAmelCase : Optional[Any] = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class __lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : argparse.Namespace , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple="base" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : Union[str, Any] , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: List[Any] = Path(self.hparams.output_dir) SCREAMING_SNAKE_CASE_: str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: SCREAMING_SNAKE_CASE_: int = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: PretrainedConfig = config SCREAMING_SNAKE_CASE_: Optional[int] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , lowerCAmelCase__ , lowerCAmelCase__): assert hasattr(self.config , lowerCAmelCase__), F"model config doesn't have a `{p}` attribute" setattr(self.config , lowerCAmelCase__ , getattr(self.hparams , lowerCAmelCase__)) if tokenizer is None: SCREAMING_SNAKE_CASE_: str = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: PreTrainedTokenizer = tokenizer SCREAMING_SNAKE_CASE_: str = MODEL_MODES[mode] if model is None: SCREAMING_SNAKE_CASE_: Any = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path) , config=self.config , cache_dir=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: List[str] = model def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[str] = self.model_type.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] SCREAMING_SNAKE_CASE_: str = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) SCREAMING_SNAKE_CASE_: str = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = self.model SCREAMING_SNAKE_CASE_: List[str] = ["bias", "LayerNorm.weight"] SCREAMING_SNAKE_CASE_: List[str] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: SCREAMING_SNAKE_CASE_: Tuple = Adafactor( lowerCAmelCase__ , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase__ , relative_step=lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Optional[int] = AdamW( lowerCAmelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) SCREAMING_SNAKE_CASE_: List[Any] = optimizer SCREAMING_SNAKE_CASE_: Tuple = self.get_lr_scheduler() return [optimizer], [scheduler] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str): return self.validation_step(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[str]): return self.validation_end(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Any = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores SCREAMING_SNAKE_CASE_: List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Union[str, Any]): if stage == "test": SCREAMING_SNAKE_CASE_: Optional[int] = len(self.test_dataloader().dataset) else: SCREAMING_SNAKE_CASE_: Any = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = len(self.train_dataloader().dataset) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False): raise NotImplementedError("You must implement this for your task") def _SCREAMING_SNAKE_CASE ( self : str): return self.train_loader def _SCREAMING_SNAKE_CASE ( self : str): return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Any): return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( lowerCAmelCase__ , list(filter(lowerCAmelCase__ , self.hparams.model_name_or_path.split("/"))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Dict[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = self.output_dir.joinpath("best_tfmr") SCREAMING_SNAKE_CASE_: Tuple = self.step_count self.model.save_pretrained(lowerCAmelCase__) self.tokenizer.save_pretrained(lowerCAmelCase__) @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]): parser.add_argument( "--model_name_or_path" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=lowerCAmelCase__ , help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(lowerCAmelCase__).parent / "test_run" / "cache") , type=lowerCAmelCase__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=lowerCAmelCase__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=lowerCAmelCase__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=lowerCAmelCase__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=lowerCAmelCase__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=lowerCAmelCase__ , help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler" , default="linear" , choices=lowerCAmelCase__ , metavar=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=lowerCAmelCase__ , help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon" , default=1E-8 , type=lowerCAmelCase__ , help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps" , default=0 , type=lowerCAmelCase__ , help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers" , default=4 , type=lowerCAmelCase__ , help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=lowerCAmelCase__) parser.add_argument("--train_batch_size" , default=32 , type=lowerCAmelCase__) parser.add_argument("--eval_batch_size" , default=32 , type=lowerCAmelCase__) parser.add_argument("--adafactor" , action="store_true") class __lowercase ( pl.Callback ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowercase ( pl.Callback ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase__) class __lowercase ( pl.Callback ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = trainer.lr_schedulers[0]["scheduler"] SCREAMING_SNAKE_CASE_: str = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule): rank_zero_info("***** Validation results *****") SCREAMING_SNAKE_CASE_: Tuple = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase__): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key]))) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule): rank_zero_info("***** Test results *****") SCREAMING_SNAKE_CASE_: Dict = trainer.callback_metrics # Log and save results to file SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(pl_module.hparams.output_dir , "test_results.txt") with open(lowerCAmelCase__ , "w") as writer: for key in sorted(lowerCAmelCase__): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key]))) writer.write("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key]))) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(_UpperCAmelCase ).parent / "test_run" / "model_checkpoints" ) , type=_UpperCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=_UpperCAmelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=_UpperCAmelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=_UpperCAmelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=_UpperCAmelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=_UpperCAmelCase , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(_UpperCAmelCase ).parent / "test_run" / "dummy-train-data" ) , type=_UpperCAmelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[] , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): pl.seed_everything(args.seed ) # init model SCREAMING_SNAKE_CASE_: List[str] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: SCREAMING_SNAKE_CASE_: Optional[int] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCAmelCase ) if logging_callback is None: SCREAMING_SNAKE_CASE_: List[str] = LoggingCallback() SCREAMING_SNAKE_CASE_: int = {} if args.fpaa: SCREAMING_SNAKE_CASE_: List[Any] = 16 if args.gpus > 1: SCREAMING_SNAKE_CASE_: Union[str, Any] = "auto" SCREAMING_SNAKE_CASE_: int = "ddp" SCREAMING_SNAKE_CASE_: Optional[Any] = args.accumulate_grad_batches SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: int = "auto" SCREAMING_SNAKE_CASE_: List[str] = pl.Trainer.from_argparse_args( _UpperCAmelCase , weights_summary=_UpperCAmelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCAmelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCAmelCase , ) if args.do_train: trainer.fit(_UpperCAmelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
13
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
1
lowerCAmelCase : Union[str, Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCAmelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = True SCREAMING_SNAKE_CASE_: Any = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = True SCREAMING_SNAKE_CASE_: Any = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = len(_UpperCAmelCase ) * [False] SCREAMING_SNAKE_CASE_: dict[int, list[int]] = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = [] SCREAMING_SNAKE_CASE_: List[Any] = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_: List[str] = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE_: int = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
def A_ ( _UpperCAmelCase ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
13
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: int = "laion/clap-htsat-unfused" SCREAMING_SNAKE_CASE_: Optional[int] = tempfile.mkdtemp() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **lowerCAmelCase__ : Optional[Any]): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowerCAmelCase__ : List[Any]): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: Tuple = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_: Optional[int] = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") SCREAMING_SNAKE_CASE_: Optional[int] = self.get_feature_extractor(do_normalize=lowerCAmelCase__ , padding_value=1.0) SCREAMING_SNAKE_CASE_: Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Tuple = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Union[str, Any] = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_list((3, 1000)) SCREAMING_SNAKE_CASE_: Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np") SCREAMING_SNAKE_CASE_: List[Any] = processor(audios=lowerCAmelCase__ , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: int = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Tuple = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = "This is a test string" SCREAMING_SNAKE_CASE_: int = processor(text=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer(lowerCAmelCase__) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: str = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_: Union[str, Any] = processor.batch_decode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.batch_decode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: str = self.get_feature_extractor() SCREAMING_SNAKE_CASE_: List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: Dict = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowercase ( nn.Module ): """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float = 0.0 _UpperCAmelCase : int = 1 _UpperCAmelCase : int = 1 _UpperCAmelCase : bool = True _UpperCAmelCase : bool = False _UpperCAmelCase : bool = False _UpperCAmelCase : bool = False _UpperCAmelCase : jnp.dtype = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: str = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_: Optional[Any] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_: int = FlaxResnetBlockaD( in_channels=lowerCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = resnets SCREAMING_SNAKE_CASE_: str = attentions if self.add_downsample: SCREAMING_SNAKE_CASE_: List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=True): SCREAMING_SNAKE_CASE_: Optional[Any] = () for resnet, attn in zip(self.resnets , self.attentions): SCREAMING_SNAKE_CASE_: int = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = attn(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE_: Optional[Any] = self.downsamplers_a(lowerCAmelCase__) output_states += (hidden_states,) return hidden_states, output_states class __lowercase ( nn.Module ): """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float = 0.0 _UpperCAmelCase : int = 1 _UpperCAmelCase : bool = True _UpperCAmelCase : jnp.dtype = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_: Optional[int] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxResnetBlockaD( in_channels=lowerCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = resnets if self.add_downsample: SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : int=True): SCREAMING_SNAKE_CASE_: int = () for resnet in self.resnets: SCREAMING_SNAKE_CASE_: Tuple = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE_: Any = self.downsamplers_a(lowerCAmelCase__) output_states += (hidden_states,) return hidden_states, output_states class __lowercase ( nn.Module ): """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float = 0.0 _UpperCAmelCase : int = 1 _UpperCAmelCase : int = 1 _UpperCAmelCase : bool = True _UpperCAmelCase : bool = False _UpperCAmelCase : bool = False _UpperCAmelCase : bool = False _UpperCAmelCase : jnp.dtype = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = [] SCREAMING_SNAKE_CASE_: List[Any] = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_: int = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE_: List[str] = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_: Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = resnets SCREAMING_SNAKE_CASE_: Union[str, Any] = attentions if self.add_upsample: SCREAMING_SNAKE_CASE_: str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict=True): for resnet, attn in zip(self.resnets , self.attentions): # pop res hidden states SCREAMING_SNAKE_CASE_: Tuple = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE_: int = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE_: Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) SCREAMING_SNAKE_CASE_: Tuple = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = attn(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) if self.add_upsample: SCREAMING_SNAKE_CASE_: str = self.upsamplers_a(lowerCAmelCase__) return hidden_states class __lowercase ( nn.Module ): """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : int _UpperCAmelCase : float = 0.0 _UpperCAmelCase : int = 1 _UpperCAmelCase : bool = True _UpperCAmelCase : jnp.dtype = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: str = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_: int = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE_: List[str] = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_: Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = resnets if self.add_upsample: SCREAMING_SNAKE_CASE_: Dict = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=True): for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE_: Union[str, Any] = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE_: int = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE_: Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) SCREAMING_SNAKE_CASE_: Dict = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) if self.add_upsample: SCREAMING_SNAKE_CASE_: Optional[Any] = self.upsamplers_a(lowerCAmelCase__) return hidden_states class __lowercase ( nn.Module ): """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : float = 0.0 _UpperCAmelCase : int = 1 _UpperCAmelCase : int = 1 _UpperCAmelCase : bool = False _UpperCAmelCase : bool = False _UpperCAmelCase : jnp.dtype = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[Any]): # there is always at least one resnet SCREAMING_SNAKE_CASE_: Union[str, Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE_: List[Any] = [] for _ in range(self.num_layers): SCREAMING_SNAKE_CASE_: str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = resnets SCREAMING_SNAKE_CASE_: Dict = attentions def __call__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=True): SCREAMING_SNAKE_CASE_: Optional[int] = self.resnets[0](lowerCAmelCase__ , lowerCAmelCase__) for attn, resnet in zip(self.attentions , self.resnets[1:]): SCREAMING_SNAKE_CASE_: Any = attn(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = resnet(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=lowerCAmelCase__) return hidden_states
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : List[str] = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] lowerCAmelCase : int = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[Any] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCAmelCase : Optional[Any] = {f'''funnel-transformer/{name}''': {"""do_lower_case""": True} for name in _model_names} class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = VOCAB_FILES_NAMES _UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Dict = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase : Any = FunnelTokenizer _UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : int = 2 def __init__( self : Union[str, Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : Tuple="<sep>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : Optional[int]="<cls>" , lowerCAmelCase__ : List[str]="<mask>" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple="##" , **lowerCAmelCase__ : Union[str, Any] , ): super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: int = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , lowerCAmelCase__) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_: str = getattr(lowerCAmelCase__ , normalizer_state.pop("type")) SCREAMING_SNAKE_CASE_: Tuple = do_lower_case SCREAMING_SNAKE_CASE_: str = strip_accents SCREAMING_SNAKE_CASE_: List[Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_: Optional[int] = normalizer_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = do_lower_case def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str=None): SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): SCREAMING_SNAKE_CASE_: str = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__)
13
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
1
def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = "" for i in table: res += inp[i - 1] return res def A_ ( _UpperCAmelCase ): return data[1:] + data[0] def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = "" for i in range(len(_UpperCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = int("0b" + data[0] + data[-1] , 2 ) SCREAMING_SNAKE_CASE_: List[str] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = message[:4] SCREAMING_SNAKE_CASE_: int = message[4:] SCREAMING_SNAKE_CASE_: Any = apply_table(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = xor(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = apply_sbox(_UpperCAmelCase , temp[:4] ) # noqa: E741 SCREAMING_SNAKE_CASE_: Any = apply_sbox(_UpperCAmelCase , temp[4:] ) SCREAMING_SNAKE_CASE_: str = "0" * (2 - len(_UpperCAmelCase )) + l # noqa: E741 SCREAMING_SNAKE_CASE_: Union[str, Any] = "0" * (2 - len(_UpperCAmelCase )) + r SCREAMING_SNAKE_CASE_: Any = apply_table(l + r , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = xor(_UpperCAmelCase , _UpperCAmelCase ) return temp + right if __name__ == "__main__": lowerCAmelCase : List[Any] = input("""Enter 10 bit key: """) lowerCAmelCase : List[str] = input("""Enter 8 bit message: """) lowerCAmelCase : Any = [6, 3, 7, 4, 8, 5, 10, 9] lowerCAmelCase : Optional[Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCAmelCase : int = [2, 4, 3, 1] lowerCAmelCase : Dict = [2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase : Dict = [4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase : Dict = [4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase : Union[str, Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase : Optional[int] = apply_table(key, paa_table) lowerCAmelCase : Dict = temp[:5] lowerCAmelCase : Optional[Any] = temp[5:] lowerCAmelCase : Union[str, Any] = left_shift(left) lowerCAmelCase : str = left_shift(right) lowerCAmelCase : str = apply_table(left + right, pa_table) lowerCAmelCase : int = left_shift(left) lowerCAmelCase : int = left_shift(right) lowerCAmelCase : List[Any] = left_shift(left) lowerCAmelCase : Dict = left_shift(right) lowerCAmelCase : Union[str, Any] = apply_table(left + right, pa_table) # encryption lowerCAmelCase : Tuple = apply_table(message, IP) lowerCAmelCase : Optional[int] = function(expansion, sa, sa, keya, temp) lowerCAmelCase : List[Any] = temp[4:] + temp[:4] lowerCAmelCase : int = function(expansion, sa, sa, keya, temp) lowerCAmelCase : int = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption lowerCAmelCase : int = apply_table(CT, IP) lowerCAmelCase : Optional[int] = function(expansion, sa, sa, keya, temp) lowerCAmelCase : Dict = temp[4:] + temp[:4] lowerCAmelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) lowerCAmelCase : Dict = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
from __future__ import annotations def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) SCREAMING_SNAKE_CASE_: Optional[Any] = number_of_bytes // partitions SCREAMING_SNAKE_CASE_: Optional[int] = [] for i in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = i * bytes_per_partition + 1 SCREAMING_SNAKE_CASE_: Any = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
13
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def A_ ( ): print("Making key files..." ) make_key_files("rsa" , 10_24 ) print("Key files generation successful." ) def A_ ( _UpperCAmelCase ): print("Generating prime p..." ) SCREAMING_SNAKE_CASE_: List[Any] = rabinMiller.generate_large_prime(_UpperCAmelCase ) print("Generating prime q..." ) SCREAMING_SNAKE_CASE_: Tuple = rabinMiller.generate_large_prime(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: SCREAMING_SNAKE_CASE_: Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(_UpperCAmelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) SCREAMING_SNAKE_CASE_: Any = cryptoMath.find_mod_inverse(_UpperCAmelCase , (p - 1) * (q - 1) ) SCREAMING_SNAKE_CASE_: Tuple = (n, e) SCREAMING_SNAKE_CASE_: Any = (n, d) return (public_key, private_key) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print("\nWARNING:" ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = generate_key(_UpperCAmelCase ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , "w" ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
13
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = checkpoint SCREAMING_SNAKE_CASE_: Union[str, Any] = {} SCREAMING_SNAKE_CASE_: Any = vae_state_dict["encoder.conv_in.weight"] SCREAMING_SNAKE_CASE_: Tuple = vae_state_dict["encoder.conv_in.bias"] SCREAMING_SNAKE_CASE_: Dict = vae_state_dict["encoder.conv_out.weight"] SCREAMING_SNAKE_CASE_: Optional[Any] = vae_state_dict["encoder.conv_out.bias"] SCREAMING_SNAKE_CASE_: Any = vae_state_dict["encoder.norm_out.weight"] SCREAMING_SNAKE_CASE_: Dict = vae_state_dict["encoder.norm_out.bias"] SCREAMING_SNAKE_CASE_: Tuple = vae_state_dict["decoder.conv_in.weight"] SCREAMING_SNAKE_CASE_: Union[str, Any] = vae_state_dict["decoder.conv_in.bias"] SCREAMING_SNAKE_CASE_: int = vae_state_dict["decoder.conv_out.weight"] SCREAMING_SNAKE_CASE_: Optional[int] = vae_state_dict["decoder.conv_out.bias"] SCREAMING_SNAKE_CASE_: Any = vae_state_dict["decoder.norm_out.weight"] SCREAMING_SNAKE_CASE_: Optional[int] = vae_state_dict["decoder.norm_out.bias"] SCREAMING_SNAKE_CASE_: List[Any] = vae_state_dict["quant_conv.weight"] SCREAMING_SNAKE_CASE_: int = vae_state_dict["quant_conv.bias"] SCREAMING_SNAKE_CASE_: List[Any] = vae_state_dict["post_quant_conv.weight"] SCREAMING_SNAKE_CASE_: Optional[int] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE_: int = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) SCREAMING_SNAKE_CASE_: Any = { layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE_: Optional[int] = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) SCREAMING_SNAKE_CASE_: List[Any] = { layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(_UpperCAmelCase ) } for i in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE_: str = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) SCREAMING_SNAKE_CASE_: Dict = vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) SCREAMING_SNAKE_CASE_: Dict = renew_vae_resnet_paths(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = [key for key in vae_state_dict if "encoder.mid.block" in key] SCREAMING_SNAKE_CASE_: str = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_: Any = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE_: List[Any] = renew_vae_resnet_paths(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [key for key in vae_state_dict if "encoder.mid.attn" in key] SCREAMING_SNAKE_CASE_: List[str] = renew_vae_attention_paths(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) conv_attn_to_linear(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE_: Union[str, Any] = [ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: SCREAMING_SNAKE_CASE_: Dict = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] SCREAMING_SNAKE_CASE_: Optional[Any] = vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] SCREAMING_SNAKE_CASE_: Optional[Any] = renew_vae_resnet_paths(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = [key for key in vae_state_dict if "decoder.mid.block" in key] SCREAMING_SNAKE_CASE_: Tuple = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE_: Dict = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] SCREAMING_SNAKE_CASE_: Any = renew_vae_resnet_paths(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = [key for key in vae_state_dict if "decoder.mid.attn" in key] SCREAMING_SNAKE_CASE_: Any = renew_vae_attention_paths(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , additional_replacements=[meta_path] , config=_UpperCAmelCase ) conv_attn_to_linear(_UpperCAmelCase ) return new_checkpoint def A_ ( _UpperCAmelCase , _UpperCAmelCase , ): # Only support V1 SCREAMING_SNAKE_CASE_: Tuple = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) SCREAMING_SNAKE_CASE_: Optional[int] = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE_: Any = OmegaConf.load(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = 5_12 SCREAMING_SNAKE_CASE_: Tuple = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open SCREAMING_SNAKE_CASE_: Optional[Any] = {} with safe_open(_UpperCAmelCase , framework="pt" , device="cpu" ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE_: Any = f.get_tensor(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: Optional[int] = torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase )["state_dict"] # Convert the VAE model. SCREAMING_SNAKE_CASE_: Optional[int] = create_vae_diffusers_config(_UpperCAmelCase , image_size=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = custom_convert_ldm_vae_checkpoint(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = AutoencoderKL(**_UpperCAmelCase ) vae.load_state_dict(_UpperCAmelCase ) vae.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") lowerCAmelCase : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
13
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
1
import math lowerCAmelCase : Dict = 10 lowerCAmelCase : Dict = 7 lowerCAmelCase : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def A_ ( _UpperCAmelCase = 20 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = math.comb(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = NUM_COLOURS * (1 - missing_colour / total) return f"{result:.9f}" if __name__ == "__main__": print(solution(20))
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = KandinskyVaaControlnetPipeline _UpperCAmelCase : Optional[int] = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCAmelCase : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] _UpperCAmelCase : List[str] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Any): return 100 @property def _SCREAMING_SNAKE_CASE ( self : str): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE_: int = UNetaDConditionModel(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : str): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: str = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_unet SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_movq SCREAMING_SNAKE_CASE_: Tuple = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str]=0): SCREAMING_SNAKE_CASE_: List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create hint SCREAMING_SNAKE_CASE_: int = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: List[str] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: List[str] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Any = "cpu" SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Any = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = output.images SCREAMING_SNAKE_CASE_: Tuple = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE_: Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Any = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy") SCREAMING_SNAKE_CASE_: Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") SCREAMING_SNAKE_CASE_: Any = torch.from_numpy(np.array(lowerCAmelCase__)).float() / 255.0 SCREAMING_SNAKE_CASE_: Any = hint.permute(2 , 0 , 1).unsqueeze(0) SCREAMING_SNAKE_CASE_: Tuple = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_: Dict = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = "A robot, 4k photo" SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cuda").manual_seed(0) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE_: int = torch.Generator(device="cuda").manual_seed(0) SCREAMING_SNAKE_CASE_: Any = pipeline( image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , hint=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , output_type="np" , ) SCREAMING_SNAKE_CASE_: int = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase : Any = random.Random() def A_ ( _UpperCAmelCase , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: Tuple = global_rng SCREAMING_SNAKE_CASE_: Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : Tuple=400 , lowerCAmelCase__ : int=2000 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Any=160 , lowerCAmelCase__ : Optional[Any]=8 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : int=4000 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_: Optional[Any] = min_seq_length SCREAMING_SNAKE_CASE_: str = max_seq_length SCREAMING_SNAKE_CASE_: int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_: Union[str, Any] = padding_value SCREAMING_SNAKE_CASE_: Union[str, Any] = sampling_rate SCREAMING_SNAKE_CASE_: List[str] = return_attention_mask SCREAMING_SNAKE_CASE_: Optional[int] = do_normalize SCREAMING_SNAKE_CASE_: int = feature_size SCREAMING_SNAKE_CASE_: Union[str, Any] = chunk_length SCREAMING_SNAKE_CASE_: Optional[Any] = hop_length def _SCREAMING_SNAKE_CASE ( self : List[str]): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Dict=False): def _flatten(lowerCAmelCase__ : int): return list(itertools.chain(*lowerCAmelCase__)) if equal_length: SCREAMING_SNAKE_CASE_: List[Any] = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_: List[Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: SCREAMING_SNAKE_CASE_: Tuple = [np.asarray(lowerCAmelCase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = WhisperFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = WhisperFeatureExtractionTester(self) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: str = feat_extract_first.save_pretrained(lowerCAmelCase__)[0] check_json_file_has_correct_format(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.feature_extraction_class.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE_: List[Any] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE_: Dict = feat_extract_first.mel_filters SCREAMING_SNAKE_CASE_: Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__)) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Any = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(lowerCAmelCase__ , "feat_extract.json") feat_extract_first.to_json_file(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.feature_extraction_class.from_json_file(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE_: Dict = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE_: Any = feat_extract_first.mel_filters SCREAMING_SNAKE_CASE_: Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__)) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_: List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_: Union[str, Any] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: Dict = [np.asarray(lowerCAmelCase__) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_: List[str] = feature_extractor(lowerCAmelCase__ , padding="max_length" , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input SCREAMING_SNAKE_CASE_: Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: Dict = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # Test batched SCREAMING_SNAKE_CASE_: int = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: Optional[int] = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_: int = [floats_list((1, x))[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_: Union[str, Any] = np.asarray(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # Test truncation required SCREAMING_SNAKE_CASE_: Optional[Any] = [floats_list((1, x))[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200)] SCREAMING_SNAKE_CASE_: List[Any] = [np.asarray(lowerCAmelCase__) for speech_input in speech_inputs] SCREAMING_SNAKE_CASE_: Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] SCREAMING_SNAKE_CASE_: Tuple = [np.asarray(lowerCAmelCase__) for speech_input in speech_inputs_truncated] SCREAMING_SNAKE_CASE_: Any = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: Any = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) def _SCREAMING_SNAKE_CASE ( self : str): import torch SCREAMING_SNAKE_CASE_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.random.rand(100 , 32).astype(np.floataa) SCREAMING_SNAKE_CASE_: Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_: str = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) SCREAMING_SNAKE_CASE_: List[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech SCREAMING_SNAKE_CASE_: Union[str, Any] = ds.sort("id").select(range(lowerCAmelCase__))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self : str): # fmt: off SCREAMING_SNAKE_CASE_: str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ]) # fmt: on SCREAMING_SNAKE_CASE_: Union[str, Any] = self._load_datasamples(1) SCREAMING_SNAKE_CASE_: Optional[int] = WhisperFeatureExtractor() SCREAMING_SNAKE_CASE_: str = feature_extractor(lowerCAmelCase__ , return_tensors="pt").input_features self.assertEqual(input_features.shape , (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCAmelCase__ , atol=1E-4)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: Dict = self._load_datasamples(1)[0] SCREAMING_SNAKE_CASE_: Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue SCREAMING_SNAKE_CASE_: int = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase__)[0] self.assertTrue(np.all(np.mean(lowerCAmelCase__) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__) - 1) < 1E-3))
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
import math import unittest def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): self.assertTrue(is_prime(2)) self.assertTrue(is_prime(3)) self.assertTrue(is_prime(5)) self.assertTrue(is_prime(7)) self.assertTrue(is_prime(11)) self.assertTrue(is_prime(13)) self.assertTrue(is_prime(17)) self.assertTrue(is_prime(19)) self.assertTrue(is_prime(23)) self.assertTrue(is_prime(29)) def _SCREAMING_SNAKE_CASE ( self : str): with self.assertRaises(lowerCAmelCase__): is_prime(-19) self.assertFalse( is_prime(0) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2)) self.assertFalse(is_prime(2 * 3)) self.assertFalse(is_prime(3 * 3)) self.assertFalse(is_prime(3 * 5)) self.assertFalse(is_prime(3 * 5 * 7)) if __name__ == "__main__": unittest.main()
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : float): return 0.0 def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) SCREAMING_SNAKE_CASE_: str = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = 5_12 SCREAMING_SNAKE_CASE_: Optional[Any] = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_: str = [filter_type.process(_UpperCAmelCase ) for item in inputs] SCREAMING_SNAKE_CASE_: str = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_: Optional[int] = np.abs(np.fft.fft(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: int = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds SCREAMING_SNAKE_CASE_: Union[str, Any] = get_bounds(_UpperCAmelCase , _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_UpperCAmelCase ) plt.show() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 5_12 SCREAMING_SNAKE_CASE_: Tuple = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_: str = [filter_type.process(_UpperCAmelCase ) for item in inputs] SCREAMING_SNAKE_CASE_: Any = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_: Tuple = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_UpperCAmelCase , -2 * pi ) ) plt.show()
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase : Optional[Any] = """src/diffusers""" # Matches is_xxx_available() lowerCAmelCase : str = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla lowerCAmelCase : List[str] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") lowerCAmelCase : Union[str, Any] = """ {0} = None """ lowerCAmelCase : List[str] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ lowerCAmelCase : List[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = _re_backend.findall(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None return "_and_".join(_UpperCAmelCase ) def A_ ( ): with open(os.path.join(_UpperCAmelCase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 SCREAMING_SNAKE_CASE_: Optional[int] = {} # Go through the end of the file while line_index < len(_UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE_: List[str] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE_: str = [] # Until we unindent, add backend objects to the list while line_index < len(_UpperCAmelCase ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE_: List[Any] = lines[line_index] SCREAMING_SNAKE_CASE_: Optional[int] = _re_single_line_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE_: Any = objects else: line_index += 1 return backend_specific_objects def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if name.isupper(): return DUMMY_CONSTANT.format(_UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCAmelCase , _UpperCAmelCase ) else: return DUMMY_CLASS.format(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase=None ): if backend_specific_objects is None: SCREAMING_SNAKE_CASE_: Optional[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE_: Optional[Any] = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE_: Tuple = "[" + ", ".join(f"\"{b}\"" for b in backend.split("_and_" ) ) + "]" SCREAMING_SNAKE_CASE_: Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCAmelCase , _UpperCAmelCase ) for o in objects] ) SCREAMING_SNAKE_CASE_: Any = dummy_file return dummy_files def A_ ( _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Union[str, Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE_: int = {"torch": "pt"} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE_: Dict = os.path.join(_UpperCAmelCase , "utils" ) SCREAMING_SNAKE_CASE_: List[Any] = { backend: os.path.join(_UpperCAmelCase , f"dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py" ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE_: Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE_: Tuple = f.read() else: SCREAMING_SNAKE_CASE_: Optional[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : str = parser.parse_args() check_dummies(args.fix_and_overwrite)
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
from math import ceil def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = list(range(0 , _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: str = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE_: List[str] = [] for i in device_map_blocks: if device_map_blocks.count(_UpperCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_UpperCAmelCase ) # Missing blocks SCREAMING_SNAKE_CASE_: Tuple = [i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE_: Any = [i for i in device_map_blocks if i not in blocks] if len(_UpperCAmelCase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(_UpperCAmelCase ) ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = list(range(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict = int(ceil(n_layers / len(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: List[str] = [layers[i : i + n_blocks] for i in range(0 , _UpperCAmelCase , _UpperCAmelCase )] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) )
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=13 , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=99 , lowerCAmelCase__ : Union[str, Any]=64 , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Optional[int]=37 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : str=16 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Tuple=None , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = parent SCREAMING_SNAKE_CASE_: Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_: List[str] = seq_length SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: int = use_input_mask SCREAMING_SNAKE_CASE_: List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_: Optional[int] = use_labels SCREAMING_SNAKE_CASE_: List[str] = vocab_size SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: Optional[int] = embedding_size SCREAMING_SNAKE_CASE_: Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: int = num_attention_heads SCREAMING_SNAKE_CASE_: Tuple = intermediate_size SCREAMING_SNAKE_CASE_: List[Any] = hidden_act SCREAMING_SNAKE_CASE_: Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Any = max_position_embeddings SCREAMING_SNAKE_CASE_: int = type_vocab_size SCREAMING_SNAKE_CASE_: List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_: Any = initializer_range SCREAMING_SNAKE_CASE_: Dict = num_labels SCREAMING_SNAKE_CASE_: Optional[Any] = num_choices SCREAMING_SNAKE_CASE_: List[str] = scope def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_: Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Any = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_: Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_: int = None SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : int): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Tuple = MegatronBertModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: str = MegatronBertForMaskedLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = MegatronBertForCausalLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Union[str, Any] = MegatronBertForNextSentencePrediction(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Dict = MegatronBertForPreTraining(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: str = MegatronBertForQuestionAnswering(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: int = self.num_labels SCREAMING_SNAKE_CASE_: Optional[int] = MegatronBertForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: int = self.num_labels SCREAMING_SNAKE_CASE_: Optional[int] = MegatronBertForTokenClassification(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: str = self.num_choices SCREAMING_SNAKE_CASE_: Union[str, Any] = MegatronBertForMultipleChoice(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_: List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_: List[str] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() SCREAMING_SNAKE_CASE_: List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): int = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase : Optional[int] = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase : List[Any] = True # test_resize_embeddings = False _UpperCAmelCase : str = False def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=False): SCREAMING_SNAKE_CASE_: Optional[Any] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) if return_labels: if model_class in get_values(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Tuple = MegatronBertModelTester(self) SCREAMING_SNAKE_CASE_: Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Dict): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCAmelCase__) def A_ ( _UpperCAmelCase ): return torch.tensor( _UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase , ) lowerCAmelCase : List[Any] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip("Model is not available.") def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[str] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE_: int = os.path.join(os.environ["MYDIR"] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = MegatronBertModel.from_pretrained(lowerCAmelCase__) model.to(lowerCAmelCase__) model.half() SCREAMING_SNAKE_CASE_: Any = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]]) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__)[0] SCREAMING_SNAKE_CASE_: int = torch.Size((1, 9, 1024)) self.assertEqual(output.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3): for jj in range(3): SCREAMING_SNAKE_CASE_: Optional[int] = output[0, ii, jj] SCREAMING_SNAKE_CASE_: Any = expected[3 * ii + jj] SCREAMING_SNAKE_CASE_: List[str] = "ii={} jj={} a={} b={}".format(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) self.assertTrue(math.isclose(lowerCAmelCase__ , lowerCAmelCase__ , rel_tol=lowerCAmelCase__ , abs_tol=lowerCAmelCase__) , msg=lowerCAmelCase__)
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """spiece.model"""} lowerCAmelCase : Optional[Any] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCAmelCase : Any = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCAmelCase : Any = 0 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : Dict = 3 lowerCAmelCase : List[Any] = 4 class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[Any] = '''left''' def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : Optional[int]="</s>" , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : List[str]="<sep>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : int="<cls>" , lowerCAmelCase__ : List[str]="<mask>" , lowerCAmelCase__ : List[Any]=["<eop>", "<eod>"] , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token SCREAMING_SNAKE_CASE_: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Dict = 3 SCREAMING_SNAKE_CASE_: List[str] = do_lower_case SCREAMING_SNAKE_CASE_: List[Any] = remove_space SCREAMING_SNAKE_CASE_: int = keep_accents SCREAMING_SNAKE_CASE_: Tuple = vocab_file SCREAMING_SNAKE_CASE_: Any = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return len(self.sp_model) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE_: Optional[int] = None return state def __setstate__( self : Tuple , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): SCREAMING_SNAKE_CASE_: List[Any] = {} SCREAMING_SNAKE_CASE_: int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Any): if self.remove_space: SCREAMING_SNAKE_CASE_: int = " ".join(inputs.strip().split()) else: SCREAMING_SNAKE_CASE_: int = inputs SCREAMING_SNAKE_CASE_: Tuple = outputs.replace("``" , "\"").replace("''" , "\"") if not self.keep_accents: SCREAMING_SNAKE_CASE_: List[str] = unicodedata.normalize("NFKD" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__)]) if self.do_lower_case: SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.lower() return outputs def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = self.preprocess_text(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = [] for piece in pieces: if len(lowerCAmelCase__) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_: List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: SCREAMING_SNAKE_CASE_: List[str] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_: Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCAmelCase__) else: new_pieces.append(lowerCAmelCase__) return new_pieces def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Dict): return self.sp_model.PieceToId(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Dict): return self.sp_model.IdToPiece(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = "".join(lowerCAmelCase__).replace(lowerCAmelCase__ , " ").strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("use_source_tokenizer" , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Dict = [] sub_texts.append(lowerCAmelCase__) else: current_sub_text.append(lowerCAmelCase__) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE_: Union[str, Any] = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE_: Dict = self.clean_up_tokenization(lowerCAmelCase__) return clean_text else: return text def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is not None: return ([0] * len(lowerCAmelCase__)) + [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] return ([0] * len(lowerCAmelCase__)) + [1, 1] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase__ , "wb") as fi: SCREAMING_SNAKE_CASE_: Dict = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__) return (out_vocab_file,)
13
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
1
import math def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = f"Input value of [number={number}] must be an integer" raise TypeError(_UpperCAmelCase ) if number < 1: SCREAMING_SNAKE_CASE_: Tuple = f"Input value of [number={number}] must be > 0" raise ValueError(_UpperCAmelCase ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE_: Dict = int(math.log(number // 3 , 2 ) ) + 2 SCREAMING_SNAKE_CASE_: Tuple = [3, 5] SCREAMING_SNAKE_CASE_: int = 2 SCREAMING_SNAKE_CASE_: int = 3 for block in range(1 , _UpperCAmelCase ): for _ in range(_UpperCAmelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowerCAmelCase : List[str] = 0 try: lowerCAmelCase : List[str] = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
13
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
1
from pathlib import Path import numpy as np from PIL import Image def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def A_ ( _UpperCAmelCase ): return (gray > 1_27) & (gray <= 2_55) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros_like(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_: Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_: str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_: Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase : List[str] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowerCAmelCase : Tuple = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase : List[str] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase : Tuple = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : List[str] _UpperCAmelCase : Optional[str] = None # Automatically constructed _UpperCAmelCase : ClassVar[str] = "dict" _UpperCAmelCase : ClassVar[Any] = None _UpperCAmelCase : str = field(default='''Translation''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def __call__( self : str): return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def _SCREAMING_SNAKE_CASE ( self : Tuple): from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : Optional[List] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[str] = None # Automatically constructed _UpperCAmelCase : ClassVar[str] = "dict" _UpperCAmelCase : ClassVar[Any] = None _UpperCAmelCase : str = field(default='''TranslationVariableLanguages''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[str] = sorted(set(self.languages)) if self.languages else None SCREAMING_SNAKE_CASE_: Tuple = len(self.languages) if self.languages else None def __call__( self : Any): return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Optional[Any] = set(self.languages) if self.languages and set(lowerCAmelCase__) - lang_set: raise ValueError( F"Some languages in example ({', '.join(sorted(set(lowerCAmelCase__) - lang_set))}) are not in valid set ({', '.join(lowerCAmelCase__)}).") # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_: Tuple = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = zip(*sorted(lowerCAmelCase__)) return {"language": languages, "translation": translations} def _SCREAMING_SNAKE_CASE ( self : List[str]): from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
from math import sqrt def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE_: Optional[int] = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE_: List[Any] = False for divisor in range(2 , int(round(sqrt(_UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE_: Union[str, Any] = False break # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'status' must been from type bool" return status def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE_: List[str] = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE_: Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE_: List[Any] = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE_: str = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE_: List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCAmelCase ): ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE_: Dict = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE_: Union[str, Any] = 2 SCREAMING_SNAKE_CASE_: List[str] = number if number == 0 or number == 1: ans.append(_UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCAmelCase ): while quotient != 1: if is_prime(_UpperCAmelCase ) and (quotient % factor == 0): ans.append(_UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_: int = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_: List[Any] = prime_factorization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = max(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE_: Dict = prime_factorization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = min(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (number > 2) and is_even(_UpperCAmelCase ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE_: Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE_: Optional[int] = get_prime_numbers(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = len(_UpperCAmelCase ) # run variable for while-loops. SCREAMING_SNAKE_CASE_: Any = 0 SCREAMING_SNAKE_CASE_: List[str] = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE_: int = True while i < len_pn and loop: SCREAMING_SNAKE_CASE_: str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE_: Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (len(_UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_: Dict = 0 while numbera != 0: SCREAMING_SNAKE_CASE_: Union[str, Any] = numbera % numbera SCREAMING_SNAKE_CASE_: List[str] = numbera SCREAMING_SNAKE_CASE_: Tuple = rest # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE_: str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE_: Optional[int] = prime_factorization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_factorization(_UpperCAmelCase ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE_: int = [] SCREAMING_SNAKE_CASE_: Any = [] SCREAMING_SNAKE_CASE_: str = max(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: str = 0 SCREAMING_SNAKE_CASE_: str = 0 SCREAMING_SNAKE_CASE_: Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE_: Any = prime_fac_a.count(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(max(_UpperCAmelCase , _UpperCAmelCase ) ): ans *= n else: SCREAMING_SNAKE_CASE_: int = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE_: List[str] = 0 SCREAMING_SNAKE_CASE_: Any = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCAmelCase ): ans += 1 # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and is_prime( _UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( is_prime(_UpperCAmelCase ) and is_prime(_UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE_: List[str] = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE_: int = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(_UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ans[0] != p_number_a and ans[len(_UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE_: Optional[int] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE_: Optional[Any] = get_divisors(_UpperCAmelCase ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _UpperCAmelCase , _UpperCAmelCase ): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE_: Union[str, Any] = gcd(abs(_UpperCAmelCase ) , abs(_UpperCAmelCase ) ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE_: Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def A_ ( _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Any = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE_: Optional[int] = ans ans += fiba SCREAMING_SNAKE_CASE_: Union[str, Any] = tmp return ans
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_: Dict = get_activation("gelu") self.assertTrue(torch.allclose(gelu_python(lowerCAmelCase__) , torch_builtin(lowerCAmelCase__))) self.assertFalse(torch.allclose(gelu_python(lowerCAmelCase__) , gelu_new(lowerCAmelCase__))) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100]) SCREAMING_SNAKE_CASE_: Optional[int] = get_activation("gelu") SCREAMING_SNAKE_CASE_: List[str] = get_activation("gelu_10") SCREAMING_SNAKE_CASE_: Union[str, Any] = torch_builtin(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = geluaa(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.where(y_gelu_aa < 10.0 , 1 , 0) self.assertTrue(torch.max(lowerCAmelCase__).item() == 10.0) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask)) def _SCREAMING_SNAKE_CASE ( self : Tuple): get_activation("gelu") get_activation("gelu_10") get_activation("gelu_fast") get_activation("gelu_new") get_activation("gelu_python") get_activation("gelu_pytorch_tanh") get_activation("linear") get_activation("mish") get_activation("quick_gelu") get_activation("relu") get_activation("sigmoid") get_activation("silu") get_activation("swish") get_activation("tanh") with self.assertRaises(lowerCAmelCase__): get_activation("bogus") with self.assertRaises(lowerCAmelCase__): get_activation(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = get_activation("gelu") SCREAMING_SNAKE_CASE_: Optional[int] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = get_activation("gelu") self.assertEqual(acta.a , 1) with self.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = acta.a
13
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
1
import numpy as np def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return np.where(vector > 0 , _UpperCAmelCase , (alpha * (np.exp(_UpperCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
lowerCAmelCase : Any = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def A_ ( ): SCREAMING_SNAKE_CASE_: int = input("Enter message: " ) SCREAMING_SNAKE_CASE_: Optional[int] = input("Enter key [alphanumeric]: " ) SCREAMING_SNAKE_CASE_: List[Any] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): SCREAMING_SNAKE_CASE_: Union[str, Any] = "encrypt" SCREAMING_SNAKE_CASE_: List[str] = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith("d" ): SCREAMING_SNAKE_CASE_: Any = "decrypt" SCREAMING_SNAKE_CASE_: Any = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) print(f"\n{mode.title()}ed message:" ) print(_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return translate_message(_UpperCAmelCase , _UpperCAmelCase , "encrypt" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return translate_message(_UpperCAmelCase , _UpperCAmelCase , "decrypt" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 SCREAMING_SNAKE_CASE_: Tuple = key.upper() for symbol in message: SCREAMING_SNAKE_CASE_: str = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_UpperCAmelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = 0 else: translated.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": main()
13
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : int = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } lowerCAmelCase : List[str] = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Optional[Any] = bs[:] SCREAMING_SNAKE_CASE_: int = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Any = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = set() SCREAMING_SNAKE_CASE_: int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Tuple = VOCAB_FILES_NAMES _UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]="replace" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : List[Any]="</s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : str="<mask>" , lowerCAmelCase__ : Optional[int]=False , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: str = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: Any = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: List[Any] = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : str): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: str = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = bigram SCREAMING_SNAKE_CASE_: Union[str, Any] = [] SCREAMING_SNAKE_CASE_: Any = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: Optional[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Union[str, Any] = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: Tuple = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: int = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = word return word def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : List[Any]): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[Any] = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: str = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Any = [self.sep_token_id] SCREAMING_SNAKE_CASE_: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[int] = " " + text return (text, kwargs)
13
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowerCAmelCase : str = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Dict = '''AutoTokenizer''' _UpperCAmelCase : Optional[Any] = ['''tokenizer'''] _UpperCAmelCase : Dict = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = speaker_embeddings @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple="speaker_embeddings_path.json" , **lowerCAmelCase__ : int): if speaker_embeddings_dict_path is not None: SCREAMING_SNAKE_CASE_: int = get_file_from_repo( lowerCAmelCase__ , lowerCAmelCase__ , subfolder=kwargs.pop("subfolder" , lowerCAmelCase__) , cache_dir=kwargs.pop("cache_dir" , lowerCAmelCase__) , force_download=kwargs.pop("force_download" , lowerCAmelCase__) , proxies=kwargs.pop("proxies" , lowerCAmelCase__) , resume_download=kwargs.pop("resume_download" , lowerCAmelCase__) , local_files_only=kwargs.pop("local_files_only" , lowerCAmelCase__) , use_auth_token=kwargs.pop("use_auth_token" , lowerCAmelCase__) , revision=kwargs.pop("revision" , lowerCAmelCase__) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(lowerCAmelCase__ , lowerCAmelCase__)}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.") SCREAMING_SNAKE_CASE_: Any = None else: with open(lowerCAmelCase__) as speaker_embeddings_json: SCREAMING_SNAKE_CASE_: int = json.load(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) return cls(tokenizer=lowerCAmelCase__ , speaker_embeddings=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : int="speaker_embeddings_path.json" , lowerCAmelCase__ : Optional[int]="speaker_embeddings" , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Any , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ , "v2") , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: List[str] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": SCREAMING_SNAKE_CASE_: Tuple = self._load_voice_preset(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] , lowerCAmelCase__ , F"{prompt_key}_{key}") , voice_preset[key] , allow_pickle=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Tuple = os.path.join(lowerCAmelCase__ , F"{prompt_key}_{key}.npy") SCREAMING_SNAKE_CASE_: int = tmp_dict with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__) , "w") as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__) super().save_pretrained(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str = None , **lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = self.speaker_embeddings[voice_preset] SCREAMING_SNAKE_CASE_: int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].") SCREAMING_SNAKE_CASE_: Optional[int] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" , "/") , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , lowerCAmelCase__) , cache_dir=kwargs.pop("cache_dir" , lowerCAmelCase__) , force_download=kwargs.pop("force_download" , lowerCAmelCase__) , proxies=kwargs.pop("proxies" , lowerCAmelCase__) , resume_download=kwargs.pop("resume_download" , lowerCAmelCase__) , local_files_only=kwargs.pop("local_files_only" , lowerCAmelCase__) , use_auth_token=kwargs.pop("use_auth_token" , lowerCAmelCase__) , revision=kwargs.pop("revision" , lowerCAmelCase__) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/') , voice_preset_paths[key])}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.") SCREAMING_SNAKE_CASE_: Optional[Any] = np.load(lowerCAmelCase__) return voice_preset_dict def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[dict] = None): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key.") if not isinstance(voice_preset[key] , np.ndarray): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") if len(voice_preset[key].shape) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") def __call__( self : Tuple , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : List[str]="pt" , lowerCAmelCase__ : Union[str, Any]=256 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str , ): if voice_preset is not None and not isinstance(lowerCAmelCase__ , lowerCAmelCase__): if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): SCREAMING_SNAKE_CASE_: Optional[int] = self._load_voice_preset(lowerCAmelCase__) else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and not voice_preset.endswith(".npz"): SCREAMING_SNAKE_CASE_: List[str] = voice_preset + ".npz" SCREAMING_SNAKE_CASE_: Tuple = np.load(lowerCAmelCase__) if voice_preset is not None: self._validate_voice_preset_dict(lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = self.tokenizer( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , padding="max_length" , max_length=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) if voice_preset is not None: SCREAMING_SNAKE_CASE_: int = voice_preset return encoded_text
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = ['''image_processor'''] _UpperCAmelCase : List[str] = '''SamImageProcessor''' def __init__( self : str , lowerCAmelCase__ : Any): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = self.image_processor SCREAMING_SNAKE_CASE_: List[Any] = -10 SCREAMING_SNAKE_CASE_: Optional[int] = self.image_processor.size["longest_edge"] def __call__( self : str , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : str , ): SCREAMING_SNAKE_CASE_: Optional[Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # pop arguments that are not used in the foward but used nevertheless SCREAMING_SNAKE_CASE_: List[str] = encoding_image_processor["original_sizes"] if hasattr(lowerCAmelCase__ , "numpy"): # Checks if Torch or TF tensor SCREAMING_SNAKE_CASE_: Any = original_sizes.numpy() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._check_and_preprocess_points( input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: int = self._normalize_and_convert( lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) return encoding_image_processor def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : int="pt" , ): if input_points is not None: if len(lowerCAmelCase__) != len(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Any = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0]) for point in input_points ] else: SCREAMING_SNAKE_CASE_: List[Any] = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__) for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array(lowerCAmelCase__) if input_labels is not None: SCREAMING_SNAKE_CASE_: Optional[int] = np.array(lowerCAmelCase__) if input_boxes is not None: if len(lowerCAmelCase__) != len(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[str] = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__) for box in input_boxes ] else: SCREAMING_SNAKE_CASE_: str = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__) for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__) ] SCREAMING_SNAKE_CASE_: Optional[Any] = np.array(lowerCAmelCase__) if input_boxes is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.from_numpy(lowerCAmelCase__) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE_: Optional[Any] = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": SCREAMING_SNAKE_CASE_: str = tf.convert_to_tensor(lowerCAmelCase__) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE_: int = tf.expand_dims(lowerCAmelCase__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes}) if input_points is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_: str = torch.from_numpy(lowerCAmelCase__) # point batch size of 1 by default SCREAMING_SNAKE_CASE_: Optional[int] = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": SCREAMING_SNAKE_CASE_: int = tf.convert_to_tensor(lowerCAmelCase__) # point batch size of 1 by default SCREAMING_SNAKE_CASE_: Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"input_points": input_points}) if input_labels is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_: List[Any] = torch.from_numpy(lowerCAmelCase__) # point batch size of 1 by default SCREAMING_SNAKE_CASE_: List[Any] = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": SCREAMING_SNAKE_CASE_: Optional[Any] = tf.convert_to_tensor(lowerCAmelCase__) # point batch size of 1 by default SCREAMING_SNAKE_CASE_: List[Any] = tf.expand_dims(lowerCAmelCase__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels}) return encoding_image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Tuple = max([point.shape[0] for point in input_points]) SCREAMING_SNAKE_CASE_: Optional[Any] = [] for i, point in enumerate(lowerCAmelCase__): if point.shape[0] != expected_nb_points: SCREAMING_SNAKE_CASE_: Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = processed_input_points return input_points, input_labels def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]=False): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = original_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = deepcopy(lowerCAmelCase__).astype(lowerCAmelCase__) if is_bounding_box: SCREAMING_SNAKE_CASE_: Tuple = coords.reshape(-1 , 2 , 2) SCREAMING_SNAKE_CASE_: int = coords[..., 0] * (new_w / old_w) SCREAMING_SNAKE_CASE_: List[str] = coords[..., 1] * (new_h / old_h) if is_bounding_box: SCREAMING_SNAKE_CASE_: List[Any] = coords.reshape(-1 , 4) return coords def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=None , ): if input_points is not None: if hasattr(lowerCAmelCase__ , "numpy"): # Checks for TF or Torch tensor SCREAMING_SNAKE_CASE_: Optional[Any] = input_points.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__) or not isinstance(input_points[0] , lowerCAmelCase__): raise ValueError("Input points must be a list of list of floating points.") SCREAMING_SNAKE_CASE_: List[Any] = [np.array(lowerCAmelCase__) for input_point in input_points] else: SCREAMING_SNAKE_CASE_: List[Any] = None if input_labels is not None: if hasattr(lowerCAmelCase__ , "numpy"): SCREAMING_SNAKE_CASE_: List[str] = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__) or not isinstance(input_labels[0] , lowerCAmelCase__): raise ValueError("Input labels must be a list of list integers.") SCREAMING_SNAKE_CASE_: Any = [np.array(lowerCAmelCase__) for label in input_labels] else: SCREAMING_SNAKE_CASE_: List[Any] = None if input_boxes is not None: if hasattr(lowerCAmelCase__ , "numpy"): SCREAMING_SNAKE_CASE_: Tuple = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase__ , lowerCAmelCase__) or not isinstance(input_boxes[0] , lowerCAmelCase__) or not isinstance(input_boxes[0][0] , lowerCAmelCase__) ): raise ValueError("Input boxes must be a list of list of list of floating points.") SCREAMING_SNAKE_CASE_: List[str] = [np.array(lowerCAmelCase__).astype(np.floataa) for box in input_boxes] else: SCREAMING_SNAKE_CASE_: Dict = None return input_points, input_labels, input_boxes @property def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase__)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Union[str, Any]): return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__)
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowercase ( datasets.BuilderConfig ): """simple docstring""" _UpperCAmelCase : Optional[datasets.Features] = None class __lowercase ( datasets.ArrowBasedBuilder ): """simple docstring""" _UpperCAmelCase : Dict = PandasConfig def _SCREAMING_SNAKE_CASE ( self : List[Any]): return datasets.DatasetInfo(features=self.config.features) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[str, Any]): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") SCREAMING_SNAKE_CASE_: List[Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase__ , (str, list, tuple)): SCREAMING_SNAKE_CASE_: List[str] = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_: int = [dl_manager.iter_files(lowerCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] SCREAMING_SNAKE_CASE_: Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_: str = [dl_manager.iter_files(lowerCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files})) return splits def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : pa.Table): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_: List[str] = table_cast(lowerCAmelCase__ , self.config.features.arrow_schema) return pa_table def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Any): for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__)): with open(lowerCAmelCase__ , "rb") as f: SCREAMING_SNAKE_CASE_: Tuple = pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase__)) yield i, self._cast_table(lowerCAmelCase__)
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCAmelCase : Optional[int] = logging.getLogger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=None): super().__init__( lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = None def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int): logger.info("initializing retrieval") # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized") # needs to be set manually SCREAMING_SNAKE_CASE_: Dict = self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE_: List[Any] = str(distributed_port + 1) SCREAMING_SNAKE_CASE_: int = dist.new_group(ranks=lowerCAmelCase__ , backend="gloo") # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main") self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return dist.get_rank(group=self.process_group) == 0 def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int]=torch.floataa): SCREAMING_SNAKE_CASE_: str = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__) dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group) return target_tensor def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE_: Any = next((addr for addr in addrs if addr.startswith("e")) , lowerCAmelCase__) return ifname def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int): # single GPU training if not dist.is_initialized(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__) # distributed training SCREAMING_SNAKE_CASE_: Dict = dist.get_world_size(group=self.process_group) # gather logic SCREAMING_SNAKE_CASE_: Optional[Any] = None if self._is_main(): SCREAMING_SNAKE_CASE_: Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase__)] dist.gather(torch.tensor(lowerCAmelCase__) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group) # scatter logic SCREAMING_SNAKE_CASE_: Optional[Any] = question_hidden_states.shape[0] SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: List[Any] = [] if self._is_main(): assert len(lowerCAmelCase__) == world_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._main_retrieve(torch.cat(lowerCAmelCase__).numpy() , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa) SCREAMING_SNAKE_CASE_: int = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__)
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
from typing import Dict from .base import GenericTensor, Pipeline class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : Optional[int]): if tokenize_kwargs is None: SCREAMING_SNAKE_CASE_: Any = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)") SCREAMING_SNAKE_CASE_: Dict = truncation SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenize_kwargs SCREAMING_SNAKE_CASE_: List[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE_: Any = return_tensors return preprocess_params, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = self.framework SCREAMING_SNAKE_CASE_: Any = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) return model_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: int = self.model(**lowerCAmelCase__) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=False): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Union[str, Any] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Tuple): return super().__call__(*lowerCAmelCase__ , **lowerCAmelCase__)
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Load checkpoint SCREAMING_SNAKE_CASE_: List[str] = torch.load(_UpperCAmelCase , map_location="cpu" ) SCREAMING_SNAKE_CASE_: List[str] = chkpt["model"] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE_: Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE_: List[Any] = v else: SCREAMING_SNAKE_CASE_: Tuple = v SCREAMING_SNAKE_CASE_: str = chkpt["params"] SCREAMING_SNAKE_CASE_: List[Any] = {n: v for n, v in config.items() if not isinstance(_UpperCAmelCase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE_: Tuple = chkpt["dico_word2id"] SCREAMING_SNAKE_CASE_: Dict = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE_: int = pytorch_dump_folder_path + "/" + WEIGHTS_NAME SCREAMING_SNAKE_CASE_: Any = pytorch_dump_folder_path + "/" + CONFIG_NAME SCREAMING_SNAKE_CASE_: List[Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + "\n" ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + "\n" ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1