code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __lowercase ( enum.Enum ): """simple docstring""" _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Any = 1 _UpperCAmelCase : str = 2 @add_end_docstrings(UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : Dict , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. SCREAMING_SNAKE_CASE_: Optional[Any] = None if self.model.config.prefix is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. SCREAMING_SNAKE_CASE_: List[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self._sanitize_parameters(prefix=lowerCAmelCase__ , **self._forward_params) SCREAMING_SNAKE_CASE_: int = {**self._preprocess_params, **preprocess_params} SCREAMING_SNAKE_CASE_: List[Any] = {**self._forward_params, **forward_params} def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: str = {} if prefix is not None: SCREAMING_SNAKE_CASE_: str = prefix if prefix: SCREAMING_SNAKE_CASE_: str = self.tokenizer( lowerCAmelCase__ , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_: Dict = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" " [None, 'hole']") SCREAMING_SNAKE_CASE_: Any = handle_long_generation preprocess_params.update(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = generate_kwargs SCREAMING_SNAKE_CASE_: str = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`") if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") SCREAMING_SNAKE_CASE_: List[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`") SCREAMING_SNAKE_CASE_: Dict = ReturnType.TENSORS if return_type is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE_: List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: SCREAMING_SNAKE_CASE_: Optional[Any] = self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) if len(lowerCAmelCase__) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim.") SCREAMING_SNAKE_CASE_: Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*lowerCAmelCase__ , **lowerCAmelCase__) def __call__( self : Optional[int] , lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Optional[int]): return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict="" , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Any = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=self.framework) SCREAMING_SNAKE_CASE_: Dict = prompt_text if handle_long_generation == "hole": SCREAMING_SNAKE_CASE_: List[Any] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: SCREAMING_SNAKE_CASE_: str = generate_kwargs["max_new_tokens"] else: SCREAMING_SNAKE_CASE_: List[Any] = generate_kwargs.get("max_length" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected") if cur_len + new_tokens > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_: Any = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length") SCREAMING_SNAKE_CASE_: Tuple = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: SCREAMING_SNAKE_CASE_: Optional[Any] = inputs["attention_mask"][:, -keep_length:] return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Dict = model_inputs["input_ids"] SCREAMING_SNAKE_CASE_: Tuple = model_inputs.get("attention_mask" , lowerCAmelCase__) # Allow empty prompts if input_ids.shape[1] == 0: SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: Tuple = 1 else: SCREAMING_SNAKE_CASE_: Union[str, Any] = input_ids.shape[0] SCREAMING_SNAKE_CASE_: int = model_inputs.pop("prompt_text") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. SCREAMING_SNAKE_CASE_: Optional[Any] = generate_kwargs.pop("prefix_length" , 0) if prefix_length > 0: SCREAMING_SNAKE_CASE_: str = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: SCREAMING_SNAKE_CASE_: Union[str, Any] = generate_kwargs.get("max_length") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length SCREAMING_SNAKE_CASE_: Dict = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL SCREAMING_SNAKE_CASE_: Any = self.model.generate(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = generated_sequence.shape[0] if self.framework == "pt": SCREAMING_SNAKE_CASE_: int = generated_sequence.reshape(lowerCAmelCase__ , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": SCREAMING_SNAKE_CASE_: Dict = tf.reshape(lowerCAmelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=ReturnType.FULL_TEXT , lowerCAmelCase__ : Union[str, Any]=True): SCREAMING_SNAKE_CASE_: Any = model_outputs["generated_sequence"][0] SCREAMING_SNAKE_CASE_: Optional[Any] = model_outputs["input_ids"] SCREAMING_SNAKE_CASE_: Dict = model_outputs["prompt_text"] SCREAMING_SNAKE_CASE_: Optional[Any] = generated_sequence.numpy().tolist() SCREAMING_SNAKE_CASE_: Optional[int] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: SCREAMING_SNAKE_CASE_: Union[str, Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text SCREAMING_SNAKE_CASE_: str = self.tokenizer.decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: SCREAMING_SNAKE_CASE_: Tuple = 0 else: SCREAMING_SNAKE_CASE_: str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , )) if return_type == ReturnType.FULL_TEXT: SCREAMING_SNAKE_CASE_: List[str] = prompt_text + text[prompt_length:] else: SCREAMING_SNAKE_CASE_: int = text[prompt_length:] SCREAMING_SNAKE_CASE_: Optional[Any] = {"generated_text": all_text} records.append(lowerCAmelCase__) return records
13
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase : str = ["""small""", """medium""", """large"""] lowerCAmelCase : Dict = """lm_head.decoder.weight""" lowerCAmelCase : Optional[Any] = """lm_head.weight""" def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = torch.load(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) lowerCAmelCase : List[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase : Tuple = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') lowerCAmelCase : List[Any] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
import math def A_ ( _UpperCAmelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A_ ( _UpperCAmelCase = 1_00_01 ): try: SCREAMING_SNAKE_CASE_: Any = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) SCREAMING_SNAKE_CASE_: list[int] = [] SCREAMING_SNAKE_CASE_: str = 2 while len(_UpperCAmelCase ) < nth: if is_prime(_UpperCAmelCase ): primes.append(_UpperCAmelCase ) num += 1 else: num += 1 return primes[len(_UpperCAmelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE_: str = mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_: Tuple = max( mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , mf_knapsack(i - 1 , _UpperCAmelCase , _UpperCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) SCREAMING_SNAKE_CASE_: Any = val return f[i][j] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE_: Optional[int] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE_: List[str] = dp[i - 1][w_] return dp[n][w_], dp def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not (isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) SCREAMING_SNAKE_CASE_: int = len(_UpperCAmelCase ) if num_items != len(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(_UpperCAmelCase )} values" ) raise ValueError(_UpperCAmelCase ) for i in range(_UpperCAmelCase ): if not isinstance(wt[i] , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = ( "All weights must be integers but got weight of " f"type {type(wt[i] )} at index {i}" ) raise TypeError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: set = set() _construct_solution(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return optimal_val, example_optional_set def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) else: optimal_set.add(_UpperCAmelCase ) _construct_solution(_UpperCAmelCase , _UpperCAmelCase , i - 1 , j - wt[i - 1] , _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = [3, 2, 4, 4] lowerCAmelCase : str = [4, 3, 2, 3] lowerCAmelCase : Any = 4 lowerCAmelCase : List[Any] = 6 lowerCAmelCase : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] lowerCAmelCase , lowerCAmelCase : Any = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 lowerCAmelCase , lowerCAmelCase : Any = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig lowerCAmelCase : Any = { """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Tuple = '''ernie_m''' _UpperCAmelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : List[str] , lowerCAmelCase__ : int = 25_0002 , lowerCAmelCase__ : int = 768 , lowerCAmelCase__ : int = 12 , lowerCAmelCase__ : int = 12 , lowerCAmelCase__ : int = 3072 , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 514 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 1E-05 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=0.0 , **lowerCAmelCase__ : Any , ): super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = vocab_size SCREAMING_SNAKE_CASE_: str = hidden_size SCREAMING_SNAKE_CASE_: Dict = num_hidden_layers SCREAMING_SNAKE_CASE_: Any = num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] = intermediate_size SCREAMING_SNAKE_CASE_: Any = hidden_act SCREAMING_SNAKE_CASE_: Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[int] = initializer_range SCREAMING_SNAKE_CASE_: List[str] = layer_norm_eps SCREAMING_SNAKE_CASE_: str = classifier_dropout SCREAMING_SNAKE_CASE_: Optional[int] = is_decoder SCREAMING_SNAKE_CASE_: List[str] = act_dropout
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : List[Any] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_: Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_: Dict = "" else: SCREAMING_SNAKE_CASE_: Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: str = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_: Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: Dict = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_: List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: Tuple = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: List[Any] = in_proj_bias[-config.hidden_size :] def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = dct.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = val def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: Dict = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = ViTConfig() SCREAMING_SNAKE_CASE_: int = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: str = True SCREAMING_SNAKE_CASE_: Tuple = int(vit_name[-12:-10] ) SCREAMING_SNAKE_CASE_: List[str] = int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE_: Optional[int] = 10_00 SCREAMING_SNAKE_CASE_: str = "huggingface/label-files" SCREAMING_SNAKE_CASE_: Optional[Any] = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Tuple = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Any = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Union[str, Any] = int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): SCREAMING_SNAKE_CASE_: Any = 1_92 SCREAMING_SNAKE_CASE_: Any = 7_68 SCREAMING_SNAKE_CASE_: int = 12 SCREAMING_SNAKE_CASE_: List[Any] = 3 elif vit_name[9:].startswith("small" ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 3_84 SCREAMING_SNAKE_CASE_: Any = 15_36 SCREAMING_SNAKE_CASE_: List[str] = 12 SCREAMING_SNAKE_CASE_: Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith("small" ): SCREAMING_SNAKE_CASE_: Union[str, Any] = 7_68 SCREAMING_SNAKE_CASE_: List[Any] = 23_04 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: str = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): SCREAMING_SNAKE_CASE_: Optional[int] = 10_24 SCREAMING_SNAKE_CASE_: List[str] = 40_96 SCREAMING_SNAKE_CASE_: List[Any] = 24 SCREAMING_SNAKE_CASE_: Optional[Any] = 16 elif vit_name[4:].startswith("huge" ): SCREAMING_SNAKE_CASE_: Optional[Any] = 12_80 SCREAMING_SNAKE_CASE_: List[Any] = 51_20 SCREAMING_SNAKE_CASE_: str = 32 SCREAMING_SNAKE_CASE_: List[str] = 16 # load original model from timm SCREAMING_SNAKE_CASE_: int = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_: Dict = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: str = ViTModel(_UpperCAmelCase ).eval() else: SCREAMING_SNAKE_CASE_: Tuple = ViTForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE_: int = DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE_: Dict = encoding["pixel_values"] SCREAMING_SNAKE_CASE_: int = model(_UpperCAmelCase ) if base_model: SCREAMING_SNAKE_CASE_: Tuple = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE_: Tuple = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase : List[str] = random.Random() def A_ ( _UpperCAmelCase , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = global_rng SCREAMING_SNAKE_CASE_: str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Optional[int]=400 , lowerCAmelCase__ : Union[str, Any]=2000 , lowerCAmelCase__ : List[str]=24 , lowerCAmelCase__ : Any=24 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : List[str]=1_6000 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[Any]=True , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = parent SCREAMING_SNAKE_CASE_: Dict = batch_size SCREAMING_SNAKE_CASE_: Optional[int] = min_seq_length SCREAMING_SNAKE_CASE_: List[str] = max_seq_length SCREAMING_SNAKE_CASE_: str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_: List[Any] = feature_size SCREAMING_SNAKE_CASE_: Tuple = num_mel_bins SCREAMING_SNAKE_CASE_: Dict = padding_value SCREAMING_SNAKE_CASE_: List[str] = sampling_rate SCREAMING_SNAKE_CASE_: Dict = return_attention_mask SCREAMING_SNAKE_CASE_: List[Any] = do_normalize def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : str=False): def _flatten(lowerCAmelCase__ : Optional[int]): return list(itertools.chain(*lowerCAmelCase__)) if equal_length: SCREAMING_SNAKE_CASE_: List[str] = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_: Dict = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: SCREAMING_SNAKE_CASE_: Tuple = [np.asarray(lowerCAmelCase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = SpeechaTextFeatureExtractor if is_speech_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = SpeechaTextFeatureExtractionTester(self) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str): self.assertTrue(np.all(np.mean(lowerCAmelCase__ , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ , axis=0) - 1) < 1E-3)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE_: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_: Optional[Any] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: str = [np.asarray(lowerCAmelCase__) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE_: Dict = feature_extractor(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input SCREAMING_SNAKE_CASE_: int = feature_extractor(speech_inputs[0] , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: int = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # Test batched SCREAMING_SNAKE_CASE_: Optional[int] = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: str = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_: Any = [floats_list((1, x))[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_: Optional[int] = np.asarray(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features SCREAMING_SNAKE_CASE_: Optional[Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: int = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: Any = ["longest", "max_length", "do_not_pad"] SCREAMING_SNAKE_CASE_: Union[str, Any] = [None, 16, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Any = feature_extractor( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = inputs.input_features SCREAMING_SNAKE_CASE_: Tuple = inputs.attention_mask SCREAMING_SNAKE_CASE_: int = [np.sum(lowerCAmelCase__) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: List[str] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: Union[str, Any] = ["longest", "max_length", "do_not_pad"] SCREAMING_SNAKE_CASE_: str = [None, 16, None] for max_length, padding in zip(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[str] = feature_extractor( lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = inputs.input_features SCREAMING_SNAKE_CASE_: Tuple = inputs.attention_mask SCREAMING_SNAKE_CASE_: Optional[int] = [np.sum(lowerCAmelCase__) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: Any = feature_extractor( lowerCAmelCase__ , padding="max_length" , max_length=4 , truncation=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[int] = inputs.input_features SCREAMING_SNAKE_CASE_: Optional[int] = inputs.attention_mask SCREAMING_SNAKE_CASE_: Optional[int] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: Union[str, Any] = feature_extractor( lowerCAmelCase__ , padding="longest" , max_length=4 , truncation=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Dict = inputs.input_features SCREAMING_SNAKE_CASE_: Any = inputs.attention_mask SCREAMING_SNAKE_CASE_: Optional[int] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) SCREAMING_SNAKE_CASE_: Any = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] SCREAMING_SNAKE_CASE_: List[Any] = feature_extractor( lowerCAmelCase__ , padding="longest" , max_length=16 , truncation=lowerCAmelCase__ , return_tensors="np" , return_attention_mask=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: int = inputs.input_features SCREAMING_SNAKE_CASE_: int = inputs.attention_mask SCREAMING_SNAKE_CASE_: Union[str, Any] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): import torch SCREAMING_SNAKE_CASE_: Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: List[Any] = np.random.rand(100 , 32).astype(np.floataa) SCREAMING_SNAKE_CASE_: int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE_: str = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) SCREAMING_SNAKE_CASE_: Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Any): from datasets import load_dataset SCREAMING_SNAKE_CASE_: Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech SCREAMING_SNAKE_CASE_: Optional[int] = ds.sort("id").select(range(lowerCAmelCase__))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _SCREAMING_SNAKE_CASE ( self : List[Any]): # fmt: off SCREAMING_SNAKE_CASE_: List[str] = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ]) # fmt: on SCREAMING_SNAKE_CASE_: Dict = self._load_datasamples(1) SCREAMING_SNAKE_CASE_: Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) SCREAMING_SNAKE_CASE_: Any = feature_extractor(lowerCAmelCase__ , return_tensors="pt").input_features self.assertEquals(input_features.shape , (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , lowerCAmelCase__ , atol=1E-4))
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = "huggingface/label-files" SCREAMING_SNAKE_CASE_: Dict = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Tuple = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: Tuple = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[int] = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_: Union[str, Any] = BitConfig( conv_layer=_UpperCAmelCase , num_labels=10_00 , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , ) return config def A_ ( _UpperCAmelCase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_: Optional[Any] = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: Any = name.replace("blocks" , "layers" ) if "head.fc" in name: SCREAMING_SNAKE_CASE_: int = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): SCREAMING_SNAKE_CASE_: Any = "bit." + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_: int = "bit.encoder." + name return name def A_ ( ): SCREAMING_SNAKE_CASE_: Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: Dict = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: str = get_config(_UpperCAmelCase ) # load original model from timm SCREAMING_SNAKE_CASE_: Tuple = create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_: List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[Any] = state_dict.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = val.squeeze() if "head" in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_: Union[str, Any] = BitForImageClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # create image processor SCREAMING_SNAKE_CASE_: Union[str, Any] = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple = transform.transforms SCREAMING_SNAKE_CASE_: Union[str, Any] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_: Tuple = BitImageProcessor( do_resize=_UpperCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE_: Dict = prepare_img() SCREAMING_SNAKE_CASE_: int = transform(_UpperCAmelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_: str = processor(_UpperCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_: int = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(f"ybelkada/{model_name}" ) processor.push_to_hub(f"ybelkada/{model_name}" ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowerCAmelCase : int = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = RoFormerTokenizer _UpperCAmelCase : Any = RoFormerTokenizerFast _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[str] = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): super().setUp() def _SCREAMING_SNAKE_CASE ( self : int , **lowerCAmelCase__ : Tuple): return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , **lowerCAmelCase__ : int): return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = "永和服装饰品有限公司,今天天气非常好" SCREAMING_SNAKE_CASE_: Union[str, Any] = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_chinese_input_output_texts() SCREAMING_SNAKE_CASE_: Tuple = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , output_text.split()) SCREAMING_SNAKE_CASE_: List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_: Any = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.get_chinese_input_output_texts() SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , output_text.split()) SCREAMING_SNAKE_CASE_: Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_: int = [2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = 1 @register_to_config def __init__( self : Any , lowerCAmelCase__ : int = 1000 , lowerCAmelCase__ : Optional[Union[np.ndarray, List[float]]] = None): # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase__) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE_: Any = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE_: int = 4 # running values SCREAMING_SNAKE_CASE_: Optional[Any] = [] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, torch.device] = None): SCREAMING_SNAKE_CASE_: Optional[Any] = num_inference_steps SCREAMING_SNAKE_CASE_: Tuple = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1] SCREAMING_SNAKE_CASE_: int = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE_: str = torch.tensor(self.config.trained_betas , dtype=torch.floataa) else: SCREAMING_SNAKE_CASE_: Dict = torch.sin(steps * math.pi / 2) ** 2 SCREAMING_SNAKE_CASE_: str = (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE_: Optional[int] = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE_: str = timesteps.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = [] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : bool = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler") SCREAMING_SNAKE_CASE_: List[str] = (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE_: Union[str, Any] = timestep_index + 1 SCREAMING_SNAKE_CASE_: Any = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase__) if len(self.ets) == 1: SCREAMING_SNAKE_CASE_: Tuple = self.ets[-1] elif len(self.ets) == 2: SCREAMING_SNAKE_CASE_: Optional[int] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: SCREAMING_SNAKE_CASE_: int = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: SCREAMING_SNAKE_CASE_: Optional[int] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE_: Dict = self._get_prev_sample(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : torch.FloatTensor , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[int]): return sample def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Optional[int] = self.alphas[timestep_index] SCREAMING_SNAKE_CASE_: int = self.betas[timestep_index] SCREAMING_SNAKE_CASE_: Optional[Any] = self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE_: str = self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE_: List[str] = (sample - sigma * ets) / max(lowerCAmelCase__ , 1E-8) SCREAMING_SNAKE_CASE_: Dict = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Union[str, Any]): return self.config.num_train_timesteps
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = TransfoXLTokenizer _UpperCAmelCase : Dict = False _UpperCAmelCase : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : str): super().setUp() SCREAMING_SNAKE_CASE_: List[Any] = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = "<unk> UNwanted , running" SCREAMING_SNAKE_CASE_: Tuple = "<unk> unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("<unk> UNwanted , running") self.assertListEqual(lowerCAmelCase__ , ["<unk>", "unwanted", ",", "running"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [0, 4, 8, 7]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: str = TransfoXLTokenizer(lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? ") , ["hello", "!", "how", "are", "you", "?"]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: int = TransfoXLTokenizer(lower_case=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" SCREAMING_SNAKE_CASE_: List[str] = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = len(lowerCAmelCase__) tokenizer.add_tokens(["new1", "new2"]) tokenizer.move_added_token("new1" , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1") , [1]) self.assertEqual(tokenizer.decode([1]) , "new1")
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = generate_pascal_triangle(_UpperCAmelCase ) for row_idx in range(_UpperCAmelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_: list[list[int]] = [] for current_row_idx in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = populate_current_row(_UpperCAmelCase , _UpperCAmelCase ) triangle.append(_UpperCAmelCase ) return triangle def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Dict = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = 1, 1 for current_col_idx in range(1 , _UpperCAmelCase ): calculate_current_element( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return current_row def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: str = triangle[current_row_idx - 1][current_col_idx - 1] SCREAMING_SNAKE_CASE_: Optional[int] = triangle[current_row_idx - 1][current_col_idx] SCREAMING_SNAKE_CASE_: str = above_to_left_elt + above_to_right_elt def A_ ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) SCREAMING_SNAKE_CASE_: list[list[int]] = [[1]] for row_index in range(1 , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = [0] + result[-1] + [0] SCREAMING_SNAKE_CASE_: Tuple = row_index + 1 # Calculate the number of distinct elements in a row SCREAMING_SNAKE_CASE_: Any = sum(divmod(_UpperCAmelCase , 2 ) ) SCREAMING_SNAKE_CASE_: Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] SCREAMING_SNAKE_CASE_: Tuple = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() SCREAMING_SNAKE_CASE_: List[str] = row_first_half + row_second_half result.append(_UpperCAmelCase ) return result def A_ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) -> None: SCREAMING_SNAKE_CASE_: int = f"{func.__name__}({value})" SCREAMING_SNAKE_CASE_: List[str] = timeit(f"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
1
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
1
# Algorithm for the pigeonhole sorting def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase ) # min() finds the minimum value SCREAMING_SNAKE_CASE_: Tuple = max(_UpperCAmelCase ) # max() finds the maximum value SCREAMING_SNAKE_CASE_: str = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE_: List[Any] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE_: int = 0 for count in range(_UpperCAmelCase ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE_: str = count + min_val i += 1 def A_ ( ): SCREAMING_SNAKE_CASE_: List[str] = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_UpperCAmelCase ) print("Sorted order is:" , " ".join(_UpperCAmelCase ) ) if __name__ == "__main__": main()
13
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Dict = logging.get_logger(__name__) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels SCREAMING_SNAKE_CASE_: Dict = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE_: Dict = 3_66 SCREAMING_SNAKE_CASE_: str = "object365-id2label.json" else: SCREAMING_SNAKE_CASE_: Tuple = 91 SCREAMING_SNAKE_CASE_: List[str] = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE_: Tuple = num_labels SCREAMING_SNAKE_CASE_: Optional[Any] = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Any = idalabel SCREAMING_SNAKE_CASE_: Any = {v: k for k, v in idalabel.items()} return config def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = dct.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = val def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE_: Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Optional[int] = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_: List[Any] = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: List[str] = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE_: List[str] = in_proj_bias[: dim] SCREAMING_SNAKE_CASE_: List[Any] = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_: List[Any] = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE_: Optional[int] = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE_: Optional[int] = in_proj_bias[-dim :] # fmt: on def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE_: int = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE_: Optional[Any] = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE_: Union[str, Any] = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: int = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE_: Tuple = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE_: List[Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE_: List[str] = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE_: int = in_proj_bias[-hidden_size:] def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: List[str] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE_: Optional[Any] = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE_: Tuple = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(f"Model name {model_name} not supported" ) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.load(_UpperCAmelCase , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys SCREAMING_SNAKE_CASE_: str = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE_: Any = state_dict.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = val if "input_proj" in key: SCREAMING_SNAKE_CASE_: Union[str, Any] = state_dict.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE_: str = state_dict.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE_: Optional[int] = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = "cuda" if torch.cuda.is_available() else "cpu" model.to(_UpperCAmelCase ) # load image processor SCREAMING_SNAKE_CASE_: str = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Any = processor(images=_UpperCAmelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE_: str = encoding["pixel_values"] SCREAMING_SNAKE_CASE_: Optional[int] = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE_: int = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE_: int = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) SCREAMING_SNAKE_CASE_: List[str] = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(f"jozhang97/{model_name}" ) processor.push_to_hub(f"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase : Any = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[str] = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Optional[Any] = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase : Union[str, Any] = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class __lowercase ( tr.AbstractTransform ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : str = " "): SCREAMING_SNAKE_CASE_: Any = sentence_delimiter def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str): return list(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[str] = [] for sent_idx, sentence in enumerate(lowerCAmelCase__): chars.extend(self.process_string(lowerCAmelCase__)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__) - 1: chars.append(self.sentence_delimiter) return chars lowerCAmelCase : Dict = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase : Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase : Any = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCAmelCase : List[str] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowerCAmelCase : Any = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str=False): if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"] SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 SCREAMING_SNAKE_CASE_: Any = 0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[Any] = jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = AlbertTokenizer _UpperCAmelCase : Tuple = AlbertTokenizerFast _UpperCAmelCase : int = True _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[str] = AlbertTokenizer(lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Tuple = "this is a test" SCREAMING_SNAKE_CASE_: Optional[int] = "this is a test" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "<pad>" SCREAMING_SNAKE_CASE_: Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<pad>") self.assertEqual(vocab_keys[1] , "<unk>") self.assertEqual(vocab_keys[-1] , "▁eloquent") self.assertEqual(len(lowerCAmelCase__) , 3_0000) def _SCREAMING_SNAKE_CASE ( self : int): self.assertEqual(self.get_tokenizer().vocab_size , 3_0000) def _SCREAMING_SNAKE_CASE ( self : List[str]): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_: str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Optional[Any] = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = AlbertTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁this", "▁is", "▁a", "▁test"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [48, 25, 21, 1289]) SCREAMING_SNAKE_CASE_: int = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: List[str] = AlbertTokenizer(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode("sequence builders") SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode("multi-sequence build") SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _SCREAMING_SNAKE_CASE ( self : str): # fmt: off SCREAMING_SNAKE_CASE_: Any = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
13
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
1
def A_ ( _UpperCAmelCase = 1_00_00_00 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = set(range(3 , _UpperCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , _UpperCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _UpperCAmelCase , _UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Optional[Any] = [float(_UpperCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_UpperCAmelCase , limit + 1 , _UpperCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
13
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
1
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Dict = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } lowerCAmelCase : Optional[Any] = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = set() SCREAMING_SNAKE_CASE_: Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: List[Any] = char SCREAMING_SNAKE_CASE_: Dict = set(_UpperCAmelCase ) return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : List[str]="<unk>" , lowerCAmelCase__ : str="<pad>" , lowerCAmelCase__ : List[Any]="<mask>" , **lowerCAmelCase__ : List[Any] , ): super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = vocab_file SCREAMING_SNAKE_CASE_: Optional[int] = merges_file SCREAMING_SNAKE_CASE_: List[str] = {} SCREAMING_SNAKE_CASE_: Optional[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[int] = 1 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 3 self.add_from_file(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: int = merges_handle.read().split("\n")[:-1] SCREAMING_SNAKE_CASE_: int = [tuple(merge.split()[:-1]) for merge in merges] SCREAMING_SNAKE_CASE_: Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: Dict = {} def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Any): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tuple(list(word[:-1]) + [word[-1] + "</w>"]) SCREAMING_SNAKE_CASE_: Tuple = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = bigram SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: Tuple = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: List[Any] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = "@@ ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word[:-4] SCREAMING_SNAKE_CASE_: int = word return word def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Dict = [] SCREAMING_SNAKE_CASE_: Optional[int] = re.findall(R"\S+\n?" , lowerCAmelCase__) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__).split(" "))) return split_tokens def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Optional[Any]): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): return self.decoder.get(lowerCAmelCase__ , self.unk_token) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: int = " ".join(lowerCAmelCase__).replace("@@ " , "").strip() return out_string def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file , lowerCAmelCase__) if os.path.abspath(self.merges_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.merges_file , lowerCAmelCase__) return out_vocab_file, out_merge_file def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Union[str, Any]): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): try: with open(lowerCAmelCase__ , "r" , encoding="utf-8") as fd: self.add_from_file(lowerCAmelCase__) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset") return SCREAMING_SNAKE_CASE_: Any = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE_: str = lineTmp.strip() SCREAMING_SNAKE_CASE_: Any = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") SCREAMING_SNAKE_CASE_: Optional[int] = line[:idx] SCREAMING_SNAKE_CASE_: int = len(self.encoder)
13
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
1
import pprint import requests lowerCAmelCase : Dict = """https://zenquotes.io/api""" def A_ ( ): return requests.get(API_ENDPOINT_URL + "/today" ).json() def A_ ( ): return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": lowerCAmelCase : List[str] = random_quotes() pprint.pprint(response)
13
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCAmelCase : List[Any] = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : str _UpperCAmelCase : Optional[str] = None _UpperCAmelCase : Optional[Union[str, int]] = None _UpperCAmelCase : Optional[Union[str, int]] = None _UpperCAmelCase : Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = _str_to_version_tuple(self.version_str) def __repr__( self : List[Any]): return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): return Version(lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): return other raise TypeError(F"{other} (type {type(lowerCAmelCase__)}) cannot be compared to version.") def __eq__( self : Tuple , lowerCAmelCase__ : Optional[int]): try: SCREAMING_SNAKE_CASE_: List[str] = self._validate_operand(lowerCAmelCase__) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = self._validate_operand(lowerCAmelCase__) return self.tuple < other.tuple def __hash__( self : str): return hash(_version_tuple_to_str(self.tuple)) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[Any] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def _SCREAMING_SNAKE_CASE ( self : Dict): return self.version_str def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(_UpperCAmelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def A_ ( _UpperCAmelCase ): return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
13
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = ['''pixel_values'''] def __init__( self : str , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Tuple , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = size if size is not None else {"shortest_edge": 224} SCREAMING_SNAKE_CASE_: Any = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_: str = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name="crop_size") SCREAMING_SNAKE_CASE_: Optional[int] = do_resize SCREAMING_SNAKE_CASE_: List[Any] = size SCREAMING_SNAKE_CASE_: Optional[Any] = resample SCREAMING_SNAKE_CASE_: List[Any] = do_center_crop SCREAMING_SNAKE_CASE_: List[Any] = crop_size SCREAMING_SNAKE_CASE_: Dict = do_rescale SCREAMING_SNAKE_CASE_: Dict = rescale_factor SCREAMING_SNAKE_CASE_: str = do_normalize SCREAMING_SNAKE_CASE_: List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_: Tuple = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_: List[str] = do_convert_rgb def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") SCREAMING_SNAKE_CASE_: List[str] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: Optional[Any] = get_size_dict(lowerCAmelCase__) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}") return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[int, float] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : float = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): SCREAMING_SNAKE_CASE_: Optional[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: str = size if size is not None else self.size SCREAMING_SNAKE_CASE_: str = get_size_dict(lowerCAmelCase__ , param_name="size" , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_: List[str] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_: List[Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" , default_to_square=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Union[str, Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: str = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_: List[str] = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_: str = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: List[Any] = [to_numpy_array(lowerCAmelCase__) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Tuple = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_: Union[str, Any] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: int = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: str = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: List[Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] SCREAMING_SNAKE_CASE_: Tuple = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
13
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Union[str, Any]): warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__)
13
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[int] = '''bit''' _UpperCAmelCase : Optional[Any] = ['''preactivation''', '''bottleneck'''] _UpperCAmelCase : List[Any] = ['''SAME''', '''VALID'''] def __init__( self : Tuple , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : int=64 , lowerCAmelCase__ : List[Any]=[256, 512, 1024, 2048] , lowerCAmelCase__ : Dict=[3, 4, 6, 3] , lowerCAmelCase__ : int="preactivation" , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[Any]=32 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : int , ): super().__init__(**lowerCAmelCase__) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types)}") if global_padding is not None: if global_padding.upper() in self.supported_padding: SCREAMING_SNAKE_CASE_: List[Any] = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported") SCREAMING_SNAKE_CASE_: Optional[Any] = num_channels SCREAMING_SNAKE_CASE_: Dict = embedding_size SCREAMING_SNAKE_CASE_: int = hidden_sizes SCREAMING_SNAKE_CASE_: Dict = depths SCREAMING_SNAKE_CASE_: str = layer_type SCREAMING_SNAKE_CASE_: int = hidden_act SCREAMING_SNAKE_CASE_: Optional[int] = global_padding SCREAMING_SNAKE_CASE_: Tuple = num_groups SCREAMING_SNAKE_CASE_: List[Any] = drop_path_rate SCREAMING_SNAKE_CASE_: Tuple = embedding_dynamic_padding SCREAMING_SNAKE_CASE_: List[str] = output_stride SCREAMING_SNAKE_CASE_: Union[str, Any] = width_factor SCREAMING_SNAKE_CASE_: Optional[Any] = ["stem"] + [F"stage{idx}" for idx in range(1 , len(lowerCAmelCase__) + 1)] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names)
13
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
1
def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) SCREAMING_SNAKE_CASE_: Any = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCAmelCase ) ) return round(_UpperCAmelCase , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: List[Any] = 8 # DPR tok SCREAMING_SNAKE_CASE_: str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE_: Tuple = os.path.join(self.tmpdirname , "dpr_tokenizer") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) # BART tok SCREAMING_SNAKE_CASE_: Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] SCREAMING_SNAKE_CASE_: Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_: Optional[int] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(self.tmpdirname , "bart_tokenizer") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Tuple = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(lowerCAmelCase__) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(lowerCAmelCase__)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer")) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer")) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): shutil.rmtree(self.tmpdirname) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = os.path.join(self.tmpdirname , "rag_tokenizer") SCREAMING_SNAKE_CASE_: Tuple = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) SCREAMING_SNAKE_CASE_: Union[str, Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(lowerCAmelCase__) rag_tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = RagTokenizer.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = RagTokenizer.from_pretrained("facebook/rag-token-nq") SCREAMING_SNAKE_CASE_: str = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] SCREAMING_SNAKE_CASE_: List[str] = tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: List[str] = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") SCREAMING_SNAKE_CASE_: Any = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__)
13
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A_ ( _UpperCAmelCase ): return 1.0 / (1.0 + np.exp(-_outputs )) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = np.max(_outputs , axis=-1 , keepdims=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_UpperCAmelCase ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = '''sigmoid''' _UpperCAmelCase : str = '''softmax''' _UpperCAmelCase : List[Any] = '''none''' @add_end_docstrings( UpperCAmelCase_ , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Tuple = ClassificationFunction.NONE def __init__( self : Union[str, Any] , **lowerCAmelCase__ : int): super().__init__(**lowerCAmelCase__) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]="" , **lowerCAmelCase__ : Union[str, Any]): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" SCREAMING_SNAKE_CASE_: int = tokenizer_kwargs SCREAMING_SNAKE_CASE_: Dict = {} if hasattr(self.model.config , "return_all_scores") and return_all_scores is None: SCREAMING_SNAKE_CASE_: List[str] = self.model.config.return_all_scores if isinstance(lowerCAmelCase__ , lowerCAmelCase__) or top_k is None: SCREAMING_SNAKE_CASE_: Any = top_k SCREAMING_SNAKE_CASE_: Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , lowerCAmelCase__ , ) if return_all_scores: SCREAMING_SNAKE_CASE_: int = None else: SCREAMING_SNAKE_CASE_: str = 1 if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[str] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: SCREAMING_SNAKE_CASE_: List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : int , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = super().__call__(*lowerCAmelCase__ , **lowerCAmelCase__) # TODO try and retrieve it in a nicer way from _sanitize_parameters. SCREAMING_SNAKE_CASE_: Tuple = "top_k" not in kwargs if isinstance(args[0] , lowerCAmelCase__) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = self.framework if isinstance(lowerCAmelCase__ , lowerCAmelCase__): return self.tokenizer(**lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1 and isinstance(inputs[0] , lowerCAmelCase__) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.") return self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[Any]): return self.model(**lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Optional[Any]=True): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: SCREAMING_SNAKE_CASE_: Optional[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply") and function_to_apply is None: SCREAMING_SNAKE_CASE_: Tuple = self.model.config.function_to_apply else: SCREAMING_SNAKE_CASE_: List[str] = ClassificationFunction.NONE SCREAMING_SNAKE_CASE_: List[Any] = model_outputs["logits"][0] SCREAMING_SNAKE_CASE_: Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: SCREAMING_SNAKE_CASE_: List[str] = sigmoid(lowerCAmelCase__) elif function_to_apply == ClassificationFunction.SOFTMAX: SCREAMING_SNAKE_CASE_: Tuple = softmax(lowerCAmelCase__) elif function_to_apply == ClassificationFunction.NONE: SCREAMING_SNAKE_CASE_: List[str] = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} SCREAMING_SNAKE_CASE_: Dict = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(lowerCAmelCase__) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase__: x["score"] , reverse=lowerCAmelCase__) if top_k is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] = dict_scores[:top_k] return dict_scores
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _UpperCAmelCase : int = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = AudioClassificationPipeline(model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__) # test with a raw waveform SCREAMING_SNAKE_CASE_: Union[str, Any] = np.zeros((3_4000,)) SCREAMING_SNAKE_CASE_: List[Any] = np.zeros((1_4000,)) return audio_classifier, [audioa, audio] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = examples SCREAMING_SNAKE_CASE_: List[str] = audio_classifier(lowerCAmelCase__) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCAmelCase__ , [ {"score": ANY(lowerCAmelCase__), "label": ANY(lowerCAmelCase__)}, {"score": ANY(lowerCAmelCase__), "label": ANY(lowerCAmelCase__)}, ] , ) SCREAMING_SNAKE_CASE_: Dict = audio_classifier(lowerCAmelCase__ , top_k=1) self.assertEqual( lowerCAmelCase__ , [ {"score": ANY(lowerCAmelCase__), "label": ANY(lowerCAmelCase__)}, ] , ) self.run_torchaudio(lowerCAmelCase__) @require_torchaudio def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Dict): import datasets # test with a local file SCREAMING_SNAKE_CASE_: Optional[Any] = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") SCREAMING_SNAKE_CASE_: List[Any] = dataset[0]["audio"]["array"] SCREAMING_SNAKE_CASE_: Tuple = audio_classifier(lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"score": ANY(lowerCAmelCase__), "label": ANY(lowerCAmelCase__)}, {"score": ANY(lowerCAmelCase__), "label": ANY(lowerCAmelCase__)}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = "anton-l/wav2vec2-random-tiny-classifier" SCREAMING_SNAKE_CASE_: Tuple = pipeline("audio-classification" , model=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = np.ones((8000,)) SCREAMING_SNAKE_CASE_: Optional[int] = audio_classifier(lowerCAmelCase__ , top_k=4) SCREAMING_SNAKE_CASE_: List[Any] = [ {"score": 0.0842, "label": "no"}, {"score": 0.0838, "label": "up"}, {"score": 0.0837, "label": "go"}, {"score": 0.0834, "label": "right"}, ] SCREAMING_SNAKE_CASE_: List[Any] = [ {"score": 0.0845, "label": "stop"}, {"score": 0.0844, "label": "on"}, {"score": 0.0841, "label": "right"}, {"score": 0.0834, "label": "left"}, ] self.assertIn(nested_simplify(lowerCAmelCase__ , decimals=4) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) SCREAMING_SNAKE_CASE_: int = {"array": np.ones((8000,)), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} SCREAMING_SNAKE_CASE_: str = audio_classifier(lowerCAmelCase__ , top_k=4) self.assertIn(nested_simplify(lowerCAmelCase__ , decimals=4) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) @require_torch @slow def _SCREAMING_SNAKE_CASE ( self : Any): import datasets SCREAMING_SNAKE_CASE_: Optional[Any] = "superb/wav2vec2-base-superb-ks" SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("audio-classification" , model=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test") SCREAMING_SNAKE_CASE_: List[Any] = np.array(dataset[3]["speech"] , dtype=np.floataa) SCREAMING_SNAKE_CASE_: str = audio_classifier(lowerCAmelCase__ , top_k=4) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=3) , [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF") def _SCREAMING_SNAKE_CASE ( self : List[str]): pass
13
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
1
import socket def A_ ( ): SCREAMING_SNAKE_CASE_: str = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE_: Tuple = socket.gethostname() SCREAMING_SNAKE_CASE_: str = 1_23_12 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: SCREAMING_SNAKE_CASE_: List[Any] = sock.recv(10_24 ) if not data: break out_file.write(_UpperCAmelCase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "hidden_sizes")) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "neck_hidden_sizes")) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_attention_heads")) class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=13 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : List[str]=640 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Optional[int]="silu" , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Dict=None , ): SCREAMING_SNAKE_CASE_: Any = parent SCREAMING_SNAKE_CASE_: List[Any] = batch_size SCREAMING_SNAKE_CASE_: Tuple = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: List[Any] = num_channels SCREAMING_SNAKE_CASE_: str = last_hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Dict = hidden_act SCREAMING_SNAKE_CASE_: Optional[Any] = conv_kernel_size SCREAMING_SNAKE_CASE_: str = output_stride SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = classifier_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_: Union[str, Any] = is_training SCREAMING_SNAKE_CASE_: Any = num_labels SCREAMING_SNAKE_CASE_: Tuple = initializer_range SCREAMING_SNAKE_CASE_: List[str] = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: str = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) SCREAMING_SNAKE_CASE_: List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = MobileViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = self.num_labels SCREAMING_SNAKE_CASE_: str = MobileViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Any = self.num_labels SCREAMING_SNAKE_CASE_: List[Any] = MobileViTForSemanticSegmentation(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase : str = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : int = False def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = MobileViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass @unittest.skip(reason="MobileViT does not support input and output embeddings") def _SCREAMING_SNAKE_CASE ( self : Dict): pass @unittest.skip(reason="MobileViT does not output attentions") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): def check_hidden_states_output(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.hidden_states SCREAMING_SNAKE_CASE_: Any = 5 self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for i in range(len(lowerCAmelCase__)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Any): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[int] = MobileViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: int = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = torch.tensor([-1.9364, -1.2327, -0.4653]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Optional[Any] = model.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Any = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Dict = model.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Dict = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_: Any = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(50, 60)]) SCREAMING_SNAKE_CASE_: Tuple = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , lowerCAmelCase__)
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = KandinskyImgaImgPipeline _UpperCAmelCase : Dict = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _UpperCAmelCase : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _UpperCAmelCase : Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Tuple = False @property def _SCREAMING_SNAKE_CASE ( self : Dict): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Any): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : str): return 100 @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Tuple): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_: Optional[int] = MultilingualCLIP(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : str): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE_: Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : int): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Any): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Any = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: List[Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_unet SCREAMING_SNAKE_CASE_: Any = self.dummy_movq SCREAMING_SNAKE_CASE_: str = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } SCREAMING_SNAKE_CASE_: str = DDIMScheduler(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=0): SCREAMING_SNAKE_CASE_: Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowerCAmelCase__) # create init_image SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_: Any = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("RGB").resize((256, 256)) if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: List[str] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: List[Any] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = "cpu" SCREAMING_SNAKE_CASE_: Any = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[Any] = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = output.images SCREAMING_SNAKE_CASE_: Any = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: str = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy") SCREAMING_SNAKE_CASE_: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") SCREAMING_SNAKE_CASE_: str = "A red cartoon frog, 4k" SCREAMING_SNAKE_CASE_: int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_: int = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE_: Any = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Tuple = IFInpaintingSuperResolutionPipeline _UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) _UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def _SCREAMING_SNAKE_CASE ( self : str): return self._get_superresolution_dummy_components() def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Tuple = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: str = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _SCREAMING_SNAKE_CASE ( self : Dict): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) def _SCREAMING_SNAKE_CASE ( self : List[Any]): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA") def _SCREAMING_SNAKE_CASE ( self : Any): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def _SCREAMING_SNAKE_CASE ( self : int): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
13
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = CanineTokenizer _UpperCAmelCase : Dict = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): super().setUp() SCREAMING_SNAKE_CASE_: Any = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return CanineTokenizer.from_pretrained("google/canine-s") def _SCREAMING_SNAKE_CASE ( self : str , **lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1024 return tokenizer @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = self.canine_tokenizer SCREAMING_SNAKE_CASE_: Optional[int] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off SCREAMING_SNAKE_CASE_: List[Any] = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on SCREAMING_SNAKE_CASE_: Tuple = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt") self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = list(batch.input_ids.numpy()[0]) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertEqual((2, 39) , batch.input_ids.shape) self.assertEqual((2, 39) , batch.attention_mask.shape) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.canine_tokenizer SCREAMING_SNAKE_CASE_: Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt") # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , lowerCAmelCase__) self.assertIn("attention_mask" , lowerCAmelCase__) self.assertIn("token_type_ids" , lowerCAmelCase__) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = self.canine_tokenizer SCREAMING_SNAKE_CASE_: Optional[Any] = [ "What's the weater?", "It's about 25 degrees.", ] SCREAMING_SNAKE_CASE_: int = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding="max_length" , truncation=lowerCAmelCase__ , return_tensors="pt") self.assertEqual(32 , targets["input_ids"].shape[1]) def _SCREAMING_SNAKE_CASE ( self : str): # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE_: Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test SCREAMING_SNAKE_CASE_: List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_: Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: List[str] = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.__class__.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) shutil.rmtree(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE_: Dict = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_: List[Any] = " He is very happy, UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_: List[str] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: SCREAMING_SNAKE_CASE_: str = chr(0xE007) additional_special_tokens.append(lowerCAmelCase__) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) SCREAMING_SNAKE_CASE_: Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) tokenizer.save_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.__class__.from_pretrained(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertIn(lowerCAmelCase__ , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.get_clean_sequence(lowerCAmelCase__) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE_: int = 0xE005 SCREAMING_SNAKE_CASE_: List[Any] = chr(lowerCAmelCase__) tokenizer.add_special_tokens({"cls_token": special_token}) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertEqual(len(lowerCAmelCase__) , 1) SCREAMING_SNAKE_CASE_: str = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , input_encoded + special_token_id) SCREAMING_SNAKE_CASE_: str = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) self.assertTrue(special_token not in decoded) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): SCREAMING_SNAKE_CASE_: Dict = chr(0xE005) SCREAMING_SNAKE_CASE_: Tuple = chr(0xE006) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase__) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) SCREAMING_SNAKE_CASE_: int = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.tokenize(lowerCAmelCase__) self.assertEqual(len(lowerCAmelCase__) , 1) self.assertEqual(len(lowerCAmelCase__) , 1) self.assertEqual(token_a[0] , lowerCAmelCase__) self.assertEqual(token_a[0] , lowerCAmelCase__) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE_: Optional[Any] = 0xE006 SCREAMING_SNAKE_CASE_: int = chr(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase__) tokenizer.from_pretrained(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__) with open(os.path.join(lowerCAmelCase__ , "special_tokens_map.json") , encoding="utf-8") as json_file: SCREAMING_SNAKE_CASE_: Optional[int] = json.load(lowerCAmelCase__) with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json") , encoding="utf-8") as json_file: SCREAMING_SNAKE_CASE_: int = json.load(lowerCAmelCase__) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE_: List[str] = 0xE006 SCREAMING_SNAKE_CASE_: Union[str, Any] = chr(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = [new_token_a] SCREAMING_SNAKE_CASE_: List[Any] = [new_token_a] with open(os.path.join(lowerCAmelCase__ , "special_tokens_map.json") , "w" , encoding="utf-8") as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(os.path.join(lowerCAmelCase__ , "tokenizer_config.json") , "w" , encoding="utf-8") as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer_class.from_pretrained(lowerCAmelCase__ , extra_ids=0) self.assertIn(lowerCAmelCase__ , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a])) , ) SCREAMING_SNAKE_CASE_: int = 0xE007 SCREAMING_SNAKE_CASE_: Dict = chr(lowerCAmelCase__) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE_: Optional[Any] = [AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: Tuple = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , extra_ids=0) self.assertIn(lowerCAmelCase__ , tokenizer.additional_special_tokens) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a]))) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase__) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): SCREAMING_SNAKE_CASE_: Optional[int] = "hello world" if self.space_between_special_tokens: SCREAMING_SNAKE_CASE_: Tuple = "[CLS] hello world [SEP]" else: SCREAMING_SNAKE_CASE_: List[str] = input SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.decode(lowerCAmelCase__ , spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(lowerCAmelCase__ , [output, output.lower()]) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}"): SCREAMING_SNAKE_CASE_: Optional[int] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] SCREAMING_SNAKE_CASE_: str = "a" SCREAMING_SNAKE_CASE_: List[Any] = ord(lowerCAmelCase__) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + "_id" , lowerCAmelCase__) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(getattr(lowerCAmelCase__ , attr + "_id") , lowerCAmelCase__) setattr(lowerCAmelCase__ , attr + "_id" , lowerCAmelCase__) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(getattr(lowerCAmelCase__ , attr + "_id") , lowerCAmelCase__) setattr(lowerCAmelCase__ , "additional_special_tokens_ids" , []) self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens") , []) self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens_ids") , []) SCREAMING_SNAKE_CASE_: List[Any] = 0xE006 SCREAMING_SNAKE_CASE_: Union[str, Any] = chr(lowerCAmelCase__) setattr(lowerCAmelCase__ , "additional_special_tokens_ids" , [additional_special_token_id]) self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens") , [additional_special_token]) self.assertListEqual(getattr(lowerCAmelCase__ , "additional_special_tokens_ids") , [additional_special_token_id]) def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Any): pass def _SCREAMING_SNAKE_CASE ( self : Dict): pass def _SCREAMING_SNAKE_CASE ( self : Tuple): pass def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): pass def _SCREAMING_SNAKE_CASE ( self : Tuple): pass
13
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = nn.functional.normalize(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = nn.functional.normalize(_UpperCAmelCase ) return torch.mm(_UpperCAmelCase , normalized_text_embeds.t() ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = CLIPConfig _UpperCAmelCase : Optional[int] = ['''CLIPEncoderLayer'''] def __init__( self : List[Any] , lowerCAmelCase__ : CLIPConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = CLIPVisionModel(config.vision_config) SCREAMING_SNAKE_CASE_: List[str] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = nn.Parameter(torch.ones(17 , config.projection_dim) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = nn.Parameter(torch.ones(17) , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = nn.Parameter(torch.ones(3) , requires_grad=lowerCAmelCase__) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self.vision_model(lowerCAmelCase__)[1] # pooled_output SCREAMING_SNAKE_CASE_: Tuple = self.visual_projection(lowerCAmelCase__) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_: Dict = cosine_distance(lowerCAmelCase__ , self.special_care_embeds).cpu().float().numpy() SCREAMING_SNAKE_CASE_: Optional[Any] = cosine_distance(lowerCAmelCase__ , self.concept_embeds).cpu().float().numpy() SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = image_embeds.shape[0] for i in range(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE_: List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0])): SCREAMING_SNAKE_CASE_: int = special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE_: Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE_: str = round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) SCREAMING_SNAKE_CASE_: Tuple = 0.01 for concept_idx in range(len(cos_dist[0])): SCREAMING_SNAKE_CASE_: List[str] = cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE_: Any = self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE_: Optional[int] = round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase__) result.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor): SCREAMING_SNAKE_CASE_: Optional[Any] = self.vision_model(lowerCAmelCase__)[1] # pooled_output SCREAMING_SNAKE_CASE_: Tuple = self.visual_projection(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = cosine_distance(lowerCAmelCase__ , self.special_care_embeds) SCREAMING_SNAKE_CASE_: str = cosine_distance(lowerCAmelCase__ , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE_: Dict = 0.0 SCREAMING_SNAKE_CASE_: List[str] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE_: List[str] = torch.any(special_scores > 0 , dim=1) SCREAMING_SNAKE_CASE_: str = special_care * 0.01 SCREAMING_SNAKE_CASE_: Optional[Any] = special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) SCREAMING_SNAKE_CASE_: Any = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE_: Optional[int] = torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
13
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase : Optional[Any] = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } lowerCAmelCase : Dict = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : str = BartTokenizer def __init__( self : Any , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Dict="replace" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Optional[int]="<pad>" , lowerCAmelCase__ : List[str]="<mask>" , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : Optional[int] , ): super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__) != add_prefix_space: SCREAMING_SNAKE_CASE_: List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop("type")) SCREAMING_SNAKE_CASE_: str = add_prefix_space SCREAMING_SNAKE_CASE_: Optional[Any] = pre_tok_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_: Tuple = "post_processor" SCREAMING_SNAKE_CASE_: Optional[Any] = getattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_: Optional[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_: Any = tuple(state["sep"]) if "cls" in state: SCREAMING_SNAKE_CASE_: Optional[Any] = tuple(state["cls"]) SCREAMING_SNAKE_CASE_: Optional[Any] = False if state.get("add_prefix_space" , lowerCAmelCase__) != add_prefix_space: SCREAMING_SNAKE_CASE_: Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE_: List[Any] = True if state.get("trim_offsets" , lowerCAmelCase__) != trim_offsets: SCREAMING_SNAKE_CASE_: Optional[int] = trim_offsets SCREAMING_SNAKE_CASE_: int = True if changes_to_apply: SCREAMING_SNAKE_CASE_: List[str] = getattr(lowerCAmelCase__ , state.pop("type")) SCREAMING_SNAKE_CASE_: str = component_class(**lowerCAmelCase__) setattr(self.backend_tokenizer , lowerCAmelCase__ , lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : int): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else value SCREAMING_SNAKE_CASE_: List[str] = value def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[int] = kwargs.get("is_split_into_words" , lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: int = kwargs.get("is_split_into_words" , lowerCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs.") return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): SCREAMING_SNAKE_CASE_: Tuple = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
13
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = emb.weight.shape SCREAMING_SNAKE_CASE_: Dict = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = emb.weight.data return lin_layer def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Union[str, Any] = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE_: Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE_: List[Any] = key.replace("moe_layer.experts.0" , f"ffn.experts.expert_{expert_idx}" ) else: SCREAMING_SNAKE_CASE_: Union[str, Any] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE_: Dict = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE_: Optional[Any] = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE_: Union[str, Any] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE_: List[Any] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE_: List[Any] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE_: Optional[int] = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE_: Optional[int] = state_dict[old_key] return new_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME ): SCREAMING_SNAKE_CASE_: Tuple = [] SCREAMING_SNAKE_CASE_: Any = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) for expert in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = switch_checkpoint_path + f"-rank-{expert}.pt" if os.path.isfile(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase )["model"] remove_ignore_keys_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join( _UpperCAmelCase , weights_name.replace(".bin" , f"-{len(_UpperCAmelCase )+1:05d}-of-???.bin" ) ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_UpperCAmelCase )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(".bin" , f"-{len(_UpperCAmelCase )+1:05d}-of-???.bin" ) ) SCREAMING_SNAKE_CASE_: Tuple = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE_: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_UpperCAmelCase , _UpperCAmelCase ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE_: Tuple = {} for idx, shard in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = weights_name.replace(".bin" , f"-{idx+1:05d}-of-{len(_UpperCAmelCase ):05d}.bin" ) SCREAMING_SNAKE_CASE_: List[Any] = os.path.join(_UpperCAmelCase , weights_name.replace(".bin" , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) for key in shard: SCREAMING_SNAKE_CASE_: List[str] = shard_file # Add the metadata SCREAMING_SNAKE_CASE_: List[Any] = {"total_size": total_size} SCREAMING_SNAKE_CASE_: Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_: Union[str, Any] = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + "\n" f.write(_UpperCAmelCase ) return metadata, index if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase , lowerCAmelCase : Dict = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase : Union[str, Any] = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
13
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
1
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_: Tuple = FunnelConfig.from_json_file(_UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_: Optional[Any] = FunnelBaseModel(_UpperCAmelCase ) if base_model else FunnelModel(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import math class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' lowercase__ = n lowercase__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # adjacency matrix for weight lowercase__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase__ (self : Any , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' lowercase__ = w def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase__ (self : Any , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowerCamelCase : Any = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
2
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , ) -> Dict: """simple docstring""" A : List[str] = parent A : int = batch_size A : Optional[int] = image_size A : int = num_channels A : List[Any] = embeddings_size A : str = hidden_sizes A : Any = depths A : List[str] = is_training A : Any = use_labels A : Any = hidden_act A : Tuple = num_labels A : List[str] = scope A : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Optional[Any] = None if self.use_labels: A : str = ids_tensor([self.batch_size] , self.num_labels ) A : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : int = RegNetModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = model(SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : str = self.num_labels A : List[Any] = RegNetForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = self.prepare_config_and_inputs() A, A, A : Optional[int] = config_and_inputs A : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () __magic_name__ = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Any = RegNetModelTester(self ) A : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A, A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Dict = [*signature.parameters.keys()] A : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Tuple = model_class(config=SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) A : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A : Any = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A, A : str = self.model_tester.prepare_config_and_inputs_for_common() A : Dict = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A : Dict = layer_type A : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Dict = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Optional[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE ) A : Dict = self.default_image_processor A : int = prepare_img() A : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A : List[str] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : Tuple = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
3
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
'''simple docstring''' class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : list[int] ) -> None: lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = [0] * len_array if len_array > 0: lowerCAmelCase = array[0] for i in range(1 , UpperCAmelCase__ ): lowerCAmelCase = self.prefix_sum[i - 1] + array[i] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __UpperCAmelCase ( self : int , UpperCAmelCase__ : int ) -> bool: lowerCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
4
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''ChineseCLIPFeatureExtractor'''] UpperCAmelCase__ = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Dict = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class __A( a ): snake_case_ = '''rwkv''' snake_case_ = {'''max_position_embeddings''': '''context_length'''} def __init__( self , _snake_case=50_277 , _snake_case=1_024 , _snake_case=4_096 , _snake_case=32 , _snake_case=None , _snake_case=None , _snake_case=1E-5 , _snake_case=0 , _snake_case=0 , _snake_case=6 , _snake_case=False , _snake_case=True , **_snake_case , ) -> List[str]: '''simple docstring''' __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
6
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bloom' lowerCamelCase = ['past_key_values'] lowerCamelCase = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : int,lowercase_ : Tuple=2_5_0_8_8_0,lowercase_ : Optional[int]=6_4,lowercase_ : int=2,lowercase_ : Union[str, Any]=8,lowercase_ : str=1E-5,lowercase_ : List[Any]=0.02,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=1,lowercase_ : Optional[int]=2,lowercase_ : Any=False,lowercase_ : Any=0.0,lowercase_ : int=0.0,lowercase_ : Any=1,lowercase_ : Dict=False,**lowercase_ : Tuple,)-> Dict: '''simple docstring''' A__ = vocab_size # Backward compatibility with n_embed kwarg A__ = kwargs.pop('n_embed',lowercase_ ) A__ = hidden_size if n_embed is None else n_embed A__ = n_layer A__ = n_head A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache A__ = pretraining_tp A__ = apply_residual_connection_post_layernorm A__ = hidden_dropout A__ = attention_dropout A__ = bos_token_id A__ = eos_token_id A__ = slow_but_exact super().__init__(bos_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_ ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = version.parse('1.12' ) def __init__( self : Union[str, Any],lowercase_ : PretrainedConfig,lowercase_ : str = "default",lowercase_ : List[PatchingSpec] = None,lowercase_ : bool = False,)-> List[str]: '''simple docstring''' super().__init__(lowercase_,task=lowercase_,patching_specs=lowercase_,use_past=lowercase_ ) if not getattr(self._config,'pad_token_id',lowercase_ ): # TODO: how to do that better? A__ = 0 @property def snake_case__ ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' A__ = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase_,direction='inputs',inverted_values_shape=lowercase_ ) A__ = {0: 'batch', 1: 'past_sequence + sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case__ ( self : Tuple )-> int: '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' return self._config.n_head @property def snake_case__ ( self : Tuple )-> float: '''simple docstring''' return 1E-3 def snake_case__ ( self : Union[str, Any],lowercase_ : "PreTrainedTokenizer",lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional["TensorType"] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = super(lowercase_,self ).generate_dummy_inputs( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) # We need to order the input in the way they appears in the forward() A__ = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ = self._config.hidden_size // self.num_attention_heads A__ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) A__ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] A__ = common_inputs['attention_mask'] if self.use_past: A__ = ordered_inputs['attention_mask'].dtype A__ = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) return ordered_inputs @property def snake_case__ ( self : List[str] )-> int: '''simple docstring''' return 1_3
7
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Initialise PyTorch model snake_case_ = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ = MobileBertForPreTraining(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint snake_case_ = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
8
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ['''flax''', '''transformers'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :List[Any] , *lowerCAmelCase__ :Any , **lowerCAmelCase__ :Union[str, Any] ) -> Any: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Union[str, Any] , *lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :str ) -> Any: requires_backends(cls , ['''flax''', '''transformers'''] ) class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''flax''', '''transformers'''] def __init__( self :List[str] , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[Any] ) -> Optional[int]: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Any , *lowerCAmelCase__ :str , **lowerCAmelCase__ :str ) -> Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :str , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[str] ) -> Tuple: requires_backends(cls , ['''flax''', '''transformers'''] ) class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ['''flax''', '''transformers'''] def __init__( self :Any , *lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :List[str] ) -> int: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Optional[Any] , *lowerCAmelCase__ :str , **lowerCAmelCase__ :int ) -> Optional[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Dict , *lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :Tuple ) -> Dict: requires_backends(cls , ['''flax''', '''transformers'''] ) class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self :Dict , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :List[str] ) -> Tuple: requires_backends(self , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Tuple , *lowerCAmelCase__ :int , **lowerCAmelCase__ :int ) -> List[Any]: requires_backends(cls , ['''flax''', '''transformers'''] ) @classmethod def __magic_name__( cls :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :List[str] ) -> str: requires_backends(cls , ['''flax''', '''transformers'''] )
9
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A = random.Random() def lowerCAmelCase_ ( __a , __a=1.0 , __a=None , __a=None ) -> Optional[Any]: """simple docstring""" if rng is None: lowerCamelCase__: Union[str, Any] =global_rng lowerCamelCase__: List[Any] =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__(self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Dict=2_000 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : int=16_000 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[Any]=True , ) ->List[str]: '''simple docstring''' lowerCamelCase__: List[str] =parent lowerCamelCase__: int =batch_size lowerCamelCase__: Tuple =min_seq_length lowerCamelCase__: Dict =max_seq_length lowerCamelCase__: Optional[int] =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase__: Any =feature_size lowerCamelCase__: List[str] =padding_value lowerCamelCase__: Union[str, Any] =sampling_rate lowerCamelCase__: Dict =return_attention_mask lowerCamelCase__: Optional[Any] =do_normalize def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=False) ->List[Any]: '''simple docstring''' def _flatten(UpperCAmelCase_ : Optional[int]): return list(itertools.chain(*UpperCAmelCase_)) if equal_length: lowerCamelCase__: List[Any] =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size lowerCamelCase__: Dict =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: lowerCamelCase__: List[str] =[np.asarray(UpperCAmelCase_) for x in speech_inputs] return speech_inputs class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = WavaVecaFeatureExtractor def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Any: '''simple docstring''' lowerCamelCase__: Any =WavaVecaFeatureExtractionTester(self) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : List[Any]) ->str: '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1E-3)) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1E-3)) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Any =[np.asarray(UpperCAmelCase_) for speech_input in speech_inputs] # Test not batched input lowerCamelCase__: str =feat_extract(speech_inputs[0] , return_tensors="np").input_values lowerCamelCase__: int =feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test batched lowerCamelCase__: List[str] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) # Test 2-D numpy arrays are batched. lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in (800, 800, 800)] lowerCamelCase__: Union[str, Any] =np.asarray(UpperCAmelCase_) lowerCamelCase__: Optional[int] =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values lowerCamelCase__: Dict =feat_extract(UpperCAmelCase_ , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3)) def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' lowerCamelCase__: str =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: List[Any] =["longest", "max_length", "do_not_pad"] lowerCamelCase__: Optional[Any] =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =feat_extract(UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_tensors="np") lowerCamelCase__: Tuple =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self.assertTrue(input_values[0][800:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self.assertTrue(input_values[0][1_000:].sum() < 1E-6) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Dict: '''simple docstring''' lowerCamelCase__: Any =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =range(800 , 1_400 , 200) lowerCamelCase__: Optional[int] =[floats_list((1, x))[0] for x in lengths] lowerCamelCase__: Any =["longest", "max_length", "do_not_pad"] lowerCamelCase__: int =[None, 1_600, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: int =feat_extract(UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_) lowerCamelCase__: Any =processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self._check_zero_mean_unit_variance(input_values[1][:1_000]) self._check_zero_mean_unit_variance(input_values[2][:1_200]) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Union[str, Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: Tuple =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="max_length" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def SCREAMING_SNAKE_CASE_ (self : int) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: Any =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=1_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000)) lowerCamelCase__: Optional[Any] =[floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] lowerCamelCase__: str =feat_extract( UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=2_000 , padding="longest" , return_tensors="np") lowerCamelCase__: int =processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1_000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200)) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Any: '''simple docstring''' import torch lowerCamelCase__: Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lowerCamelCase__: int =np.random.rand(100).astype(np.floataa) lowerCamelCase__: Any =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase__: str =feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) lowerCamelCase__: Any =feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCamelCase__: Optional[int] =WavaVecaConfig.from_pretrained(UpperCAmelCase_) lowerCamelCase__: List[str] =WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase_) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer")
10
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _UpperCAmelCase (UpperCamelCase__ : str ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : Dict = model_type_to_module_name(UpperCamelCase__ ) _A : Tuple = importlib.import_module(f".{module_name}" , "transformers.models" ) try: return getattr(UpperCamelCase__ , UpperCamelCase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase__ , "__name__" , UpperCamelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : Any = importlib.import_module("transformers" ) if hasattr(UpperCamelCase__ , UpperCamelCase__ ): return getattr(UpperCamelCase__ , UpperCamelCase__ ) return None def _UpperCAmelCase (UpperCamelCase__ : Union[str, os.PathLike] , UpperCamelCase__ : Optional[Union[str, os.PathLike]] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[Dict[str, str]] = None , UpperCamelCase__ : Optional[Union[bool, str]] = None , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Optional[int] , ): _A : Tuple = get_file_from_repo( UpperCamelCase__ , UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , resume_download=UpperCamelCase__ , proxies=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , local_files_only=UpperCamelCase__ , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase__ , encoding="utf-8" ) as reader: return json.load(UpperCamelCase__ ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> Any: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.") @classmethod @replace_list_option_in_docstrings(__lowerCamelCase) def _lowerCamelCase ( cls , __lowerCamelCase , **__lowerCamelCase) -> Optional[int]: _A : Optional[int] = kwargs.pop("config" , __lowerCamelCase) _A : Tuple = kwargs.pop("trust_remote_code" , __lowerCamelCase) _A : List[Any] = True _A , _A : Optional[int] = FeatureExtractionMixin.get_feature_extractor_dict(__lowerCamelCase , **__lowerCamelCase) _A : List[Any] = config_dict.get("feature_extractor_type" , __lowerCamelCase) _A : int = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {}): _A : Any = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase): _A : str = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase) # It could be in `config.feature_extractor_type`` _A : List[Any] = getattr(__lowerCamelCase , "feature_extractor_type" , __lowerCamelCase) if hasattr(__lowerCamelCase , "auto_map") and "AutoFeatureExtractor" in config.auto_map: _A : Optional[int] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: _A : List[Any] = feature_extractor_class_from_name(__lowerCamelCase) _A : Any = feature_extractor_auto_map is not None _A : Optional[int] = feature_extractor_class is not None or type(__lowerCamelCase) in FEATURE_EXTRACTOR_MAPPING _A : int = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) if has_remote_code and trust_remote_code: _A : List[Any] = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase) _A : List[str] = kwargs.pop("code_revision" , __lowerCamelCase) if os.path.isdir(__lowerCamelCase): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__lowerCamelCase) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(__lowerCamelCase)] return feature_extractor_class.from_dict(__lowerCamelCase , **__lowerCamelCase) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}") @staticmethod def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase) -> Union[str, Any]: FEATURE_EXTRACTOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase)
11
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
from __future__ import annotations def lowerCamelCase__ ( A__ : list , A__ : int ): '''simple docstring''' if len(A__ ) <= 1 or n <= 1: return insert_next(A__ , n - 1 ) rec_insertion_sort(A__ , n - 1 ) def lowerCamelCase__ ( A__ : list , A__ : int ): '''simple docstring''' if index >= len(A__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCamelCase, __lowerCamelCase = ( collection[index], collection[index - 1], ) insert_next(A__ , index + 1 ) if __name__ == "__main__": UpperCAmelCase_ = input('Enter integers separated by spaces: ') UpperCAmelCase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
12
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : List[str] = 16 _lowerCamelCase : int = 32 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 16 ) -> List[str]: """simple docstring""" A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = DatasetDict( { '''train''': dataset['''train'''].select(lowercase_ ), '''validation''': dataset['''train'''].select(lowercase_ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ = DataLoader( tokenized_datasets['''test'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader, test_dataloader def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = [] # Download the dataset A__ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase_ ): A__ , A__ , A__ = get_fold_dataloaders( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**lowercase_ ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(lowercase_ , dim=0 ) A__ = torch.stack(lowercase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=lowercase_ , references=lowercase_ ) accelerator.print('''Average test metrics from all folds:''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowercase_ , default=3 , help='''The number of splits to perform across the dataset''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
14
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE :List[Any] = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __UpperCAmelCase ( __lowerCamelCase ) -> int: if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __A : '''simple docstring''' def UpperCAmelCase ( self : Any ,_snake_case : Optional[Any] ,_snake_case : Tuple ) -> Dict: """simple docstring""" pass def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : Dict ,_snake_case : Optional[Any] ,_snake_case : Dict ,_snake_case : Optional[Any]=None ,**_snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : str = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case ,_snake_case ) lowercase__ : Tuple = TFVisionTextDualEncoderModel(_snake_case ) lowercase__ : Union[str, Any] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase ( self : int ,_snake_case : Any ,_snake_case : Any ,_snake_case : Any ,_snake_case : int ,_snake_case : List[str]=None ,**_snake_case : str ) -> int: """simple docstring""" lowercase__ , lowercase__ : str = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : str = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Dict = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self : Optional[Any] ,_snake_case : int ,_snake_case : Tuple ,_snake_case : Optional[Any] ,_snake_case : List[Any] ,_snake_case : str=None ,**_snake_case : str ) -> Dict: """simple docstring""" lowercase__ , lowercase__ : List[str] = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : str = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase__ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) lowercase__ : Tuple = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Tuple ,_snake_case : Any ,_snake_case : List[str] ,_snake_case : List[Any] ,_snake_case : Any=None ,**_snake_case : List[str] ) -> str: """simple docstring""" lowercase__ , lowercase__ : int = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : List[Any] = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) lowercase__ : Tuple = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) lowercase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) lowercase__ : Any = model(input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ) lowercase__ : Dict = after_output[0].numpy() lowercase__ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Dict ,_snake_case : str ,_snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Optional[int]=None ,**_snake_case : str ) -> Any: """simple docstring""" lowercase__ , lowercase__ : str = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Dict = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : Optional[Any] = model( input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ,output_attentions=_snake_case ) lowercase__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Tuple = to_atuple(vision_model.config.image_size ) lowercase__ : int = to_atuple(vision_model.config.patch_size ) lowercase__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(_snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : np.ndarray ,_snake_case : np.ndarray ,_snake_case : float ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(_snake_case ,_snake_case ,f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def UpperCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.get_pretrained_model_and_inputs() lowercase__ : str = model_a(**_snake_case ) lowercase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) lowercase__ : Dict = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) lowercase__ : Tuple = model_a(**_snake_case ) lowercase__ : Optional[int] = after_outputs[0].numpy() lowercase__ : List[str] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case ,1e-5 ) @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-random-bert''' ) lowercase__ : Any = 13 lowercase__ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Union[str, Any] = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : int = random_attention_mask([batch_size, 4] ) lowercase__ : int = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFViTModel(_snake_case ,name='''vision_model''' ) lowercase__ : Optional[int] = TFBertModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFViTModelTester(self ) lowercase__ : List[str] = TFBertModelTester(self ) lowercase__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs() lowercase__ : str = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" lowercase__ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' ,'''hf-internal-testing/tiny-random-roberta''' ) lowercase__ : Optional[Any] = 13 lowercase__ : Union[str, Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Tuple = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Tuple = random_attention_mask([batch_size, 4] ) lowercase__ : str = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : Any ,_snake_case : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Dict=None ,**_snake_case : str ) -> str: """simple docstring""" lowercase__ , lowercase__ : List[Any] = self.get_vision_text_model(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=_snake_case ,text_model=_snake_case ) lowercase__ : str = model( input_ids=_snake_case ,pixel_values=_snake_case ,attention_mask=_snake_case ,output_attentions=_snake_case ) lowercase__ : int = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) ,vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase__ : Union[str, Any] = to_atuple(vision_model.config.image_size ) lowercase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase__ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(_snake_case ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : List[Any] ) -> int: """simple docstring""" lowercase__ : Optional[Any] = TFDeiTModel(_snake_case ,name='''vision_model''' ) lowercase__ : int = TFRobertaModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : str ) -> str: """simple docstring""" lowercase__ : Tuple = TFDeiTModelTester(self ) lowercase__ : Optional[Any] = TFRobertaModelTester(self ) lowercase__ : List[str] = vit_model_tester.prepare_config_and_inputs() lowercase__ : Dict = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( A_ ,unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' ,'''hf-internal-testing/tiny-random-bert''' ) lowercase__ : List[str] = 13 lowercase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase__ : Any = ids_tensor([batch_size, 4] ,model.text_model.config.vocab_size ) lowercase__ : Dict = random_attention_mask([batch_size, 4] ) lowercase__ : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def UpperCAmelCase ( self : Any ,_snake_case : List[str] ,_snake_case : int ) -> List[str]: """simple docstring""" lowercase__ : Tuple = TFCLIPVisionModel(_snake_case ,name='''vision_model''' ) lowercase__ : Optional[int] = TFBertModel(_snake_case ,name='''text_model''' ) return vision_model, text_model def UpperCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowercase__ : Optional[int] = TFCLIPVisionModelTester(self ) lowercase__ : List[Any] = TFBertModelTester(self ) lowercase__ : List[Any] = clip_model_tester.prepare_config_and_inputs() lowercase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ : Tuple = vision_config_and_inputs ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase__ : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 ,from_pt=_snake_case ) lowercase__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase__ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase__ : Any = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=_snake_case ,padding=_snake_case ,return_tensors='''np''' ) lowercase__ : Optional[Any] = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) lowercase__ : List[Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() ,_snake_case ,atol=1e-3 ) )
16
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _A ( ) -> tuple[list[int], int]: '''simple docstring''' __lowercase = [randint(-1000, 1000) for i in range(10)] __lowercase = randint(-5000, 5000) return (arr, r) _a = make_dataset() def _A ( UpperCamelCase_ : list[int], UpperCamelCase_ : int) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(UpperCamelCase_, 3): if sum(UpperCamelCase_) == target: return tuple(sorted(UpperCamelCase_)) return (0, 0, 0) def _A ( UpperCamelCase_ : list[int], UpperCamelCase_ : int) -> tuple[int, int, int]: '''simple docstring''' arr.sort() __lowercase = len(UpperCamelCase_) for i in range(n - 1): __lowercase ,__lowercase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _A ( ) -> tuple[float, float]: '''simple docstring''' __lowercase = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" __lowercase = "\ntriplet_sum1(*dataset)\n" __lowercase = "\ntriplet_sum2(*dataset)\n" __lowercase = repeat(setup=UpperCamelCase_, stmt=UpperCamelCase_, repeat=5, number=10000) __lowercase = repeat(setup=UpperCamelCase_, stmt=UpperCamelCase_, repeat=5, number=10000) return (min(UpperCamelCase_), min(UpperCamelCase_)) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F"The time for naive implementation is {times[0]}.") print(F"The time for optimized implementation is {times[1]}.")
17
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __lowerCamelCase : Union[str, Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def _snake_case ( lowerCAmelCase : Any=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class a__ ( A__ ): A = None A = None def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : List[str] ): """simple docstring""" with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_module_factory(_A,cache_dir=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = import_main_class(dataset_module.module_path,dataset=_A ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=_A,config_name=_A,hash=dataset_module.hash,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_A ).replace(os.sep,"/" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_ : Optional[int] = cached_path(_A,cache_dir=_A ) self.assertTrue(os.path.exists(_A ) ) @pytest.mark.integration def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" SCREAMING_SNAKE_CASE_ : List[str] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_ : Optional[int] = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_ : Optional[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = dataset_module_factory("wikipedia" , cache_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ : List[Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert "train" in ds assert isinstance(ds["train"] , lowerCAmelCase ) assert next(iter(ds["train"] ) )
18
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) __A ='''▁''' __A ={'''vocab_file''': '''sentencepiece.bpe.model'''} __A ={ '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __A ={ '''facebook/xglm-564M''': 2_0_4_8, } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase = None , **lowercase , ) -> None: lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase_ = 7 lowerCamelCase_ = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] lowerCamelCase_ = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , sep_token=lowercase , cls_token=lowercase , pad_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase ) ) lowerCamelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} lowerCamelCase_ = len(self.sp_model ) lowerCamelCase_ = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(lowercase ) lowerCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None lowerCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase ) -> str: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase_ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) return [1] + ([0] * len(lowercase )) + [1, 1] + ([0] * len(lowercase )) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ = self.sp_model.PieceToId(lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: lowerCamelCase_ = "".join(lowercase ).replace(lowercase , " " ).strip() return out_string def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
19
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
import functools def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE__ ) , 1 + min_distance(SCREAMING_SNAKE_CASE__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
20
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : List[str] = filter(lambda lowerCamelCase_ : p.requires_grad , model.parameters() ) _lowercase : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: if metric == "rouge2": _lowercase : List[str] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowercase : Union[str, Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowercase : Optional[Any] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _lowercase : Any = ModelCheckpoint( dirpath=lowerCamelCase_ , filename=lowerCamelCase_ , monitor=F'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: return EarlyStopping( monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=lowerCamelCase_ , verbose=lowerCamelCase_ , ) class _lowerCamelCase( pl.Callback ): def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Dict = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lowerCamelCase) @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=True) -> None: """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''') _lowercase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results _lowercase : Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": _lowercase : Optional[int] = od / 'test_results.txt' _lowercase : Optional[Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowercase : Union[str, Any] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowercase : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=lowerCamelCase) generations_file.parent.mkdir(exist_ok=lowerCamelCase) with open(lowerCamelCase, 'a+') as writer: for key in sorted(lowerCamelCase): if key in ["log", "progress_bar", "preds"]: continue _lowercase : Optional[Any] = metrics[key] if isinstance(lowerCamelCase, torch.Tensor): _lowercase : Optional[int] = val.item() _lowercase : Union[str, Any] = F'''{key}: {val:.6f}\n''' writer.write(lowerCamelCase) if not save_generations: return if "preds" in metrics: _lowercase : Tuple = '\n'.join(metrics['preds']) generations_file.open('w+').write(lowerCamelCase) @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" try: _lowercase : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: _lowercase : List[Any] = pl_module.model.num_parameters() _lowercase : Optional[int] = count_trainable_parameters(lowerCamelCase) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6}) @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" save_json(pl_module.metrics, pl_module.metrics_save_path) return self._write_logs(lowerCamelCase, lowerCamelCase, 'test') @rank_zero_only def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" save_json(pl_module.metrics, pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
21
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' from __future__ import annotations __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Muhammad Umer Farooq''' __SCREAMING_SNAKE_CASE :Optional[int] = '''MIT''' __SCREAMING_SNAKE_CASE :Any = '''1.0.0''' __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Muhammad Umer Farooq''' __SCREAMING_SNAKE_CASE :Optional[int] = '''[email protected]''' __SCREAMING_SNAKE_CASE :Any = '''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class A_ ( lowerCAmelCase_ ): def __init__( self : Tuple , snake_case_ : str ): super().__init__() _UpperCAmelCase = [] _UpperCAmelCase = domain def lowercase ( self : List[Any] , snake_case_ : str , snake_case_ : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase = parse.urljoin(self.domain , snake_case_ ) self.urls.append(snake_case_ ) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__lowercase ).split("." )[-2:] ) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' return parse.urlparse(__lowercase ).netloc def UpperCAmelCase_ ( __lowercase : str = "https://github.com" ) -> list[str]: '''simple docstring''' _UpperCAmelCase = get_domain_name(__lowercase ) # Initialize the parser _UpperCAmelCase = Parser(__lowercase ) try: # Open URL _UpperCAmelCase = requests.get(__lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase = requests.get(__lowercase ) # Get the valid email. _UpperCAmelCase = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :str = emails_from_url('''https://github.com''') print(F"{len(emails)} emails found:") print('''\n'''.join(sorted(emails)))
22
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase : str = n - 1 UpperCAmelCase : List[Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase : List[str] = 0 while count < prec: UpperCAmelCase : int = random.randint(2 , n - 1 ) UpperCAmelCase : List[str] = bin_exp_mod(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if b != 1: UpperCAmelCase : int = True for _ in range(_lowerCAmelCase ): if b == n - 1: UpperCAmelCase : Dict = False break UpperCAmelCase : str = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCamelCase__: Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
23
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __snake_case = set() # Replace all the whitespace in our sentence __snake_case = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(snake_case_ ) == 26 def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __snake_case = [False] * 26 for char in input_str: if char.islower(): __snake_case = True elif char.isupper(): __snake_case = True return all(snake_case_ ) def lowerCamelCase__ ( snake_case_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowerCamelCase__ ( ) -> None: from timeit import timeit __snake_case = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=snake_case_ ) ) print(timeit('''is_pangram_faster()''' , setup=snake_case_ ) ) print(timeit('''is_pangram_fastest()''' , setup=snake_case_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
24
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = { """do_resize""": True, """size""": {"""height""": 2_24, """width""": 2_24}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], """do_convert_rgb""": True, } SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Any = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : str = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : List[Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Dict = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Dict = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = """Alexandra,T-shirt的价格是15便士。""" SCREAMING_SNAKE_CASE__ : Tuple = processor(text=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = tokenizer(SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """Alexandra,T-shirt的价格是15便士。""" SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_image_processor() SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ : Any = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = """Alexandra,T-shirt的价格是15便士。""" SCREAMING_SNAKE_CASE__ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
25
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> List[str]: _A : Optional[Any] = parent _A : int = batch_size _A : List[Any] = seq_length _A : List[Any] = is_training _A : str = use_input_mask _A : List[Any] = use_token_type_ids _A : Any = use_labels _A : Dict = vocab_size _A : List[str] = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : Tuple = intermediate_size _A : Optional[int] = hidden_act _A : Optional[int] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Any = type_vocab_size _A : Optional[Any] = type_sequence_label_size _A : Optional[Any] = initializer_range _A : Any = num_labels _A : int = num_choices _A : Any = scope def a__ ( self ) -> List[Any]: _A : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Union[str, Any] = None if self.use_input_mask: _A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Tuple = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Dict = None _A : List[Any] = None _A : Dict = None if self.use_labels: _A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _A : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: _A : Optional[int] = LlamaModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a ) _A : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]: _A : Union[str, Any] = True _A : Any = LlamaModel(_a ) model.to(_a ) model.eval() _A : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) _A : Optional[int] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: _A : List[Any] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any: _A : Optional[Any] = True _A : Tuple = True _A : str = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass _A : Union[str, Any] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) _A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Dict = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] _A : Optional[int] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice _A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> int: _A : List[Any] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Any = config_and_inputs _A : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _a = (LlamaForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self ) -> List[str]: _A : Union[str, Any] = LlamaModelTester(self ) _A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Union[str, Any]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Optional[Any] = input_dict["""input_ids"""] _A : Tuple = input_ids.ne(1 ).to(_a ) _A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Tuple = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> Tuple: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Union[str, Any] = """single_label_classification""" _A : Union[str, Any] = input_dict["""input_ids"""] _A : int = input_ids.ne(1 ).to(_a ) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Optional[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> str: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Tuple = """multi_label_classification""" _A : List[str] = input_dict["""input_ids"""] _A : Union[str, Any] = input_ids.ne(1 ).to(_a ) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _A : Optional[int] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Tuple = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def a__ ( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def a__ ( self , _a ) -> Any: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Dict = ids_tensor([1, 10] , config.vocab_size ) _A : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : str = LlamaModel(_a ) original_model.to(_a ) original_model.eval() _A : Dict = original_model(_a ).last_hidden_state _A : Union[str, Any] = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} _A : Optional[Any] = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() _A : Tuple = scaled_model(_a ).last_hidden_state _A : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Dict: _A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _A : Optional[int] = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : Any = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Any: _A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _A : Dict = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _A : Optional[int] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Tuple = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def a__ ( self ) -> Optional[Any]: _A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : List[str] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _A : int = model(torch.tensor(_a ) ) _A : Tuple = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # fmt: off _A : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def a__ ( self ) -> Any: _A : Any = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _A : List[Any] = """Simply put, the theory of relativity states that """ _A : Dict = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _A : List[str] = tokenizer.encode(_a , return_tensors="""pt""" ) _A : Optional[Any] = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_a ) # greedy generation outputs _A : Optional[Any] = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a ) _A : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a ) self.assertEqual(_a , _a )
26
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowercase : Union[str, Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
'''simple docstring''' from __future__ import annotations _lowerCamelCase : str = [True] * 100_0001 _lowerCamelCase : str = 2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): _lowerCamelCase : Optional[int] = False i += 1 def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" return seive[n] def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" return any(digit in '02468' for digit in str(A__ ) ) def __lowerCamelCase ( A__ = 1_000_000 ) -> list[int]: """simple docstring""" UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(A__ ) and not contains_an_even_digit(A__ ): UpperCamelCase = str(A__ ) UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(A__ ) )] if all(is_prime(A__ ) for i in list_nums ): result.append(A__ ) return result def __lowerCamelCase ( ) -> int: """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
28
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Union[str, Any] ): '''simple docstring''' lowercase_ = AutoConfig.from_pretrained(snake_case__ ) lowercase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=snake_case__ ) lowercase_ = checkpoints.load_tax_checkpoint(snake_case__ ) lowercase_ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowercase_ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase_ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowercase_ = F'''layers_{str(snake_case__ )}''' # Self-Attention lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase_ = flax_model.params['''encoder''']['''block'''][str(snake_case__ )]['''layer'''] lowercase_ = tax_attention_key lowercase_ = tax_attention_out lowercase_ = tax_attention_query lowercase_ = tax_attention_value lowercase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = tax_global_layer_norm if split_mlp_wi: lowercase_ = tax_mlp_wi_a lowercase_ = tax_mlp_wi_a else: lowercase_ = tax_mlp_wi lowercase_ = tax_mlp_wo lowercase_ = tax_mlp_layer_norm lowercase_ = flax_model_encoder_layer_block # Only for layer 0: lowercase_ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowercase_ = tax_encoder_global_rel_embedding # Assigning lowercase_ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowercase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase_ = F'''layers_{str(snake_case__ )}''' # Self-Attention lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowercase_ = tax_enc_dec_attention_module['''key''']['''kernel'''] lowercase_ = tax_enc_dec_attention_module['''out''']['''kernel'''] lowercase_ = tax_enc_dec_attention_module['''query''']['''kernel'''] lowercase_ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowercase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowercase_ = flax_model.params['''decoder''']['''block'''][str(snake_case__ )]['''layer'''] lowercase_ = tax_attention_key lowercase_ = tax_attention_out lowercase_ = tax_attention_query lowercase_ = tax_attention_value lowercase_ = tax_pre_attention_layer_norm lowercase_ = tax_enc_dec_attention_key lowercase_ = tax_enc_dec_attention_out lowercase_ = tax_enc_dec_attention_query lowercase_ = tax_enc_dec_attention_value lowercase_ = tax_cross_layer_norm if split_mlp_wi: lowercase_ = tax_mlp_wi_a lowercase_ = tax_mlp_wi_a else: lowercase_ = tax_mlp_wi lowercase_ = tax_mlp_wo lowercase_ = txa_mlp_layer_norm lowercase_ = flax_model_decoder_layer_block # Decoder Normalization lowercase_ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowercase_ = txa_decoder_norm # Only for layer 0: lowercase_ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowercase_ = tax_decoder_rel_embedding # Token Embeddings lowercase_ = tax_model['''target''']['''token_embedder''']['''embedding'''] lowercase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase_ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(snake_case__ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) __a = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
30
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __SCREAMING_SNAKE_CASE : Any = """bert-base-cased""" __SCREAMING_SNAKE_CASE : Any = """fp16""" __SCREAMING_SNAKE_CASE : Optional[Any] = """bf16""" __SCREAMING_SNAKE_CASE : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : Union[str, Any] ): super().setUp() _UpperCAmelCase : Optional[int] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Any = F"""{i + 1}""" _UpperCAmelCase : str = strategy with mockenv_context(**A ): _UpperCAmelCase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _A ( self : Any ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(A ): _UpperCAmelCase : Union[str, Any] = self.dist_env.copy() _UpperCAmelCase : Optional[Any] = prefetch_policy with mockenv_context(**A ): _UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _A ( self : int ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(A ): _UpperCAmelCase : Optional[int] = self.dist_env.copy() _UpperCAmelCase : Tuple = state_dict_type with mockenv_context(**A ): _UpperCAmelCase : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _A ( self : List[str] ): _UpperCAmelCase : List[str] = AutoModel.from_pretrained(A ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Optional[int] = policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCAmelCase : Optional[Any] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _UpperCAmelCase : Any = "2000" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCAmelCase : Any = self.dist_env.copy() _UpperCAmelCase : Tuple = "TRANSFORMER_BASED_WRAP" _UpperCAmelCase : Tuple = "T5Layer" with mockenv_context(**A ): _UpperCAmelCase : Dict = FullyShardedDataParallelPlugin() with self.assertRaises(A ) as cm: fsdp_plugin.set_auto_wrap_policy(A ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Optional[int] = "SIZE_BASED_WRAP" _UpperCAmelCase : List[str] = "0" with mockenv_context(**A ): _UpperCAmelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _A ( self : List[str] ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : str = mp_dtype with mockenv_context(**A ): _UpperCAmelCase : int = Accelerator() if mp_dtype == "fp16": _UpperCAmelCase : Union[str, Any] = torch.floataa elif mp_dtype == "bf16": _UpperCAmelCase : Union[str, Any] = torch.bfloataa _UpperCAmelCase : Optional[int] = MixedPrecision(param_dtype=A , reduce_dtype=A , buffer_dtype=A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(A ) def _A ( self : Optional[Any] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCAmelCase : str = self.dist_env.copy() _UpperCAmelCase : Dict = str(A ).lower() with mockenv_context(**A ): _UpperCAmelCase : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=A ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : List[Any] ): super().setUp() _UpperCAmelCase : Optional[int] = 0.82 _UpperCAmelCase : int = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _UpperCAmelCase : Tuple = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCAmelCase : Tuple = 160 _UpperCAmelCase : Any = 160 _UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , "test_performance.py" ) _UpperCAmelCase : Optional[int] = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _UpperCAmelCase : Tuple = cmd.copy() for i, strategy in enumerate(A ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : Dict = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _UpperCAmelCase : Union[str, Any] = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(A ): _UpperCAmelCase : Optional[Any] = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _UpperCAmelCase : Optional[Any] = len(A ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCAmelCase : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) _UpperCAmelCase : Optional[int] = cmd_config[:-1] _UpperCAmelCase : List[str] = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() ) def _A ( self : List[Any] ): _UpperCAmelCase : str = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _UpperCAmelCase : Tuple = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCAmelCase : str = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(A ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(A , env=os.environ.copy() )
31
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
32
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Dict , A : List[Any] , A : Tuple=7 , A : Dict=3 , A : Optional[Any]=18 , A : Union[str, Any]=30 , A : List[str]=4_00 , A : List[Any]=True , A : Union[str, Any]=32 , A : Any=True , ) -> List[Any]: lowercase_ : Optional[Any] = parent lowercase_ : Optional[int] = batch_size lowercase_ : Any = num_channels lowercase_ : List[str] = image_size lowercase_ : Optional[int] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : str = do_resize lowercase_ : Optional[Any] = size_divisor lowercase_ : List[Any] = do_rescale def A ( self : Dict ) -> Optional[int]: return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = GLPNImageProcessor if is_vision_available() else None def A ( self : Union[str, Any] ) -> List[str]: lowercase_ : Any = GLPNImageProcessingTester(self ) @property def A ( self : int ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : List[str] ) -> int: lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size_divisor''' ) ) self.assertTrue(hasattr(A , '''resample''' ) ) self.assertTrue(hasattr(A , '''do_rescale''' ) ) def A ( self : Any ) -> str: pass def A ( self : Tuple ) -> Tuple: # Initialize image_processing lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : List[Any] ) -> Tuple: # Initialize image_processing lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def A ( self : Optional[int] ) -> List[Any]: # Initialize image_processing lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
33
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _a ( __a ): __a : Any = (PNDMScheduler,) __a : Any = (("""num_inference_steps""", 50),) def A ( self : Dict , **lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase ) return config def A ( self : Dict , lowercase : Dict=0 , **lowercase : str ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) new_scheduler.set_timesteps(lowercase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase = scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Tuple ): '''simple docstring''' pass def A ( self : Any , lowercase : Optional[Any]=0 , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase ) UpperCAmelCase = scheduler_class.from_pretrained(lowercase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_prk(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase = scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample UpperCAmelCase = new_scheduler.step_plms(lowercase , lowercase , lowercase , **lowercase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def A ( self : Optional[Any] , **lowercase : Any ): '''simple docstring''' UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowercase ) UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase = model(lowercase , lowercase ) UpperCAmelCase = scheduler.step_plms(lowercase , lowercase , lowercase ).prev_sample return sample def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase , '''set_timesteps''' ): scheduler.set_timesteps(lowercase ) elif num_inference_steps is not None and not hasattr(lowercase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step_prk(lowercase , 0 , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step_prk(lowercase , 1 , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase = scheduler.step_plms(lowercase , 0 , lowercase , **lowercase ).prev_sample UpperCAmelCase = scheduler.step_plms(lowercase , 1 , lowercase , **lowercase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : List[str] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def A ( self : Any ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def A ( self : Any ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase , beta_end=lowercase ) def A ( self : List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase ) def A ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def A ( self : Tuple ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase ) def A ( self : int ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.set_timesteps(lowercase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase = scheduler.step_prk(lowercase , lowercase , lowercase ).prev_sample def A ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(lowercase ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.full_loop(set_alpha_to_one=lowercase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowercase ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
34
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
'''simple docstring''' from __future__ import annotations def __snake_case( _lowerCAmelCase ) -> float: if not nums: raise ValueError("""List is empty""" ) return sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
35
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
from __future__ import annotations import requests _snake_case = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def A ( _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "new" , _lowerCamelCase = None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_lowerCamelCase ) - valid_terms ) ): _lowerCAmelCase : int = F"Invalid search term: {invalid_search_terms}" raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = requests.get( F"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError _lowerCAmelCase : List[str] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_lowerCamelCase )} _lowerCAmelCase : str = {} for id_ in range(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
36
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : torch.FloatTensor class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("DownEncoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase=True ,) -> Optional[int]: super().__init__() lowerCAmelCase__ : Union[str, Any] = layers_per_block lowerCAmelCase__ : Dict = torch.nn.Convad( __UpperCAmelCase ,block_out_channels[0] ,kernel_size=3 ,stride=1 ,padding=1 ,) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[Any] = nn.ModuleList([] ) # down lowerCAmelCase__ : str = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Any = output_channel lowerCAmelCase__ : str = block_out_channels[i] lowerCAmelCase__ : Union[str, Any] = i == len(__UpperCAmelCase ) - 1 lowerCAmelCase__ : Tuple = get_down_block( __UpperCAmelCase ,num_layers=self.layers_per_block ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,add_downsample=not is_final_block ,resnet_eps=1E-6 ,downsample_padding=0 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) self.down_blocks.append(__UpperCAmelCase ) # mid lowerCAmelCase__ : Any = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift="""default""" ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # out lowerCAmelCase__ : List[str] = nn.GroupNorm(num_channels=block_out_channels[-1] ,num_groups=__UpperCAmelCase ,eps=1E-6 ) lowerCAmelCase__ : List[str] = nn.SiLU() lowerCAmelCase__ : int = 2 * out_channels if double_z else out_channels lowerCAmelCase__ : Dict = nn.Convad(block_out_channels[-1] ,__UpperCAmelCase ,3 ,padding=1 ) lowerCAmelCase__ : Optional[int] = False def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Any = x lowerCAmelCase__ : Optional[Any] = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(""">=""" ,"""1.11.0""" ): for down_block in self.down_blocks: lowerCAmelCase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) # middle lowerCAmelCase__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: lowerCAmelCase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ) # middle lowerCAmelCase__ : List[str] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) ,__UpperCAmelCase ) else: # down for down_block in self.down_blocks: lowerCAmelCase__ : Union[str, Any] = down_block(__UpperCAmelCase ) # middle lowerCAmelCase__ : Optional[int] = self.mid_block(__UpperCAmelCase ) # post-process lowerCAmelCase__ : str = self.conv_norm_out(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.conv_act(__UpperCAmelCase ) lowerCAmelCase__ : int = self.conv_out(__UpperCAmelCase ) return sample class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=3 ,__UpperCAmelCase=("UpDecoderBlock2D",) ,__UpperCAmelCase=(64,) ,__UpperCAmelCase=2 ,__UpperCAmelCase=32 ,__UpperCAmelCase="silu" ,__UpperCAmelCase="group" ,) -> List[Any]: super().__init__() lowerCAmelCase__ : Dict = layers_per_block lowerCAmelCase__ : Any = nn.Convad( __UpperCAmelCase ,block_out_channels[-1] ,kernel_size=3 ,stride=1 ,padding=1 ,) lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Dict = nn.ModuleList([] ) lowerCAmelCase__ : Tuple = in_channels if norm_type == """spatial""" else None # mid lowerCAmelCase__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] ,resnet_eps=1E-6 ,resnet_act_fn=__UpperCAmelCase ,output_scale_factor=1 ,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type ,attention_head_dim=block_out_channels[-1] ,resnet_groups=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,) # up lowerCAmelCase__ : Optional[int] = list(reversed(__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = output_channel lowerCAmelCase__ : int = reversed_block_out_channels[i] lowerCAmelCase__ : Dict = i == len(__UpperCAmelCase ) - 1 lowerCAmelCase__ : Union[str, Any] = get_up_block( __UpperCAmelCase ,num_layers=self.layers_per_block + 1 ,in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,prev_output_channel=__UpperCAmelCase ,add_upsample=not is_final_block ,resnet_eps=1E-6 ,resnet_act_fn=__UpperCAmelCase ,resnet_groups=__UpperCAmelCase ,attention_head_dim=__UpperCAmelCase ,temb_channels=__UpperCAmelCase ,resnet_time_scale_shift=__UpperCAmelCase ,) self.up_blocks.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = output_channel # out if norm_type == "spatial": lowerCAmelCase__ : Optional[Any] = SpatialNorm(block_out_channels[0] ,__UpperCAmelCase ) else: lowerCAmelCase__ : List[Any] = nn.GroupNorm(num_channels=block_out_channels[0] ,num_groups=__UpperCAmelCase ,eps=1E-6 ) lowerCAmelCase__ : int = nn.SiLU() lowerCAmelCase__ : Dict = nn.Convad(block_out_channels[0] ,__UpperCAmelCase ,3 ,padding=1 ) lowerCAmelCase__ : Optional[Any] = False def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = z lowerCAmelCase__ : List[Any] = self.conv_in(__UpperCAmelCase ) lowerCAmelCase__ : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase ): def custom_forward(*__UpperCAmelCase ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(""">=""" ,"""1.11.0""" ): # middle lowerCAmelCase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCAmelCase__ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ,use_reentrant=__UpperCAmelCase ) else: # middle lowerCAmelCase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) ,__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : str = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCAmelCase__ : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) ,__UpperCAmelCase ,__UpperCAmelCase ) else: # middle lowerCAmelCase__ : Any = self.mid_block(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : int = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCAmelCase__ : Dict = up_block(__UpperCAmelCase ,__UpperCAmelCase ) # post-process if latent_embeds is None: lowerCAmelCase__ : Union[str, Any] = self.conv_norm_out(__UpperCAmelCase ) else: lowerCAmelCase__ : List[Any] = self.conv_norm_out(__UpperCAmelCase ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = self.conv_act(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.conv_out(__UpperCAmelCase ) return sample class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase="random" ,__UpperCAmelCase=False ,__UpperCAmelCase=True ) -> List[Any]: super().__init__() lowerCAmelCase__ : List[str] = n_e lowerCAmelCase__ : Dict = vq_embed_dim lowerCAmelCase__ : List[Any] = beta lowerCAmelCase__ : Union[str, Any] = legacy lowerCAmelCase__ : Dict = nn.Embedding(self.n_e ,self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e ,1.0 / self.n_e ) lowerCAmelCase__ : int = remap if self.remap is not None: self.register_buffer("""used""" ,torch.tensor(np.load(self.remap ) ) ) lowerCAmelCase__ : List[Any] = self.used.shape[0] lowerCAmelCase__ : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCAmelCase__ : Optional[int] = self.re_embed lowerCAmelCase__ : Dict = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: lowerCAmelCase__ : List[Any] = n_e lowerCAmelCase__ : Tuple = sane_index_shape def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = inds.shape assert len(__UpperCAmelCase ) > 1 lowerCAmelCase__ : Optional[int] = inds.reshape(ishape[0] ,-1 ) lowerCAmelCase__ : Any = self.used.to(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = (inds[:, :, None] == used[None, None, ...]).long() lowerCAmelCase__ : List[Any] = match.argmax(-1 ) lowerCAmelCase__ : Optional[int] = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCAmelCase__ : int = torch.randint(0 ,self.re_embed ,size=new[unknown].shape ).to(device=new.device ) else: lowerCAmelCase__ : Union[str, Any] = self.unknown_index return new.reshape(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Dict = inds.shape assert len(__UpperCAmelCase ) > 1 lowerCAmelCase__ : List[str] = inds.reshape(ishape[0] ,-1 ) lowerCAmelCase__ : int = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token lowerCAmelCase__ : Any = 0 # simply set to zero lowerCAmelCase__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] ,1 ,__UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: # reshape z -> (batch, height, width, channel) and flatten lowerCAmelCase__ : Optional[int] = z.permute(0 ,2 ,3 ,1 ).contiguous() lowerCAmelCase__ : Tuple = z.view(-1 ,self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCAmelCase__ : Optional[Any] = torch.argmin(torch.cdist(__UpperCAmelCase ,self.embedding.weight ) ,dim=1 ) lowerCAmelCase__ : Dict = self.embedding(__UpperCAmelCase ).view(z.shape ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = None # compute loss for embedding if not self.legacy: lowerCAmelCase__ : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCAmelCase__ : int = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCAmelCase__ : Optional[Any] = z + (z_q - z).detach() # reshape back to match original input shape lowerCAmelCase__ : List[Any] = z_q.permute(0 ,3 ,1 ,2 ).contiguous() if self.remap is not None: lowerCAmelCase__ : Tuple = min_encoding_indices.reshape(z.shape[0] ,-1 ) # add batch axis lowerCAmelCase__ : int = self.remap_to_used(__UpperCAmelCase ) lowerCAmelCase__ : Dict = min_encoding_indices.reshape(-1 ,1 ) # flatten if self.sane_index_shape: lowerCAmelCase__ : Union[str, Any] = min_encoding_indices.reshape(z_q.shape[0] ,z_q.shape[2] ,z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCAmelCase__ : str = indices.reshape(shape[0] ,-1 ) # add batch axis lowerCAmelCase__ : Dict = self.unmap_to_all(__UpperCAmelCase ) lowerCAmelCase__ : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCAmelCase__ : Optional[int] = self.embedding(__UpperCAmelCase ) if shape is not None: lowerCAmelCase__ : str = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape lowerCAmelCase__ : Dict = z_q.permute(0 ,3 ,1 ,2 ).contiguous() return z_q class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Dict: lowerCAmelCase__ : int = parameters lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = torch.chunk(__UpperCAmelCase ,2 ,dim=1 ) lowerCAmelCase__ : Optional[Any] = torch.clamp(self.logvar ,-3_0.0 ,2_0.0 ) lowerCAmelCase__ : List[Any] = deterministic lowerCAmelCase__ : str = torch.exp(0.5 * self.logvar ) lowerCAmelCase__ : str = torch.exp(self.logvar ) if self.deterministic: lowerCAmelCase__ : Optional[int] = torch.zeros_like( self.mean ,device=self.parameters.device ,dtype=self.parameters.dtype ) def UpperCAmelCase_ ( self ,__UpperCAmelCase = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCAmelCase__ : str = randn_tensor( self.mean.shape ,generator=__UpperCAmelCase ,device=self.parameters.device ,dtype=self.parameters.dtype ) lowerCAmelCase__ : List[str] = self.mean + self.std * sample return x def UpperCAmelCase_ ( self ,__UpperCAmelCase=None ) -> str: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean ,2 ) + self.var - 1.0 - self.logvar ,dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean ,2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar ,dim=[1, 2, 3] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=[1, 2, 3] ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) lowerCAmelCase__ : str = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean ,2 ) / self.var ,dim=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: return self.mean
37
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : @staticmethod def _A ( *__lowerCamelCase : Tuple , **__lowerCamelCase : str ): pass @is_pipeline_test @require_vision @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : Any = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _A ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): UpperCamelCase :Any = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) UpperCamelCase :Tuple = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def _A ( self : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): UpperCamelCase :Tuple = object_detector(examples[0] , threshold=0.0 ) UpperCamelCase :Optional[Any] = len(__lowerCamelCase ) self.assertGreater(__lowerCamelCase , 0 ) self.assertEqual( __lowerCamelCase , [ { """score""": ANY(__lowerCamelCase ), """label""": ANY(__lowerCamelCase ), """box""": {"""xmin""": ANY(__lowerCamelCase ), """ymin""": ANY(__lowerCamelCase ), """xmax""": ANY(__lowerCamelCase ), """ymax""": ANY(__lowerCamelCase )}, } for i in range(__lowerCamelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _A ( self : Dict ): pass @require_torch def _A ( self : List[str] ): UpperCamelCase :Tuple = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) UpperCamelCase :Tuple = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) UpperCamelCase :Any = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = pipeline("""zero-shot-object-detection""" ) UpperCamelCase :Union[str, Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) UpperCamelCase :List[str] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def _A ( self : List[Any] ): pass @require_torch @slow def _A ( self : str ): UpperCamelCase :Dict = 0.2 UpperCamelCase :Optional[Any] = pipeline("""zero-shot-object-detection""" ) UpperCamelCase :Optional[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def _A ( self : Optional[int] ): UpperCamelCase :int = 2 UpperCamelCase :List[str] = pipeline("""zero-shot-object-detection""" ) UpperCamelCase :Union[str, Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__lowerCamelCase , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
38
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0
def __A ( __lowerCAmelCase )-> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase = grid[0] for row_n in range(1 , len(__lowerCAmelCase ) ): _UpperCAmelCase = grid[row_n] _UpperCAmelCase = fill_row(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = grid[row_n] return grid[-1][-1] def __A ( __lowerCAmelCase , __lowerCAmelCase )-> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__lowerCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
39
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """lxmert""" UpperCAmelCase : str = {} def __init__( self : int , __UpperCAmelCase : List[str]=30522 , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : str=12 , __UpperCAmelCase : List[Any]=9500 , __UpperCAmelCase : Dict=1600 , __UpperCAmelCase : Tuple=400 , __UpperCAmelCase : List[str]=3072 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[str]=1e-12 , __UpperCAmelCase : Optional[int]=9 , __UpperCAmelCase : List[str]=5 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : List[str]=2048 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Tuple=6.67 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=True , **__UpperCAmelCase : str , ): a : Tuple = vocab_size a : Optional[Any] = hidden_size a : List[str] = num_attention_heads a : int = hidden_act a : Dict = intermediate_size a : Optional[Any] = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : str = max_position_embeddings a : Optional[int] = type_vocab_size a : str = initializer_range a : Tuple = layer_norm_eps a : Any = num_qa_labels a : str = num_object_labels a : Any = num_attr_labels a : Union[str, Any] = l_layers a : int = x_layers a : str = r_layers a : Dict = visual_feat_dim a : int = visual_pos_dim a : Optional[int] = visual_loss_normalizer a : Any = task_matched a : Optional[int] = task_mask_lm a : Union[str, Any] = task_obj_predict a : List[str] = task_qa a : Any = visual_obj_loss a : Union[str, Any] = visual_attr_loss a : int = visual_feat_loss a : int = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**__UpperCAmelCase)
40
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A : Dict ={ '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =[ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Optional[Any] = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Any = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BICUBIC , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 255 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , **__lowercase , ) -> None: super().__init__(**__lowercase) __UpperCamelCase :Optional[Any] = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase :Optional[int] = get_size_dict(__lowercase , default_to_square=__lowercase) __UpperCamelCase :Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase :Optional[Any] = get_size_dict(__lowercase , default_to_square=__lowercase , param_name='''crop_size''') __UpperCamelCase :Optional[int] = do_resize __UpperCamelCase :Any = size __UpperCamelCase :List[str] = resample __UpperCamelCase :Dict = do_center_crop __UpperCamelCase :Tuple = crop_size __UpperCamelCase :Optional[Any] = do_rescale __UpperCamelCase :str = rescale_factor __UpperCamelCase :Optional[int] = do_normalize __UpperCamelCase :List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase :List[str] = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase :int = do_convert_rgb def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :Any = get_size_dict(__lowercase , default_to_square=__lowercase) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") __UpperCamelCase :Any = get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :List[Any] = get_size_dict(__lowercase) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> Any: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> PIL.Image.Image: __UpperCamelCase :str = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Any = size if size is not None else self.size __UpperCamelCase :int = get_size_dict(__lowercase , param_name='''size''' , default_to_square=__lowercase) __UpperCamelCase :List[Any] = resample if resample is not None else self.resample __UpperCamelCase :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase :Union[str, Any] = crop_size if crop_size is not None else self.crop_size __UpperCamelCase :Dict = get_size_dict(__lowercase , param_name='''crop_size''' , default_to_square=__lowercase) __UpperCamelCase :str = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase :int = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase :Optional[int] = image_mean if image_mean is not None else self.image_mean __UpperCamelCase :int = image_std if image_std is not None else self.image_std __UpperCamelCase :List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase :List[str] = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase :Optional[int] = [convert_to_rgb(__lowercase) for image in images] # All transformations expect numpy arrays. __UpperCamelCase :str = [to_numpy_array(__lowercase) for image in images] if do_resize: __UpperCamelCase :Optional[Any] = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase) for image in images] if do_center_crop: __UpperCamelCase :Dict = [self.center_crop(image=__lowercase , size=__lowercase) for image in images] if do_rescale: __UpperCamelCase :Optional[Any] = [self.rescale(image=__lowercase , scale=__lowercase) for image in images] if do_normalize: __UpperCamelCase :List[Any] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase) for image in images] __UpperCamelCase :Optional[Any] = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :List[str] = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(_lowerCamelCase ,2 ) - pow(_lowerCamelCase ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCamelCase ,2 ) - pow(_lowerCamelCase ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCamelCase ,2 ) + pow(_lowerCamelCase ,2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
44
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase_ = logging.get_logger(__name__) def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] ) -> str: __a = to_pil_image(lowerCAmelCase__ ) __a , __a = pil_image.size __a = pytesseract.image_to_data(lowerCAmelCase__ , lang=lowerCAmelCase__ , output_type='''dict''' , config=lowerCAmelCase__ ) __a , __a , __a , __a , __a = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __a = [idx for idx, word in enumerate(lowerCAmelCase__ ) if not word.strip()] __a = [word for idx, word in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] __a = [coord for idx, coord in enumerate(lowerCAmelCase__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __a = [] for x, y, w, h in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase__ ) # finally, normalize the bounding boxes __a = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['pixel_values'] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , _a = None , _a = "" , **_a , ): super().__init__(**_a ) __a = size if size is not None else {'''height''': 224, '''width''': 224} __a = get_size_dict(_a ) __a = do_resize __a = size __a = resample __a = do_rescale __a = rescale_value __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD __a = apply_ocr __a = ocr_lang __a = tesseract_config def __UpperCAmelCase ( self , _a , _a , _a = PILImageResampling.BILINEAR , _a = None , **_a , ): __a = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __a = (size['''height'''], size['''width''']) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a , _a = None , **_a , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a , _a , _a = None , **_a , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def __UpperCAmelCase ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(_a ) __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = apply_ocr if apply_ocr is not None else self.apply_ocr __a = ocr_lang if ocr_lang is not None else self.ocr_lang __a = tesseract_config if tesseract_config is not None else self.tesseract_config __a = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. __a = [to_numpy_array(_a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) __a = [] __a = [] for image in images: __a , __a = apply_tesseract(_a , _a , _a ) words_batch.append(_a ) boxes_batch.append(_a ) if do_resize: __a = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_rescale: __a = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: __a = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] __a = [to_channel_dimension_format(_a , _a ) for image in images] __a = BatchFeature(data={'''pixel_values''': images} , tensor_type=_a ) if apply_ocr: __a = words_batch __a = boxes_batch return data
45
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [ord(SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , SCREAMING_SNAKE_CASE ) print("""Decoded:""" , decode(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
46
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='' for i in table: res += inp[i - 1] return res def _lowerCAmelCase ( _UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" return data[1:] + data[0] def _lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : List[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='' for i in range(len(_UpperCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =int('0b' + data[0] + data[-1] , 2 ) _SCREAMING_SNAKE_CASE =int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =message[:4] _SCREAMING_SNAKE_CASE =message[4:] _SCREAMING_SNAKE_CASE =apply_table(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =xor(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =apply_sbox(_UpperCamelCase , temp[:4] ) # noqa: E741 _SCREAMING_SNAKE_CASE =apply_sbox(_UpperCamelCase , temp[4:] ) _SCREAMING_SNAKE_CASE ='0' * (2 - len(_UpperCamelCase )) + l # noqa: E741 _SCREAMING_SNAKE_CASE ='0' * (2 - len(_UpperCamelCase )) + r _SCREAMING_SNAKE_CASE =apply_table(l + r , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =xor(_UpperCamelCase , _UpperCamelCase ) return temp + right if __name__ == "__main__": lowerCamelCase : List[Any] = input("Enter 10 bit key: ") lowerCamelCase : Any = input("Enter 8 bit message: ") lowerCamelCase : Union[str, Any] = [6, 3, 7, 4, 8, 5, 1_0, 9] lowerCamelCase : Optional[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] lowerCamelCase : Dict = [2, 4, 3, 1] lowerCamelCase : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] lowerCamelCase : str = [4, 1, 3, 5, 7, 2, 8, 6] lowerCamelCase : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] lowerCamelCase : Any = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCamelCase : Any = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCamelCase : Optional[Any] = apply_table(key, paa_table) lowerCamelCase : str = temp[:5] lowerCamelCase : Optional[int] = temp[5:] lowerCamelCase : Dict = left_shift(left) lowerCamelCase : Dict = left_shift(right) lowerCamelCase : Optional[int] = apply_table(left + right, pa_table) lowerCamelCase : int = left_shift(left) lowerCamelCase : Any = left_shift(right) lowerCamelCase : Union[str, Any] = left_shift(left) lowerCamelCase : Optional[int] = left_shift(right) lowerCamelCase : str = apply_table(left + right, pa_table) # encryption lowerCamelCase : Optional[int] = apply_table(message, IP) lowerCamelCase : Tuple = function(expansion, sa, sa, keya, temp) lowerCamelCase : Any = temp[4:] + temp[:4] lowerCamelCase : Optional[Any] = function(expansion, sa, sa, keya, temp) lowerCamelCase : List[str] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption lowerCamelCase : List[str] = apply_table(CT, IP) lowerCamelCase : int = function(expansion, sa, sa, keya, temp) lowerCamelCase : Optional[int] = temp[4:] + temp[:4] lowerCamelCase : Any = function(expansion, sa, sa, keya, temp) lowerCamelCase : List[Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
47
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def A ( _SCREAMING_SNAKE_CASE ) -> float: return np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , *, UpperCamelCase__ = np.inf , UpperCamelCase__ = "linear" , UpperCamelCase__ = 0.0 , ) -> None: lowerCamelCase : Tuple = regularization lowerCamelCase : List[str] = gamma if kernel == "linear": lowerCamelCase : Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) lowerCamelCase : Any = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowerCamelCase : Optional[int] = F'''Unknown kernel: {kernel}''' raise ValueError(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> float: return np.dot(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> None: lowerCamelCase : Dict = observations lowerCamelCase : List[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((lowerCamelCase) , ) : List[Any] = np.shape(UpperCamelCase__ ) def to_minimize(UpperCamelCase__ ) -> float: lowerCamelCase : int = 0 ((lowerCamelCase) , ) : Tuple = np.shape(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(UpperCamelCase__ ) lowerCamelCase : Dict = LinearConstraint(UpperCamelCase__ , 0 , 0 ) lowerCamelCase : Union[str, Any] = Bounds(0 , self.regularization ) lowerCamelCase : Any = minimize( UpperCamelCase__ , np.ones(UpperCamelCase__ ) , bounds=UpperCamelCase__ , constraints=[ly_contraint] ).x lowerCamelCase : Any = l_star # calculating mean offset of separation plane to points lowerCamelCase : Optional[int] = 0 for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowerCamelCase : Optional[int] = s / n def _lowercase ( self , UpperCamelCase__ ) -> int: lowerCamelCase : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCamelCase__ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
48
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
import os def __snake_case ( ): __a = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) __a = os.path.join(_UpperCAmelCase , '''triangle.txt''' ) with open(_UpperCAmelCase ) as f: __a = f.readlines() __a = [] for line in triangle: __a = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_UpperCAmelCase ) ) a.append(_UpperCAmelCase ) for i in range(1 , len(_UpperCAmelCase ) ): for j in range(len(a[i] ) ): __a = a[i - 1][j] if j != len(a[i - 1] ) else 0 __a = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCAmelCase , _UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
49
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
_UpperCAmelCase : Dict = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
50
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
def A (__A : list[int] , __A : int ) -> bool: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCAmelCase_ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCAmelCase_ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCAmelCase_ = subset[i - 1][j] if arr[i - 1] <= j: UpperCAmelCase_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
51
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = """▁""" __lowerCamelCase : List[str] = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} __lowerCamelCase : Tuple = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } __lowerCamelCase : Optional[Any] = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } __lowerCamelCase : int = { """ernie-m-base""": 514, """ernie-m-large""": 514, } __lowerCamelCase : Union[str, Any] = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class A__ ( __snake_case ): _UpperCAmelCase :List[str] = ["input_ids"] _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = RESOURCE_FILES_NAMES def __init__( self , A_ , A_=None , A_=False , A_="utf8" , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , vocab_file=A_ , encoding=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : List[Any] = sentencepiece_model_ckpt UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A_ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : List[Any] = self.load_vocab(filepath=A_ ) else: UpperCamelCase : Optional[Any] = {self.sp_model.id_to_piece(A_ ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : Union[str, Any] = {v: k for k, v in self.vocab.items()} def __UpperCamelCase( self , A_ ): '''simple docstring''' if text is None: return None UpperCamelCase : Optional[Any] = self.tokenize(A_ ) UpperCamelCase , UpperCamelCase : Any = "", [] for i, ch in enumerate(A_ ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : int = self.SP_CHAR_MAPPING.get(A_ ) else: UpperCamelCase : int = unicodedata.normalize("NFKC" , A_ ) if self.is_whitespace(A_ ): continue normalized_text += ch char_mapping.extend([i] * len(A_ ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : List[Any] = token[1:] UpperCamelCase : Tuple = text[offset:].index(A_ ) + offset UpperCamelCase : List[Any] = start + len(A_ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : Dict = end return token_mapping @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.vocab ) def __UpperCamelCase( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' UpperCamelCase : Tuple = self.__dict__.copy() UpperCamelCase : Dict = None return state def __setstate__( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(A_ , A_ ) for c in text) ) def __UpperCamelCase( self , A_ , A_=False , A_=64 , A_=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: UpperCamelCase : Any = True if self.sp_model_kwargs.get("alpha" ) is not None: UpperCamelCase : Union[str, Any] = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: UpperCamelCase : Dict = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: UpperCamelCase : Optional[int] = self.sp_model.EncodeAsPieces(A_ ) else: UpperCamelCase : List[str] = self.sp_model.SampleEncodeAsPieces(A_ , A_ , A_ ) UpperCamelCase : Tuple = [] for pi, piece in enumerate(A_ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A_ ) and pi != 0: new_pieces.append(A_ ) continue else: continue UpperCamelCase : str = 0 for i, chunk in enumerate(A_ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A_ ) or self.is_punct(A_ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A_ ) UpperCamelCase : List[str] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Dict = i if len(A_ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Tuple = "".join(A_ ).replace(A_ , " " ).strip() return out_string def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[str] = self.convert_ids_to_tokens(A_ ) UpperCamelCase : Optional[Any] = "".join(A_ ).replace(A_ , " " ).strip() return out_string def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.reverse_vocab.get(A_ , self.unk_token ) def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] UpperCamelCase : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __UpperCamelCase( self , A_ , A_=None , A_=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(A_ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A_ ) + 1) + [1] * (len(A_ ) + 3) def __UpperCamelCase( self , A_ ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A_ ) == 1: UpperCamelCase : Optional[Any] = unicodedata.category(A_ ) if cat == "Zs": return True return False def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : str = {} with io.open(A_ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A_ ): UpperCamelCase : List[Any] = line.rstrip("\n" ) UpperCamelCase : Any = int(A_ ) return token_to_idx def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = 0 if os.path.isdir(A_ ): UpperCamelCase : Optional[int] = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCamelCase : List[Any] = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(A_ , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCamelCase : Any = token_index writer.write(token + "\n" ) index += 1 UpperCamelCase : Any = os.path.join(A_ , "sentencepiece.bpe.model" ) with open(A_ , "wb" ) as fi: UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(A_ ) return (vocab_file,)
52
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' import qiskit def lowercase__ ( __lowercase : int , __lowercase : int ) -> qiskit.result.counts.Counts: """simple docstring""" __UpperCamelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __UpperCamelCase = qiskit.QuantumCircuit(__lowercase , __lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __UpperCamelCase = qiskit.execute(__lowercase , __lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowercase ) if __name__ == "__main__": a__ : Tuple =single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
53
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
"""simple docstring""" from __future__ import annotations from typing import Any class UpperCamelCase_ : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float = 0 ) -> None: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = row, column __SCREAMING_SNAKE_CASE = [[default_value for c in range(UpperCAmelCase__ )] for r in range(UpperCAmelCase__ )] def __str__( self : str ) -> str: __SCREAMING_SNAKE_CASE = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier __SCREAMING_SNAKE_CASE = 0 for row_vector in self.array: for obj in row_vector: __SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , len(str(UpperCAmelCase__ ) ) ) __SCREAMING_SNAKE_CASE = F"""%{max_element_length}s""" # Make string and return def single_line(UpperCAmelCase__ : list[float] ) -> str: nonlocal string_format_identifier __SCREAMING_SNAKE_CASE = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase__ ) for row_vector in self.array ) return s def __repr__( self : Union[str, Any] ) -> str: return str(self ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : tuple[int, int] ) -> bool: if not (isinstance(UpperCAmelCase__ , (list, tuple) ) and len(UpperCAmelCase__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Tuple , UpperCAmelCase__ : tuple[int, int] ) -> Any: assert self.validate_indicies(UpperCAmelCase__ ) return self.array[loc[0]][loc[1]] def __setitem__( self : Optional[int] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : float ) -> None: assert self.validate_indicies(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = value def __add__( self : Any , UpperCAmelCase__ : Matrix ) -> Matrix: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == another.row and self.column == another.column # Add __SCREAMING_SNAKE_CASE = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __SCREAMING_SNAKE_CASE = self[r, c] + another[r, c] return result def __neg__( self : List[str] ) -> Matrix: __SCREAMING_SNAKE_CASE = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __SCREAMING_SNAKE_CASE = -self[r, c] return result def __sub__( self : Optional[int] , UpperCAmelCase__ : Matrix ) -> Matrix: return self + (-another) def __mul__( self : Optional[int] , UpperCAmelCase__ : int | float | Matrix ) -> Matrix: if isinstance(UpperCAmelCase__ , (int, float) ): # Scalar multiplication __SCREAMING_SNAKE_CASE = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __SCREAMING_SNAKE_CASE = self[r, c] * another return result elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): # Matrix multiplication assert self.column == another.row __SCREAMING_SNAKE_CASE = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __SCREAMING_SNAKE_CASE = F"""Unsupported type given for another ({type(UpperCAmelCase__ )})""" raise TypeError(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Matrix: __SCREAMING_SNAKE_CASE = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __SCREAMING_SNAKE_CASE = self[r, c] return result def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Matrix , UpperCAmelCase__ : Matrix ) -> Any: assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __SCREAMING_SNAKE_CASE = v.transpose() __SCREAMING_SNAKE_CASE = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = Matrix(3 , 3 , 0 ) for i in range(3 ): __SCREAMING_SNAKE_CASE = 1 print(f"""a^(-1) is {ainv}""" ) # u, v __SCREAMING_SNAKE_CASE = Matrix(3 , 1 , 0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1, 2, -3 __SCREAMING_SNAKE_CASE = Matrix(3 , 1 , 0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase_ , lowerCAmelCase_ )}""" ) def UpperCAmelCase__ (): '''simple docstring''' import doctest doctest.testmod() testa()
54
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=3 , UpperCamelCase=32 , UpperCamelCase=3 , UpperCamelCase=10 , UpperCamelCase=[8, 16, 32, 64] , UpperCamelCase=[1, 1, 2, 1] , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase="relu" , UpperCamelCase=3 , UpperCamelCase=None , UpperCamelCase=["stage2", "stage3", "stage4"] , UpperCamelCase=[2, 3, 4] , UpperCamelCase=1 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(UpperCamelCase ) lowerCamelCase_ = out_features lowerCamelCase_ = out_indices lowerCamelCase_ = num_groups def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = BitModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.num_labels lowerCamelCase_ = BitForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = BitBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = BitBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _lowerCamelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BitModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): """simple docstring""" return @unittest.skip(reason="Bit does not output attentions" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(config=UpperCamelCase ) for name, module in model.named_modules(): if isinstance(UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = BitModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**UpperCamelCase ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @require_torch class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (BitBackbone,) if is_torch_available() else () _lowerCamelCase = BitConfig _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = BitModelTester(self )
55
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
'''simple docstring''' from __future__ import annotations import math def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> list: '''simple docstring''' if len(__UpperCAmelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) snake_case_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCAmelCase ) ) ] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCAmelCase ) ) ] def __magic_name__ ( __UpperCAmelCase ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__UpperCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) snake_case_ = len(__UpperCAmelCase ) snake_case_ = matrix_length // 2 snake_case_ = [[a[i][j] for j in range(__UpperCAmelCase, __UpperCAmelCase )] for i in range(__UpperCAmelCase )] snake_case_ = [ [a[i][j] for j in range(__UpperCAmelCase, __UpperCAmelCase )] for i in range(__UpperCAmelCase, __UpperCAmelCase ) ] snake_case_ = [[a[i][j] for j in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase )] snake_case_ = [[a[i][j] for j in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase, __UpperCAmelCase )] return top_left, top_right, bot_left, bot_right def __magic_name__ ( __UpperCAmelCase ) -> tuple[int, int]: '''simple docstring''' return len(__UpperCAmelCase ), len(matrix[0] ) def __magic_name__ ( __UpperCAmelCase ) -> None: '''simple docstring''' print('''\n'''.join(str(__UpperCAmelCase ) for line in matrix ) ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__UpperCAmelCase ) == (2, 2): return default_matrix_multiplication(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = split_matrix(__UpperCAmelCase ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ = split_matrix(__UpperCAmelCase ) snake_case_ = actual_strassen(__UpperCAmelCase, matrix_subtraction(__UpperCAmelCase, __UpperCAmelCase ) ) snake_case_ = actual_strassen(matrix_addition(__UpperCAmelCase, __UpperCAmelCase ), __UpperCAmelCase ) snake_case_ = actual_strassen(matrix_addition(__UpperCAmelCase, __UpperCAmelCase ), __UpperCAmelCase ) snake_case_ = actual_strassen(__UpperCAmelCase, matrix_subtraction(__UpperCAmelCase, __UpperCAmelCase ) ) snake_case_ = actual_strassen(matrix_addition(__UpperCAmelCase, __UpperCAmelCase ), matrix_addition(__UpperCAmelCase, __UpperCAmelCase ) ) snake_case_ = actual_strassen(matrix_subtraction(__UpperCAmelCase, __UpperCAmelCase ), matrix_addition(__UpperCAmelCase, __UpperCAmelCase ) ) snake_case_ = actual_strassen(matrix_subtraction(__UpperCAmelCase, __UpperCAmelCase ), matrix_addition(__UpperCAmelCase, __UpperCAmelCase ) ) snake_case_ = matrix_addition(matrix_subtraction(matrix_addition(__UpperCAmelCase, __UpperCAmelCase ), __UpperCAmelCase ), __UpperCAmelCase ) snake_case_ = matrix_addition(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = matrix_addition(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCAmelCase, __UpperCAmelCase ), __UpperCAmelCase ), __UpperCAmelCase ) # construct the new matrix from our 4 quadrants snake_case_ = [] for i in range(len(__UpperCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(__UpperCAmelCase )[1] != matrix_dimensions(__UpperCAmelCase )[0]: snake_case_ = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"Matrix A: {matrixa}\n" F"Matrix B: {matrixa}" ) raise Exception(__UpperCAmelCase ) snake_case_ = matrix_dimensions(__UpperCAmelCase ) snake_case_ = matrix_dimensions(__UpperCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case_ = max(*__UpperCAmelCase, *__UpperCAmelCase ) snake_case_ = int(math.pow(2, math.ceil(math.loga(__UpperCAmelCase ) ) ) ) snake_case_ = matrixa snake_case_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, __UpperCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1], __UpperCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1], __UpperCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case_ = actual_strassen(__UpperCAmelCase, __UpperCAmelCase ) # Removing the additional zeros for i in range(0, __UpperCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1], __UpperCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
56
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black A : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. A : Dict = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) __lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(__a , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def snake_case ( self ): __lowerCAmelCase = "src/transformers" shutil.rmtree(self.transformer_dir ) def snake_case ( self , __a , __a , __a , __a=None ): __lowerCAmelCase = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __lowerCAmelCase = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result __lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowerCAmelCase = black.format_str(__a , mode=__a ) __lowerCAmelCase = os.path.join(self.transformer_dir , "new_code.py" ) with open(__a , "w" , newline="\n" ) as f: f.write(__a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__a ) with open(__a , "r" ) as f: self.assertTrue(f.read() , __a ) def snake_case ( self ): __lowerCAmelCase = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(__a , __a ) def snake_case ( self ): # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __a , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __a ) , ) # Copy consistency with a really long name __lowerCAmelCase = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , f"{long_class_name}LMPredictionHead" , re.sub("Bert" , __a , __a ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __a , overwrite_result=re.sub("Bert" , "TestModel" , __a ) , ) def snake_case ( self ): __lowerCAmelCase = check_copies.LOCALIZED_READMES["README_zh-hans.md"] __lowerCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) __lowerCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) __lowerCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( __a , __a , localized_readme["format_model_list"] ) self.assertFalse(__a ) self.assertEqual(__a , __a ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( __a , __a , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__a ) __lowerCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) __lowerCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) __lowerCAmelCase = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( __a , __a , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(__a , __a )
57
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( __lowerCamelCase : int = 4 ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = abs(__lowerCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__lowerCamelCase )] for y in range(__lowerCamelCase )] def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: return reverse_row(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: return reverse_row(reverse_column(__lowerCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: return reverse_column(transpose(__lowerCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = [list(__lowerCamelCase ) for x in zip(*__lowerCamelCase )] return matrix def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = matrix[::-1] return matrix def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->list[list[int]]: _SCREAMING_SNAKE_CASE = [x[::-1] for x in matrix] return matrix def lowerCamelCase ( __lowerCamelCase : list[list[int]] ) ->None: for i in matrix: print(*__lowerCamelCase ) if __name__ == "__main__": lowercase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) lowercase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) lowercase_ = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
58
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : int = "distilbert" A__ : List[str] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : str , snake_case__ : Union[str, Any]=3_05_22 , snake_case__ : int=5_12 , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=6 , snake_case__ : Any=12 , snake_case__ : List[Any]=7_68 , snake_case__ : int=4 * 7_68 , snake_case__ : int=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : str="gelu" , snake_case__ : Any=0.02 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[Any]=0.2 , snake_case__ : Dict=0 , **snake_case__ : List[str] , ) -> Optional[int]: '''simple docstring''' snake_case : Any = vocab_size snake_case : int = max_position_embeddings snake_case : Optional[Any] = sinusoidal_pos_embds snake_case : List[str] = n_layers snake_case : List[Any] = n_heads snake_case : str = dim snake_case : Tuple = hidden_dim snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : Any = activation snake_case : int = initializer_range snake_case : List[Any] = qa_dropout snake_case : str = seq_classif_dropout super().__init__(**snake_case__ , pad_token_id=snake_case__ ) class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : str = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
59
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case__ : Optional[int] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0