code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _a = logging.get_logger(__name__) @dataclass class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self , **lowercase_ ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ : Tuple = deprecated_arg[3:] UpperCAmelCase_ : Any = not kwargs.pop(lowercase_ ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) UpperCAmelCase_ : List[Any] = kwargs.pop("tpu_name" , self.tpu_name ) UpperCAmelCase_ : Dict = kwargs.pop("device_idx" , self.device_idx ) UpperCAmelCase_ : Optional[int] = kwargs.pop("eager_mode" , self.eager_mode ) UpperCAmelCase_ : str = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**lowercase_ ) SCREAMING_SNAKE_CASE__ : str = field( default=lowercase__ ,metadata={"""help""": """Name of TPU"""} ,) SCREAMING_SNAKE_CASE__ : int = field( default=0 ,metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} ,) SCREAMING_SNAKE_CASE__ : bool = field(default=lowercase__ ,metadata={"""help""": """Benchmark models in eager model."""} ) SCREAMING_SNAKE_CASE__ : bool = field( default=lowercase__ ,metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } ,) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) UpperCAmelCase_ : Optional[int] = None if self.tpu: try: if self.tpu_name: UpperCAmelCase_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase_ : str = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase_ : Dict = None return tpu @cached_property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase_ : List[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) UpperCAmelCase_ : str = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU UpperCAmelCase_ : Union[str, Any] = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase__ ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase__ ( self ): """simple docstring""" return self.n_gpu > 0
61
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
'''simple docstring''' def _lowerCamelCase ( lowercase : list , lowercase : int , lowercase : int = 0 , lowercase : int = 0 ) -> int: _a = right or len(lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase , lowercase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
63
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy A_ = logging.getLogger(__name__) A_ = '''pytorch_model.bin''' @dataclasses.dataclass class lowercase: '''simple docstring''' lowercase__ = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowercase: '''simple docstring''' lowercase__ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) lowercase__ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "A csv or a json file containing the validation data."} ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "The name of the task to train on."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowercase: '''simple docstring''' lowercase__ = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) lowercase__ = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) lowercase__ = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) lowercase__ = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowercase__ = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) lowercase__ = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) lowercase__ = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowercase__ = dataclasses.field( default=__a , metadata={"help": "Random seed for initialization."} , ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : int = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _snake_case : str = dataset.filter(lambda snake_case__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _snake_case : Optional[Any] = int(eval_result * len(snake_case__ ) ) print(snake_case__ ) _snake_case : Union[str, Any] = dataset.sort("""probability""" , reverse=snake_case__ ) _snake_case : int = dataset.select(range(snake_case__ ) ) _snake_case : Dict = dataset.remove_columns(["""label""", """probability"""] ) _snake_case : int = dataset.rename_column("""prediction""" , """label""" ) _snake_case : Dict = dataset.map(lambda snake_case__ : {"label": idalabel[example["label"]]} ) _snake_case : Optional[int] = dataset.shuffle(seed=args.seed ) _snake_case : List[Any] = os.path.join(snake_case__ , F"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(snake_case__ , index=snake_case__ ) else: dataset.to_json(snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] , **snake_case__ : int ): """simple docstring""" _snake_case : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _snake_case : List[str] = STModelArguments(model_name_or_path=snake_case__ ) _snake_case : Union[str, Any] = STDataArguments(train_file=snake_case__ , infer_file=snake_case__ ) _snake_case : List[Any] = STTrainingArguments(output_dir=snake_case__ ) _snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(snake_case__ ).items(): setattr(snake_case__ , snake_case__ , snake_case__ ) for key, value in kwargs.items(): if hasattr(snake_case__ , snake_case__ ): setattr(snake_case__ , snake_case__ , snake_case__ ) # Sanity checks _snake_case : str = {} _snake_case : int = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _snake_case : Any = args.train_file _snake_case : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _snake_case : Tuple = args.eval_file for key in data_files: _snake_case : Tuple = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: _snake_case : Tuple = extension else: assert extension == args.data_file_extension, F"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), F"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _snake_case : Any = F"{args.output_dir}/self-train_iter-{{}}".format _snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) accelerator.wait_for_everyone() _snake_case : str = None _snake_case : Union[str, Any] = None _snake_case : Optional[int] = 0 _snake_case : Optional[Any] = False # Show the progress bar _snake_case : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _snake_case : List[str] = data_dir_format(snake_case__ ) assert os.path.exists(snake_case__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _snake_case : Optional[int] = os.path.join(snake_case__ , """stage-1""" ) _snake_case : Tuple = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(snake_case__ , snake_case__ ): arguments_dict.update({key: value} ) _snake_case : List[str] = os.path.join(snake_case__ , """best-checkpoint""" , snake_case__ ) if os.path.exists(snake_case__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , snake_case__ , snake_case__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , snake_case__ ) finetune(**snake_case__ ) accelerator.wait_for_everyone() assert os.path.exists(snake_case__ ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , snake_case__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _snake_case : Any = os.path.join(snake_case__ , """best-checkpoint""" ) _snake_case : List[str] = os.path.join(snake_case__ , """stage-2""" ) # Update arguments_dict _snake_case : Union[str, Any] = model_path _snake_case : Union[str, Any] = data_files["""train"""] _snake_case : Union[str, Any] = current_output_dir _snake_case : Dict = os.path.join(snake_case__ , """best-checkpoint""" , snake_case__ ) if os.path.exists(snake_case__ ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , snake_case__ , snake_case__ , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , snake_case__ ) finetune(**snake_case__ ) accelerator.wait_for_everyone() assert os.path.exists(snake_case__ ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , snake_case__ ) _snake_case : Any = iteration _snake_case : Any = data_dir_format(iteration + 1 ) _snake_case : Dict = AutoConfig.from_pretrained(os.path.join(snake_case__ , """best-checkpoint""" ) ) _snake_case : List[Any] = config.idalabel _snake_case : Optional[Any] = os.path.join(snake_case__ , """eval_results_best-checkpoint.json""" ) _snake_case : int = os.path.join(snake_case__ , """test_results_best-checkpoint.json""" ) assert os.path.exists(snake_case__ ) with open(snake_case__ , """r""" ) as f: _snake_case : Any = float(json.load(snake_case__ )[args.eval_metric] ) _snake_case : List[str] = os.path.join(snake_case__ , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(snake_case__ ) # Loading the dataset from local csv or json files. _snake_case : List[str] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _snake_case : Optional[Any] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(snake_case__ , exist_ok=snake_case__ ) shutil.copy(snake_case__ , os.path.join(snake_case__ , F"eval_results_iter-{iteration}.json" ) ) if os.path.exists(snake_case__ ): shutil.copy(snake_case__ , os.path.join(snake_case__ , F"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) accelerator.wait_for_everyone() _snake_case : Any = os.path.join(snake_case__ , F"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _snake_case : Union[str, Any] = eval_result if best_iteration is None: _snake_case : List[Any] = new_iteration _snake_case : List[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _snake_case : Dict = new_iteration _snake_case : List[str] = new_eval_result _snake_case : Dict = 0 else: if new_eval_result == best_eval_result: _snake_case : Union[str, Any] = new_iteration _snake_case : int = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _snake_case : str = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , snake_case__ ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F"eval_results_iter-{iteration}.json" ) , os.path.join(snake_case__ , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , snake_case__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(snake_case__ , F"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(snake_case__ , """eval_results_best-iteration.json""" ) , )
64
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' return EnvironmentCommand() def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class A ( UpperCAmelCase_ ): @staticmethod def lowercase_ (__UpperCAmelCase : ArgumentParser ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parser.add_parser("env" ) download_parser.set_defaults(func=__UpperCAmelCase ) download_parser.add_argument( "--accelerate-config_file" , default=__UpperCAmelCase , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=__UpperCAmelCase ) def __init__(self : Optional[int] , __UpperCAmelCase : str , *__UpperCAmelCase : Tuple ) -> None: """simple docstring""" UpperCAmelCase__ = accelerate_config_file def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "not installed" if is_safetensors_available(): import safetensors UpperCAmelCase__ = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors UpperCAmelCase__ = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" UpperCAmelCase__ = "not installed" UpperCAmelCase__ = UpperCAmelCase__ = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCAmelCase ): UpperCAmelCase__ = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase__ = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else f"""\t{accelerate_config}""" ) UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "NA" if is_torch_available(): import torch UpperCAmelCase__ = torch.__version__ UpperCAmelCase__ = torch.cuda.is_available() UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "NA" if is_tf_available(): import tensorflow as tf UpperCAmelCase__ = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase__ = bool(tf.config.list_physical_devices("GPU" ) ) UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "not installed" UpperCAmelCase__ = "NA" if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase__ = flax.__version__ UpperCAmelCase__ = jax.__version__ UpperCAmelCase__ = jaxlib.__version__ UpperCAmelCase__ = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase__ = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f"""{safetensors_version}""", "Accelerate version": f"""{accelerate_version}""", "Accelerate config": f"""{accelerate_config_str}""", "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Tensorflow version (GPU?)": f"""{tf_version} ({tf_cuda_available})""", "Flax version (CPU?/GPU?/TPU?)": f"""{flax_version} ({jax_backend})""", "Jax version": f"""{jax_version}""", "JaxLib version": f"""{jaxlib_version}""", "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def lowercase_ (__UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
65
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def A_ ( _lowercase ): '''simple docstring''' snake_case_ :int = {} snake_case_ :List[Any] = job["""started_at"""] snake_case_ :int = job["""completed_at"""] snake_case_ :str = date_parser.parse(_lowercase ) snake_case_ :Tuple = date_parser.parse(_lowercase ) snake_case_ :Optional[int] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case_ :int = start snake_case_ :Optional[int] = end snake_case_ :Optional[Any] = duration_in_min return job_info def A_ ( _lowercase, _lowercase=None ): '''simple docstring''' snake_case_ :Optional[Any] = None if token is not None: snake_case_ :Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} snake_case_ :Union[str, Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case_ :Optional[int] = requests.get(_lowercase, headers=_lowercase ).json() snake_case_ :Optional[Any] = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(_lowercase ) for job in result["""jobs"""]} ) snake_case_ :int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(_lowercase ): snake_case_ :Union[str, Any] = requests.get(url + f"""&page={i + 2}""", headers=_lowercase ).json() job_time.update({job["""name"""]: extract_time_from_single_job(_lowercase ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __a = parser.parse_args() __a = get_job_time(args.workflow_run_id) __a = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"""{k}: {v['duration']}""")
66
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase =1_6 __UpperCAmelCase =3_2 def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( UpperCamelCase__ , padding='''longest''' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCAmelCase =mocked_dataloaders # noqa: F811 def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Any: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase__ ) == "1": __lowerCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) set_seed(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __lowerCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowerCamelCase = os.path.split(UpperCamelCase__ )[-1].split('''.''' )[0] accelerator.init_trackers(UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowerCamelCase = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**UpperCamelCase__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , UpperCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(UpperCamelCase__ ), '''epoch''': epoch, } , step=UpperCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=UpperCamelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
67
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=None , lowercase=True , lowercase=[0.4814_5466, 0.457_8275, 0.4082_1073] , lowercase=[0.2686_2954, 0.2613_0258, 0.2757_7711] , lowercase=True , ) -> Dict: '''simple docstring''' A__ = size if size is not None else {"height": 224, "width": 224} A__ = crop_size if crop_size is not None else {"height": 18, "width": 18} A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_convert_rgb def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def UpperCamelCase ( self , lowercase=False , lowercase=False , lowercase=False ) -> Union[str, Any]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: A__ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: A__ = [] for i in range(self.batch_size ): A__ , A__ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension A__ = [Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) ) for x in image_inputs] if torchify: A__ = [torch.from_numpy(lowercase ) for x in image_inputs] return image_inputs @require_torch @require_vision class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase ) @property def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase , "center_crop" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) self.assertTrue(hasattr(lowercase , "do_convert_rgb" ) ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase ) A__ = 3 @property def UpperCamelCase ( self ) -> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase , "center_crop" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) self.assertTrue(hasattr(lowercase , "do_convert_rgb" ) ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
68
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "levit" def __init__( self, lowerCAmelCase__=224, lowerCAmelCase__=3, lowerCAmelCase__=3, lowerCAmelCase__=2, lowerCAmelCase__=1, lowerCAmelCase__=16, lowerCAmelCase__=[128, 256, 384], lowerCAmelCase__=[4, 8, 12], lowerCAmelCase__=[4, 4, 4], lowerCAmelCase__=[16, 16, 16], lowerCAmelCase__=0, lowerCAmelCase__=[2, 2, 2], lowerCAmelCase__=[2, 2, 2], lowerCAmelCase__=0.02, **lowerCAmelCase__, ) -> Optional[Any]: super().__init__(**lowerCAmelCase__) snake_case_ = image_size snake_case_ = num_channels snake_case_ = kernel_size snake_case_ = stride snake_case_ = padding snake_case_ = hidden_sizes snake_case_ = num_attention_heads snake_case_ = depths snake_case_ = key_dim snake_case_ = drop_path_rate snake_case_ = patch_size snake_case_ = attention_ratio snake_case_ = mlp_ratio snake_case_ = initializer_range snake_case_ = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-4
69
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor A__ : str =transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if isinstance(lowerCAmelCase , torch.Tensor ): return image elif isinstance(lowerCAmelCase , PIL.Image.Image ): _lowerCAmelCase = [image] _lowerCAmelCase = [trans(img.convert("""RGB""" ) ) for img in image] _lowerCAmelCase = torch.stack(lowerCAmelCase ) return image class UpperCAmelCase ( snake_case_ ): def __init__( self : Dict , __snake_case : List[str] , __snake_case : Tuple ) -> Optional[int]: super().__init__() # make sure scheduler can always be converted to DDIM _lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Union[str, Any] ) -> str: if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}" ) def lowercase__ ( self : Dict , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Any ) -> Any: # get the original timestep using init_timestep _lowerCAmelCase = min(int(num_inference_steps * strength ) , __snake_case ) _lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : str , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any]=None ) -> Tuple: if not isinstance(__snake_case , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__snake_case )}" ) _lowerCAmelCase = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _lowerCAmelCase = init_latents.shape _lowerCAmelCase = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents print("""add noise to latents at timestep""" , __snake_case ) _lowerCAmelCase = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) _lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : Optional[Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] = None , __snake_case : float = 0.8 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(__snake_case ) # 2. Preprocess image _lowerCAmelCase = preprocess(__snake_case ) # 3. set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) _lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(__snake_case , __snake_case , self.device ) _lowerCAmelCase = timesteps[:1].repeat(__snake_case ) # 4. Prepare latent variables _lowerCAmelCase = self.prepare_latents(__snake_case , __snake_case , __snake_case , self.unet.dtype , self.device , __snake_case ) _lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(__snake_case ): # 1. predict noise model_output _lowerCAmelCase = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case , ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__snake_case )
70
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
import math from numpy import inf from scipy.integrate import quad def A ( a_ ) -> float: if num <= 0: raise ValueError('math domain error' ) return quad(a_ ,0 ,a_ ,args=(a_) )[0] def A ( a_ ,a_ ) -> float: return math.pow(a_ ,z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
71
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=1_0 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=3_2 * 4 , __lowerCAmelCase : Dict=3_2 * 6 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : List[str]=3_2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = is_training _lowerCamelCase : str = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : int = min_size _lowerCamelCase : Any = max_size _lowerCamelCase : int = num_labels _lowerCamelCase : List[str] = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() _lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() _lowerCamelCase : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = output.encoder_hidden_states _lowerCamelCase : Tuple = output.pixel_decoder_hidden_states _lowerCamelCase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=False ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = MaskFormerForInstanceSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase : str = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) _lowerCamelCase : List[str] = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case__ : Any = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = MaskFormerModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCamelCase : Union[str, Any] = MaskFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCamelCase : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=__lowerCAmelCase ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__lowerCAmelCase ), '''class_labels''': torch.zeros(2 , 1_0 , device=__lowerCAmelCase ).long(), } _lowerCamelCase : int = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCamelCase : Union[str, Any] = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : List[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCamelCase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1E-4 def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Any = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : int = model(**__lowerCAmelCase ) _lowerCamelCase : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : List[str] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _lowerCamelCase : Any = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : str = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : int = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCamelCase : Union[str, Any] = inputs['''pixel_values'''].to(__lowerCAmelCase ) _lowerCamelCase : Dict = [el.to(__lowerCAmelCase ) for el in inputs['''mask_labels''']] _lowerCamelCase : Optional[Any] = [el.to(__lowerCAmelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
72
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> float: __lowerCamelCase : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __lowerCamelCase : Dict = 1 - (matter_density + radiation_density + dark_energy) __lowerCamelCase : Union[str, Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowerCamelCase : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a =0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
73
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def _snake_case ( snake_case__ : float ): if num <= 0: raise ValueError('math domain error' ) return quad(snake_case__ , 0 , snake_case__ , args=(snake_case__) )[0] def _snake_case ( snake_case__ : float , snake_case__ : float ): return math.pow(snake_case__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
74
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' from math import loga def a_ ( __snake_case : int ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__snake_case , __snake_case ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
75
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
76
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCamelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_a) class UpperCAmelCase_ ( _a): def __init__( self , *a , **a ) -> Union[str, Any]: super().__init__(*a , **a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _UpperCAmelCase ( self , a=None , a=None , a=None ) -> Dict: lowercase__ : int = {} lowercase__ : List[str] = {} if prompt is not None: lowercase__ : Any = prompt if generate_kwargs is not None: lowercase__ : Dict = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase__ : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) lowercase__ : List[str] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , a , **a ) -> List[str]: return super().__call__(a , **a ) def _UpperCAmelCase ( self , a , a=None ) -> Optional[Any]: lowercase__ : List[Any] = load_image(a ) if prompt is not None: if not isinstance(a , a ): raise ValueError( f"""Received an invalid text input, got - {type(a )} - but expected a single string. """ 'Note also that one single text can be provided for conditional image to text generation.' ) lowercase__ : Optional[Any] = self.model.config.model_type if model_type == "git": lowercase__ : List[str] = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : List[Any] = self.tokenizer(text=a , add_special_tokens=a ).input_ids lowercase__ : int = [self.tokenizer.cls_token_id] + input_ids lowercase__ : Tuple = torch.tensor(a ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": lowercase__ : Dict = self.image_processor(images=a , header_text=a , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase__ : int = self.image_processor(images=a , return_tensors=self.framework ) lowercase__ : Optional[int] = self.tokenizer(a , return_tensors=self.framework ) model_inputs.update(a ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: lowercase__ : Any = self.image_processor(images=a , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase__ : Optional[int] = None return model_inputs def _UpperCAmelCase ( self , a , a=None ) -> Dict: # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , a ) and all(x is None for x in model_inputs['input_ids'] ) ): lowercase__ : Tuple = None if generate_kwargs is None: lowercase__ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase__ : Optional[int] = model_inputs.pop(self.model.main_input_name ) lowercase__ : List[Any] = self.model.generate(a , **a , **a ) return model_outputs def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : List[str] = [] for output_ids in model_outputs: lowercase__ : str = { 'generated_text': self.tokenizer.decode( a , skip_special_tokens=a , ) } records.append(a ) return records
77
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = (DDPMScheduler,) def UpperCAmelCase__ ( self :int , **lowercase_ :Optional[Any] ) -> Tuple: UpperCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowercase_ ) return config def UpperCAmelCase__ ( self :int ) -> Union[str, Any]: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCAmelCase__ ( self :int ) -> Optional[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCAmelCase__ ( self :int ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCAmelCase__ ( self :List[Any] ) -> List[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def UpperCAmelCase__ ( self :List[str] ) -> Dict: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , ) def UpperCAmelCase__ ( self :List[str] ) -> Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]: for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Tuple: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self :Union[str, Any] ) -> Dict: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual UpperCAmelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = len(lowercase_ ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual UpperCAmelCase = model(lowercase_ , lowercase_ ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCAmelCase__ ( self :Union[str, Any] ) -> List[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: UpperCAmelCase = -1 else: UpperCAmelCase = timesteps[i + 1] UpperCAmelCase = scheduler.previous_timestep(lowercase_ ) UpperCAmelCase = prev_t.item() self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Union[str, Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(lowercase_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Optional[Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [1_00, 87, 50, 1, 0] UpperCAmelCase = len(lowercase_ ) with self.assertRaises(lowercase_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowercase_ , timesteps=lowercase_ ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowercase_ ) UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=lowercase_ )
78
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
'''simple docstring''' from __future__ import annotations def __lowercase ( __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ) -> tuple[int, float, str]: '''simple docstring''' _A = cipher_alphabet or [chr(__lowercase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _A = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary _A = frequencies_dict if not case_sensitive: _A = ciphertext.lower() # Chi squared statistic values _A = {} # cycle through all of the shifts for shift in range(len(__lowercase ) ): _A = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _A = (alphabet_letters.index(letter.lower() ) - shift) % len( __lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _A = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _A = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _A = decrypted_with_shift.lower().count(__lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _A = frequencies[letter] * occurrences # Complete the chi squared statistic formula _A = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _A = decrypted_with_shift.count(__lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _A = frequencies[letter] * occurrences # Complete the chi squared statistic formula _A = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _A = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__lowercase ) -> tuple[float, str]: return chi_squared_statistic_values[key] _A = min( __lowercase , key=__lowercase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( _A ) , ( _A ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
79
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( a__ ): __UpperCAmelCase = 42 class lowercase_ ( a__ , a__ ): __UpperCAmelCase = True @register_to_config def __init__( self , a = 3 , a = 3 , a = ("DownEncoderBlock2D",) , a = ("UpDecoderBlock2D",) , a = (64,) , a = 1 , a = "silu" , a = 4 , a = 32 , a = 32 , a = 0.1_8215 , ): super().__init__() # pass init params to Encoder UpperCamelCase__ = Encoder( in_channels=a , out_channels=a , down_block_types=a , block_out_channels=a , layers_per_block=a , act_fn=a , norm_num_groups=a , double_z=a , ) # pass init params to Decoder UpperCamelCase__ = Decoder( in_channels=a , out_channels=a , up_block_types=a , block_out_channels=a , layers_per_block=a , norm_num_groups=a , act_fn=a , ) UpperCamelCase__ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCamelCase__ = nn.Convad(a , a , 1 ) UpperCamelCase__ = False UpperCamelCase__ = False # only relevant if vae tiling is enabled UpperCamelCase__ = self.config.sample_size UpperCamelCase__ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCamelCase__ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCamelCase__ = 0.25 def __a ( self , a , a=False ): if isinstance(a , (Encoder, Decoder) ): UpperCamelCase__ = value def __a ( self , a = True ): UpperCamelCase__ = use_tiling def __a ( self ): self.enable_tiling(a ) def __a ( self ): UpperCamelCase__ = True def __a ( self ): UpperCamelCase__ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __a ( self ): UpperCamelCase__ = {} def fn_recursive_add_processors(a , a , a ): if hasattr(a , "set_processor" ): UpperCamelCase__ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , a , a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a , a , a ) return processors def __a ( self , a ): UpperCamelCase__ = len(self.attn_processors.keys() ) if isinstance(a , a ) and len(a ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(a )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(a , a , a ): if hasattr(a , "set_processor" ): if not isinstance(a , a ): module.set_processor(a ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , a , a ) for name, module in self.named_children(): fn_recursive_attn_processor(a , a , a ) def __a ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __a ( self , a , a = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(a , return_dict=a ) if self.use_slicing and x.shape[0] > 1: UpperCamelCase__ = [self.encoder(a ) for x_slice in x.split(1 )] UpperCamelCase__ = torch.cat(a ) else: UpperCamelCase__ = self.encoder(a ) UpperCamelCase__ = self.quant_conv(a ) UpperCamelCase__ = DiagonalGaussianDistribution(a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a ) def __a ( self , a , a = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(a , return_dict=a ) UpperCamelCase__ = self.post_quant_conv(a ) UpperCamelCase__ = self.decoder(a ) if not return_dict: return (dec,) return DecoderOutput(sample=a ) @apply_forward_hook def __a ( self , a , a = True ): if self.use_slicing and z.shape[0] > 1: UpperCamelCase__ = [self._decode(a ).sample for z_slice in z.split(1 )] UpperCamelCase__ = torch.cat(a ) else: UpperCamelCase__ = self._decode(a ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=a ) def __a ( self , a , a , a ): UpperCamelCase__ = min(a.shape[2] , b.shape[2] , a ) for y in range(a ): UpperCamelCase__ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __a ( self , a , a , a ): UpperCamelCase__ = min(a.shape[3] , b.shape[3] , a ) for x in range(a ): UpperCamelCase__ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __a ( self , a , a = True ): UpperCamelCase__ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCamelCase__ = [] for i in range(0 , x.shape[2] , a ): UpperCamelCase__ = [] for j in range(0 , x.shape[3] , a ): UpperCamelCase__ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCamelCase__ = self.encoder(a ) UpperCamelCase__ = self.quant_conv(a ) row.append(a ) rows.append(a ) UpperCamelCase__ = [] for i, row in enumerate(a ): UpperCamelCase__ = [] for j, tile in enumerate(a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , a , a ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , a , a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a , dim=3 ) ) UpperCamelCase__ = torch.cat(a , dim=2 ) UpperCamelCase__ = DiagonalGaussianDistribution(a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a ) def __a ( self , a , a = True ): UpperCamelCase__ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCamelCase__ = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCamelCase__ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCamelCase__ = [] for i in range(0 , z.shape[2] , a ): UpperCamelCase__ = [] for j in range(0 , z.shape[3] , a ): UpperCamelCase__ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCamelCase__ = self.post_quant_conv(a ) UpperCamelCase__ = self.decoder(a ) row.append(a ) rows.append(a ) UpperCamelCase__ = [] for i, row in enumerate(a ): UpperCamelCase__ = [] for j, tile in enumerate(a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCamelCase__ = self.blend_v(rows[i - 1][j] , a , a ) if j > 0: UpperCamelCase__ = self.blend_h(row[j - 1] , a , a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a , dim=3 ) ) UpperCamelCase__ = torch.cat(a , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=a ) def __a ( self , a , a = False , a = True , a = None , ): UpperCamelCase__ = sample UpperCamelCase__ = self.encode(a ).latent_dist if sample_posterior: UpperCamelCase__ = posterior.sample(generator=a ) else: UpperCamelCase__ = posterior.mode() UpperCamelCase__ = self.decode(a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a )
80
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["image_processor", "tokenizer"] __lowerCAmelCase = "ViTImageProcessor" __lowerCAmelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __A=None , __A=None , **__A ) -> List[Any]: a =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __A , ) a =kwargs.pop('''feature_extractor''' ) a =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A=None , **__A ) -> Any: if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: a =self.tokenizer(__A , return_tensors=__A , **__A ) if visual_prompt is not None: a =self.image_processor(__A , return_tensors=__A , **__A ) if images is not None: a =self.image_processor(__A , return_tensors=__A , **__A ) if visual_prompt is not None and images is not None: a ={ '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a =image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a ={ '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> str: return self.tokenizer.batch_decode(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *__A , **__A ) -> Tuple: return self.tokenizer.decode(*__A , **__A ) @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __A , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __A , ) return self.image_processor
81
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _UpperCAmelCase ( snake_case , snake_case=False ): """simple docstring""" _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _UpperCAmelCase ( snake_case , snake_case , snake_case=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase = """""" else: _lowerCAmelCase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCAmelCase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = dct.pop(snake_case ) _lowerCAmelCase = val def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=True ): """simple docstring""" _lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _lowerCAmelCase = 8 # set labels if required if not base_model: _lowerCAmelCase = 10_00 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _lowerCAmelCase = 3_84 _lowerCAmelCase = 15_36 _lowerCAmelCase = 12 _lowerCAmelCase = 6 # load original model from torch hub _lowerCAmelCase = torch.hub.load("""facebookresearch/dino:main""" , snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys _lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(snake_case ) _lowerCAmelCase = create_rename_keys(snake_case , base_model=snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , snake_case ) # load HuggingFace model if base_model: _lowerCAmelCase = ViTModel(snake_case , add_pooling_layer=snake_case ).eval() else: _lowerCAmelCase = ViTForImageClassification(snake_case ).eval() model.load_state_dict(snake_case ) # Check outputs on an image, prepared by ViTImageProcessor _lowerCAmelCase = ViTImageProcessor() _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) _lowerCAmelCase = encoding["""pixel_values"""] _lowerCAmelCase = model(snake_case ) if base_model: _lowerCAmelCase = original_model(snake_case ) assert torch.allclose(snake_case , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _lowerCAmelCase = original_model(snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1E-3 ) Path(snake_case ).mkdir(exist_ok=snake_case ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) A__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
82
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=lowercase ): lowercase__ = ["""note_seq"""] def __init__( self : Tuple ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Tuple ): '''simple docstring''' requires_backends(self ,['note_seq'] ) @classmethod def UpperCamelCase_ ( cls : List[str] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : int ): '''simple docstring''' requires_backends(cls ,['note_seq'] ) @classmethod def UpperCamelCase_ ( cls : str ,*lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Any ): '''simple docstring''' requires_backends(cls ,['note_seq'] )
83
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __UpperCAmelCase = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def _snake_case ( lowercase__ : List[Any] , lowercase__ : str=None , lowercase__ : Any=None , lowercase__ : Dict=None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = True while ask_again: lowerCAmelCase_ :Tuple = input(lowercase__ ) try: if default is not None and len(lowercase__ ) == 0: return default return convert_value(lowercase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowercase__ ) def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : List[str]=[] , lowercase__ : Any=None , lowercase__ : Union[str, Any]=0 ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :List[Any] = BulletMenu(lowercase__ , lowercase__ ) lowerCAmelCase_ :int = menu.run(default_choice=lowercase__ ) return convert_value(lowercase__ ) if convert_value is not None else result def _snake_case ( lowercase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = int(lowercase__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _snake_case ( lowercase__ : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ :List[str] = int(lowercase__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _snake_case ( lowercase__ : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ :str = int(lowercase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _snake_case ( lowercase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Any = int(lowercase__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _snake_case ( lowercase__ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = int(lowercase__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _snake_case ( lowercase__ : int ) -> Optional[int]: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _SCREAMING_SNAKE_CASE ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , __A , __A , __A , __A ) -> Optional[Any]: lowerCAmelCase_ :Any = super()._format_usage(__A , __A , __A , __A ) lowerCAmelCase_ :Any = usage.replace("""<command> [<args>] """ , """""" ) return usage
84
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _SCREAMING_SNAKE_CASE : int = 25_0004 _SCREAMING_SNAKE_CASE : List[str] = 25_0020 @require_sentencepiece @require_tokenizers class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : str = MBartTokenizer lowerCAmelCase_ : List[Any] = MBartTokenizerFast lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Any = True def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ = MBartTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = MBartTokenizer(a__ , keep_accents=a__ ) snake_case_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) snake_case_ = self.tokenizer_class.from_pretrained(a__ , **a__ ) snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(a__ ) snake_case_ = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) snake_case_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(a__ ) snake_case_ = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=True snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) snake_case_ = tokenizer_p.save_pretrained(a__ ) # Checks it save with the same files self.assertSequenceEqual(a__ , a__ ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(a__ ) snake_case_ = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) # Save tokenizer rust, legacy_format=False snake_case_ = tempfile.mkdtemp() snake_case_ = tokenizer_r.save_pretrained(a__ , legacy_format=a__ ) snake_case_ = tokenizer_p.save_pretrained(a__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ = tokenizer_r.from_pretrained(a__ ) snake_case_ = tokenizer_p.from_pretrained(a__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a__ , a__ ) ) shutil.rmtree(a__ ) @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = "facebook/mbart-large-en-ro" lowerCAmelCase_ : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowerCAmelCase_ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowerCAmelCase_ : Optional[Any] = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def lowerCAmelCase__ ( cls ) -> int: '''simple docstring''' snake_case_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) snake_case_ = 1 return cls def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertIn(a__ , self.tokenizer.all_special_ids ) snake_case_ = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] snake_case_ = self.tokenizer.decode(a__ , skip_special_tokens=a__ ) snake_case_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ ) self.assertNotIn(self.tokenizer.eos_token , a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , a__ ) snake_case_ = 10 snake_case_ = self.tokenizer(a__ , max_length=a__ , truncation=a__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a__ ) self.assertEqual(len(a__ ) , a__ ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_026, 250_001] ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = tempfile.mkdtemp() snake_case_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a__ ) snake_case_ = MBartTokenizer.from_pretrained(a__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a__ ) @require_torch def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors="pt" ) snake_case_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) snake_case_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a__ , a__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.tokenizer(self.src_text , padding=a__ , truncation=a__ , max_length=3 , return_tensors="pt" ) snake_case_ = self.tokenizer( text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=10 , return_tensors="pt" ) snake_case_ = targets["input_ids"] snake_case_ = shift_tokens_right(a__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(a__ ) , { # A, test, EOS, en_XX "input_ids": [[62, 3_034, 2, 250_004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250_001, } , )
85
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = {} if "threshold" in kwargs: __lowerCAmelCase : int = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = load_image(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = torch.IntTensor([[image.height, image.width]] ) __lowerCAmelCase : int = self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: __lowerCAmelCase : Tuple = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) __lowerCAmelCase : str = target_size return inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = model_inputs.pop('target_size' ) __lowerCAmelCase : int = self.model(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: __lowerCAmelCase : Dict = model_inputs['bbox'] return model_outputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9 ): __lowerCAmelCase : Union[str, Any] = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __lowerCAmelCase , __lowerCAmelCase : int = target_size[0].tolist() def unnormalize(_SCREAMING_SNAKE_CASE ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) __lowerCAmelCase , __lowerCAmelCase : List[Any] = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __lowerCAmelCase : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __lowerCAmelCase : Any = [unnormalize(_SCREAMING_SNAKE_CASE ) for bbox in model_outputs['bbox'].squeeze(0 )] __lowerCAmelCase : List[str] = ['score', 'label', 'box'] __lowerCAmelCase : Tuple = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for vals in zip(scores.tolist() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __lowerCAmelCase : Tuple = self.image_processor.post_process_object_detection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = raw_annotations[0] __lowerCAmelCase : Dict = raw_annotation['scores'] __lowerCAmelCase : Dict = raw_annotation['labels'] __lowerCAmelCase : int = raw_annotation['boxes'] __lowerCAmelCase : Any = scores.tolist() __lowerCAmelCase : Any = [self.model.config.idalabel[label.item()] for label in labels] __lowerCAmelCase : Optional[int] = [self._get_bounding_box(_SCREAMING_SNAKE_CASE ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __lowerCAmelCase : List[Any] = ['score', 'label', 'box'] __lowerCAmelCase : str = [ dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = box.int().tolist() __lowerCAmelCase : str = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
86
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
UpperCamelCase = [0, 2, 4, 6, 8] UpperCamelCase = [1, 3, 5, 7, 9] def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : int): if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase__ : str = 0 for digit in range(10): lowercase__ : str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _lowerCamelCase , _lowerCamelCase) return result lowercase__ : Dict = 0 for digita in range(10): lowercase__ : int = digita if (remainder + digita) % 2 == 0: lowercase__ : Optional[Any] = ODD_DIGITS else: lowercase__ : str = EVEN_DIGITS for digita in other_parity_digits: lowercase__ : List[str] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _lowerCamelCase , _lowerCamelCase , ) return result def lowercase_ ( _lowerCamelCase : int = 9): lowercase__ : Tuple = 0 for length in range(1 , max_power + 1): result += reversible_numbers(_lowerCamelCase , 0 , [0] * length , _lowerCamelCase) return result if __name__ == "__main__": print(f"{solution() = }")
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
def a__ ( A_, A_ ): '''simple docstring''' return 1 if input_a == input_a else 0 def a__ ( ): '''simple docstring''' assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
88
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __lowerCAmelCase = logging.getLogger() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : Any = '\n'.join(lowerCAmelCase_ ) Path(lowerCAmelCase_ ).open('w' ).writelines(lowerCAmelCase_ ) __lowerCAmelCase = '''patrickvonplaten/t5-tiny-random''' __lowerCAmelCase = '''sshleifer/bart-tiny-random''' __lowerCAmelCase = '''sshleifer/tiny-mbart''' __lowerCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __magic_name__ ( _UpperCamelCase ): def __lowercase ( self : List[Any] ,_UpperCAmelCase : Optional[int] ): _a : Tuple = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _a : Any = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _a : Union[str, Any] = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_UpperCAmelCase ,_UpperCAmelCase ) _a : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _a : Union[str, Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization' _a : Union[str, Any] = F""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(_UpperCAmelCase ,'argv' ,_UpperCAmelCase ): run_generate() assert Path(_UpperCAmelCase ).exists() # os.remove(Path(output_file_name)) def __lowercase ( self : Optional[int] ): self.run_eval_tester(_UpperCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __lowercase ( self : List[Any] ,_UpperCAmelCase : Union[str, Any] ): self.run_eval_tester(_UpperCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Any ): _a : List[str] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _a : Tuple = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _a : Optional[int] = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _a : List[str] = Path(self.get_auto_remove_tmp_dir() ) _a : List[str] = str(tmp_dir / 'scores.json' ) _a : List[Any] = str(tmp_dir / 'val.target' ) _dump_articles(_UpperCAmelCase ,text['en'] ) _dump_articles(_UpperCAmelCase ,text['de'] ) _a : Optional[int] = 'translation_en_to_de' if model == T5_TINY else 'summarization' _a : str = F""" run_eval_search.py {model} {str(_UpperCAmelCase )} {str(_UpperCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_UpperCAmelCase ,'argv' ,_UpperCAmelCase ): with CaptureStdout() as cs: run_search() _a : List[Any] = [' num_beams | length_penalty', model, 'Best score args'] _a : int = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_UpperCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_UpperCAmelCase ).exists() os.remove(Path(_UpperCAmelCase ) )
89
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , **lowerCamelCase__ ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase__ ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCamelCase = kwargs['points_per_batch'] if "points_per_crop" in kwargs: __lowerCamelCase = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: __lowerCamelCase = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: __lowerCamelCase = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: __lowerCamelCase = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCamelCase = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: __lowerCamelCase = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: __lowerCamelCase = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: __lowerCamelCase = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: __lowerCamelCase = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: __lowerCamelCase = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: __lowerCamelCase = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , lowerCamelCase__ , *lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' return super().__call__(lowerCamelCase__ , *lowerCamelCase__ , num_workers=lowerCamelCase__ , batch_size=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=64 , lowerCamelCase__ = 0 , lowerCamelCase__ = 512 / 1_500 , lowerCamelCase__ = 32 , lowerCamelCase__ = 1 , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = load_image(lowerCamelCase__ ) __lowerCamelCase = self.image_processor.size['longest_edge'] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.generate_crop_boxes( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.image_processor(images=lowerCamelCase__ , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": __lowerCamelCase = self.get_inference_context() with inference_context(): __lowerCamelCase = self._ensure_tensor_on_device(lowerCamelCase__ , device=self.device ) __lowerCamelCase = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) __lowerCamelCase = image_embeddings __lowerCamelCase = grid_points.shape[1] __lowerCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCamelCase = input_labels[:, i : i + points_per_batch] __lowerCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0.88 , lowerCamelCase__=0.95 , lowerCamelCase__=0 , lowerCamelCase__=1 , ) -> Any: '''simple docstring''' __lowerCamelCase = model_inputs.pop('input_boxes' ) __lowerCamelCase = model_inputs.pop('is_last' ) __lowerCamelCase = model_inputs.pop('original_sizes' ).tolist() __lowerCamelCase = model_inputs.pop('reshaped_input_sizes' ).tolist() __lowerCamelCase = self.model(**lowerCamelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCamelCase = model_outputs['pred_masks'] __lowerCamelCase = self.image_processor.post_process_masks( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , binarize=lowerCamelCase__ ) __lowerCamelCase = model_outputs['iou_scores'] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.7 , ) -> Any: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) __lowerCamelCase = torch.cat(lowerCamelCase__ ) __lowerCamelCase = torch.cat(lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.post_process_for_mask_generation( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = defaultdict(lowerCamelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase__ ) __lowerCamelCase = {} if output_rle_mask: __lowerCamelCase = rle_mask if output_bboxes_mask: __lowerCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
90
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "philschmid/bart-large-cnn-samsum" __UpperCamelCase = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) __UpperCamelCase = "summarizer" __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ["text"] __UpperCamelCase = ["text"] def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Any): '''simple docstring''' return self.pre_processor(lowercase_ , return_tensors='''pt''' , truncation=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[str]): '''simple docstring''' return self.model.generate(**lowercase_)[0] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[int]): '''simple docstring''' return self.pre_processor.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_)
91
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["""ViTFeatureExtractor"""] UpperCamelCase__ = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : list[str] ): """simple docstring""" lowercase_ : List[str] = '''''' for word_or_phrase in separated: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
93
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case : str = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys snake_case : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
94
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[Any] =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: a__ : List[str] =192 a__ : Union[str, Any] =768 a__ : Dict =12 a__ : Dict =3 a__ : Optional[int] =[800, 1_333] a__ : str =False elif yolos_name == "yolos_s_dWr": a__ : Union[str, Any] =330 a__ : Dict =14 a__ : Any =6 a__ : int =1_320 elif "yolos_s" in yolos_name: a__ : List[Any] =384 a__ : Any =1_536 a__ : Dict =12 a__ : Optional[Any] =6 elif "yolos_b" in yolos_name: a__ : int =[800, 1_344] a__ : Tuple =91 a__ : Tuple ="huggingface/label-files" a__ : Dict ="coco-detection-id2label.json" a__ : List[str] =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) a__ : Tuple ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} a__ : int =idalabel a__ : Tuple ={v: k for k, v in idalabel.items()} return config def _A ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : YolosConfig , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : str =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) a__ : List[Any] =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a__ : List[str] =in_proj_weight[: config.hidden_size, :] a__ : int =in_proj_bias[: config.hidden_size] a__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Any =in_proj_weight[-config.hidden_size :, :] a__ : Optional[int] =in_proj_bias[-config.hidden_size :] def _A ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" if "backbone" in name: a__ : str =name.replace("backbone" , "vit" ) if "cls_token" in name: a__ : int =name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: a__ : Optional[int] =name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: a__ : List[str] =name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: a__ : Optional[Any] =name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: a__ : Any =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: a__ : str =name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: a__ : List[Any] =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a__ : int =name.replace("attn" , "attention.self" ) if "norm1" in name: a__ : Any =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a__ : Tuple =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a__ : Tuple =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a__ : Dict =name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: a__ : str =name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: a__ : List[str] =name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: a__ : List[Any] =name.replace("vit.norm" , "vit.layernorm" ) return name def _A ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : YolosForObjectDetection ): """simple docstring""" for key in orig_state_dict.copy().keys(): a__ : int =orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: a__ : List[Any] =key.split("." ) a__ : Optional[Any] =int(key_split[2] ) a__ : List[Any] =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: a__ : str =val[:dim, :] a__ : Optional[Any] =val[ dim : dim * 2, : ] a__ : Dict =val[-dim:, :] else: a__ : Optional[Any] =val[:dim] a__ : List[str] =val[dim : dim * 2] a__ : List[str] =val[-dim:] else: a__ : str =val return orig_state_dict def _A ( ): """simple docstring""" a__ : str ="http://images.cocodataset.org/val2017/000000039769.jpg" a__ : int =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ): """simple docstring""" a__ : List[str] =get_yolos_config(SCREAMING_SNAKE_CASE ) # load original state_dict a__ : Optional[Any] =torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] # load 🤗 model a__ : Optional[Any] =YolosForObjectDetection(SCREAMING_SNAKE_CASE ) model.eval() a__ : Any =convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by YolosImageProcessor a__ : Tuple =800 if yolos_name != "yolos_ti" else 512 a__ : Union[str, Any] =YolosImageProcessor(format="coco_detection" , size=SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =image_processor(images=prepare_img() , return_tensors="pt" ) a__ : List[Any] =model(**SCREAMING_SNAKE_CASE ) a__ , a__ : Optional[Any] =outputs.logits, outputs.pred_boxes a__ , a__ : List[Any] =None, None if yolos_name == "yolos_ti": a__ : Any =torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) a__ : Union[str, Any] =torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": a__ : str =torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) a__ : Tuple =torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": a__ : Dict =torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) a__ : Optional[int] =torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": a__ : Union[str, Any] =torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) a__ : Optional[Any] =torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": a__ : List[Any] =torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) a__ : Tuple =torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(f'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: a__ : Dict ={ "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) a__ : int =model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE , organization="hustvl" ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization="hustvl" ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
95
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): if exponent == 1: return base if exponent % 2 == 0: _lowerCamelCase : int = _modexpt(lowercase__ , exponent // 2 , lowercase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase__ , exponent - 1 , lowercase__ )) % modulo_value def _snake_case ( lowercase__ = 1777 , lowercase__ = 1855 , lowercase__ = 8 ): _lowerCamelCase : Dict = base for _ in range(1 , lowercase__ ): _lowerCamelCase : Union[str, Any] = _modexpt(lowercase__ , lowercase__ , 10**digits ) return result if __name__ == "__main__": print(F"{solution() = }")
96
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowercase ( A__ ): """simple docstring""" _a = 'vivit' def __init__( self , UpperCamelCase_=224 , UpperCamelCase_=32 , UpperCamelCase_=[2, 16, 16] , UpperCamelCase_=3 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu_fast" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-06 , UpperCamelCase_=True , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Tuple = hidden_size UpperCamelCase__ :int = num_hidden_layers UpperCamelCase__ :Optional[Any] = num_attention_heads UpperCamelCase__ :List[str] = intermediate_size UpperCamelCase__ :Dict = hidden_act UpperCamelCase__ :str = hidden_dropout_prob UpperCamelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ :Optional[int] = initializer_range UpperCamelCase__ :int = layer_norm_eps UpperCamelCase__ :List[Any] = image_size UpperCamelCase__ :Optional[Any] = num_frames UpperCamelCase__ :Dict = tubelet_size UpperCamelCase__ :Optional[int] = num_channels UpperCamelCase__ :List[Any] = qkv_bias super().__init__(**UpperCamelCase_ )
97
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,lowerCamelCase__ : int="</s>" ,lowerCamelCase__ : str="<unk>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : int=125 ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Union[str, Any] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase__ = len(set(filter(lambda lowerCamelCase__ : bool('extra_id' in str(lowerCamelCase__ ) ) ,lowerCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token super().__init__( eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,extra_ids=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = extra_ids UpperCAmelCase__ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase__ = len(self.special_tokens_encoder ) UpperCAmelCase__ = len(lowerCamelCase__ ) for i, token in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = self.vocab_size + i - n UpperCAmelCase__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self : Union[str, Any] ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ): if len(lowerCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = [chr(lowerCamelCase__ ) for i in text.encode('utf-8' )] return tokens def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : str ): if token in self.special_tokens_encoder: UpperCAmelCase__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase__ = self.added_tokens_encoder[token] elif len(lowerCamelCase__ ) != 1: UpperCAmelCase__ = self.unk_token_id else: UpperCAmelCase__ = ord(lowerCamelCase__ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Any ): if index in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[index] else: UpperCAmelCase__ = chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = b'' for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) elif token in self.added_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) else: UpperCAmelCase__ = bytes([ord(lowerCamelCase__ )] ) bstring += tok_string UpperCAmelCase__ = bstring.decode('utf-8' ,errors='ignore' ) return string def __lowerCAmelCase ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): return ()
98
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __A : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) __A : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) __A : str = "text" __A : str = "summary" @property def __lowercase ( self) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
99
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : Optional[int] = '''gptj''' __lowercase : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCAmelCase__=5_0_4_0_0 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=4_0_9_6 , lowerCAmelCase__=2_8 , lowerCAmelCase__=1_6 , lowerCAmelCase__=6_4 , lowerCAmelCase__=None , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=5_0_2_5_6 , lowerCAmelCase__=False , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = rotary_dim __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "default" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ): super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__) if not getattr(self._config , """pad_token_id""" , lowerCAmelCase__): # TODO: how to do that better? __SCREAMING_SNAKE_CASE = 0 @property def snake_case_ ( self): __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}}) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="""inputs""") __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_ ( self): return self._config.n_layer @property def snake_case_ ( self): return self._config.n_head def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ): __SCREAMING_SNAKE_CASE = super(lowerCAmelCase__ , self).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(lowerCAmelCase__), torch.zeros(lowerCAmelCase__)) for _ in range(self.num_layers) ] __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: __SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__)] , dim=1) return ordered_inputs @property def snake_case_ ( self): return 1_3
100
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =ShapEPipeline lowercase_ : List[Any] =['''prompt'''] lowercase_ : int =['''prompt'''] lowercase_ : Union[str, Any] =[ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase_ : Optional[int] =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 8 @property def A__ ( self): lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def A__ ( self): torch.manual_seed(0) lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(A__) @property def A__ ( self): torch.manual_seed(0) lowercase = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } lowercase = PriorTransformer(**A__) return model @property def A__ ( self): torch.manual_seed(0) lowercase = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } lowercase = ShapERenderer(**A__) return model def A__ ( self): lowercase = self.dummy_prior lowercase = self.dummy_text_encoder lowercase = self.dummy_tokenizer lowercase = self.dummy_renderer lowercase = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=A__ ,clip_sample=A__ ,clip_sample_range=1.0 ,) lowercase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images[0] lowercase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) lowercase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def A__ ( self): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def A__ ( self): lowercase = torch_device == '''cpu''' lowercase = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=A__ ,relax_max_difference=A__ ,) def A__ ( self): lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = 1 lowercase = 2 lowercase = self.get_dummy_inputs(A__) for key in inputs.keys(): if key in self.batch_params: lowercase = batch_size * [inputs[key]] lowercase = pipe(**A__ ,num_images_per_prompt=A__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''') lowercase = ShapEPipeline.from_pretrained('''openai/shap-e''') lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = torch.Generator(device=A__).manual_seed(0) lowercase = pipe( '''a shark''' ,generator=A__ ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(A__ ,A__)
101
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( _snake_case : int ) ->Union[str, Any]: """simple docstring""" for param in module.parameters(): __snake_case : int = False def lowercase ( ) ->Any: """simple docstring""" __snake_case : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __snake_case : str = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowercase ( _snake_case : List[Any] ) ->Any: """simple docstring""" __snake_case : Dict = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def lowercase ( ) ->List[Any]: """simple docstring""" __snake_case : Optional[Any] = datetime.now() __snake_case : str = current_time.strftime('''%H:%M:%S''' ) return timestamp
102
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
from bisect import bisect from itertools import accumulate def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : str ): lowerCAmelCase_ : Union[str, Any] = sorted(zip(__UpperCamelCase ,__UpperCamelCase ) ,key=lambda __UpperCamelCase : x[0] / x[1] ,reverse=__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Any = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase_ : Union[str, Any] = list(accumulate(__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = bisect(__UpperCamelCase ,__UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
103
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
'''simple docstring''' import random def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = a[left_index] __lowercase = left_index + 1 for j in range(left_index + 1 , A__ ): if a[j] < pivot: __lowercase , __lowercase = a[i], a[j] i += 1 __lowercase , __lowercase = a[i - 1], a[left_index] return i - 1 def _A ( A__ , A__ , A__ ): """simple docstring""" if left < right: __lowercase = random.randint(A__ , right - 1 ) __lowercase , __lowercase = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowercase = partition(A__ , A__ , A__ ) quick_sort_random( A__ , A__ , A__ ) # recursive quicksort to the left of the pivot point quick_sort_random( A__ , pivot_index + 1 , A__ ) # recursive quicksort to the right of the pivot point def _A ( ): """simple docstring""" __lowercase = input('''Enter numbers separated by a comma:\n''' ).strip() __lowercase = [int(A__ ) for item in user_input.split(''',''' )] quick_sort_random(A__ , 0 , len(A__ ) ) print(A__ ) if __name__ == "__main__": main()
104
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} a : Optional[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } a : Optional[int] = { '''camembert-base''': 512, } a : Union[str, Any] = '''▁''' class __UpperCamelCase ( a__ ): lowerCamelCase : int =VOCAB_FILES_NAMES lowerCamelCase : List[str] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : str =["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=["<s>NOTUSED", "</s>NOTUSED"] , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) a : List[str] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> a : List[str] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} a : List[str] = len(self.fairseq_tokens_to_ids ) a : List[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) a : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a : List[str] = [self.cls_token_id] a : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: a : Optional[Any] = [self.sep_token_id] a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self ) -> Union[str, Any]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __a ( self ) -> Optional[int]: a : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowerCAmelCase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: a : Union[str, Any] = [] a : str = "" a : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token a : str = True a : Union[str, Any] = [] else: current_sub_tokens.append(lowerCAmelCase__ ) a : Tuple = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __getstate__( self ) -> Tuple: a : str = self.__dict__.copy() a : Union[str, Any] = None return state def __setstate__( self , lowerCAmelCase__ ) -> str: a : Union[str, Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a : Any = {} a : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a : int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
105
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "AutoImageProcessor" lowercase__ = "AutoTokenizer" def __init__( self : Any ,lowercase_ : List[str] ,lowercase_ : str ): super().__init__(lowercase_ ,lowercase_ ) lowerCAmelCase__ : List[Any] = self.image_processor def __call__( self : str ,lowercase_ : Any=None ,lowercase_ : Any=None ,lowercase_ : Optional[Any]=None ,**lowercase_ : Dict ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCAmelCase__ : List[str] = self.tokenizer(lowercase_ ,return_tensors=lowercase_ ,**lowercase_ ) if images is not None: lowerCAmelCase__ : Optional[int] = self.image_processor(lowercase_ ,return_tensors=lowercase_ ,**lowercase_ ) if text is not None and images is not None: lowerCAmelCase__ : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) ,tensor_type=lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,*lowercase_ : List[Any] ,**lowercase_ : Optional[Any] ): return self.tokenizer.batch_decode(*lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,*lowercase_ : int ,**lowercase_ : Optional[int] ): return self.tokenizer.decode(*lowercase_ ,**lowercase_ ) @property def __lowerCAmelCase ( self : List[Any] ): return ["input_ids", "attention_mask", "pixel_values"]
106
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
from __future__ import annotations import collections import pprint from pathlib import Path def __magic_name__ ( A : str ): '''simple docstring''' return "".join(sorted(A ) ) def __magic_name__ ( A : str ): '''simple docstring''' return word_by_signature[signature(A )] __lowerCAmelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __lowerCAmelCase : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCAmelCase : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCAmelCase : int = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
107
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="dpr" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__ = 0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : str = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = layer_norm_eps lowerCAmelCase : Dict = projection_dim lowerCAmelCase : Dict = position_embedding_type
108
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A: Optional[Any] = "http://www.mocksite.com/file1.txt" A: Union[str, Any] = "\"text\": [\"foo\", \"foo\"]" A: List[Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class SCREAMING_SNAKE_CASE__ : __lowerCAmelCase : Dict = 200 __lowerCAmelCase : Optional[int] = {'Content-Length': '100'} __lowerCAmelCase : Dict = {} def SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return [bytes(_SCREAMING_SNAKE_CASE , """utf-8""" )] def _snake_case ( *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : int ): import requests monkeypatch.setattr(UpperCamelCase , """request""" , UpperCamelCase ) UpperCAmelCase : int = URL if issubclass(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Tuple = url elif issubclass(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Any = [url] elif issubclass(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Any = {"""train""": url} UpperCAmelCase : Tuple = """dummy""" UpperCAmelCase : Dict = """downloads""" UpperCAmelCase : Optional[Any] = tmp_path UpperCAmelCase : Optional[int] = DownloadConfig( cache_dir=os.path.join(UpperCamelCase , UpperCamelCase ) , use_etag=UpperCamelCase , ) UpperCAmelCase : str = DownloadManager(dataset_name=UpperCamelCase , download_config=UpperCamelCase ) UpperCAmelCase : Optional[Any] = dl_manager.download(UpperCamelCase ) UpperCAmelCase : List[str] = urls for downloaded_paths in [downloaded_paths]: if isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : int = [downloaded_paths] UpperCAmelCase : Dict = [urls] elif isinstance(UpperCamelCase , UpperCamelCase ): assert "train" in downloaded_paths.keys() UpperCAmelCase : Tuple = downloaded_paths.values() UpperCAmelCase : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(UpperCamelCase , UpperCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase : int = Path(UpperCamelCase ) UpperCAmelCase : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase : Dict = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() UpperCAmelCase : int = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): UpperCAmelCase : Tuple = str(UpperCamelCase ) if issubclass(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Dict = filename elif issubclass(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Optional[int] = [filename] elif issubclass(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Dict = {"""train""": filename} UpperCAmelCase : str = """dummy""" UpperCAmelCase : Tuple = xz_file.parent UpperCAmelCase : int = """extracted""" UpperCAmelCase : Tuple = DownloadConfig( cache_dir=UpperCamelCase , use_etag=UpperCamelCase , ) UpperCAmelCase : Dict = DownloadManager(dataset_name=UpperCamelCase , download_config=UpperCamelCase ) UpperCAmelCase : Tuple = dl_manager.extract(UpperCamelCase ) UpperCAmelCase : str = paths for extracted_paths in [extracted_paths]: if isinstance(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Optional[int] = [extracted_paths] UpperCAmelCase : int = [paths] elif isinstance(UpperCamelCase , UpperCamelCase ): assert "train" in extracted_paths.keys() UpperCAmelCase : Union[str, Any] = extracted_paths.values() UpperCAmelCase : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(UpperCamelCase , UpperCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase : Optional[Any] = Path(UpperCamelCase ) UpperCAmelCase : Optional[int] = extracted_path.parts assert parts[-1] == hash_url_to_filename(UpperCamelCase , etag=UpperCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase : int = extracted_path.read_text() UpperCAmelCase : Tuple = text_file.read_text() assert extracted_file_content == expected_file_content def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Dict ): assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(UpperCamelCase , start=1 ): UpperCAmelCase : Optional[int] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _snake_case ( UpperCamelCase : int , UpperCamelCase : Tuple ): UpperCAmelCase : Dict = request.getfixturevalue(UpperCamelCase ) UpperCAmelCase : int = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase ) , start=1 ): _test_jsonl(UpperCamelCase , UpperCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = request.getfixturevalue(UpperCamelCase ) UpperCAmelCase : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(UpperCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(UpperCamelCase ) , start=1 ): _test_jsonl(UpperCamelCase , UpperCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : str = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(UpperCamelCase ) , start=1 ): assert os.path.basename(UpperCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
109
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCAmelCase = random.Random() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ): """simple docstring""" if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a ( unittest.TestCase ): def __init__( self: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Any=400 , UpperCamelCase_: Optional[int]=2_000 , UpperCamelCase_: Tuple=2_048 , UpperCamelCase_: int=128 , UpperCamelCase_: Optional[int]=1 , UpperCamelCase_: List[str]=512 , UpperCamelCase_: str=30 , UpperCamelCase_: int=44_100 , ) -> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = spectrogram_length lowercase__ = feature_size lowercase__ = num_audio_channels lowercase__ = hop_length lowercase__ = chunk_length lowercase__ = sampling_rate def lowerCamelCase_ ( self: List[Any] ) -> int: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int=False , UpperCamelCase_: Optional[int]=False ) -> str: """simple docstring""" def _flatten(UpperCamelCase_: List[Any] ): return list(itertools.chain(*UpperCamelCase_ ) ) if equal_length: lowercase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(UpperCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = TvltFeatureExtractor def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" lowercase__ = TvltFeatureExtractionTester(self ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''feature_size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''hop_length''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''chunk_length''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''sampling_rate''' ) ) def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = feat_extract_first.save_pretrained(UpperCamelCase_ )[0] check_json_file_has_correct_format(UpperCamelCase_ ) lowercase__ = self.feature_extraction_class.from_pretrained(UpperCamelCase_ ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = dict_first.pop('''mel_filters''' ) lowercase__ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(UpperCamelCase_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase_ ) lowercase__ = self.feature_extraction_class.from_json_file(UpperCamelCase_ ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = dict_first.pop('''mel_filters''' ) lowercase__ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowercase__ = [np.asarray(UpperCamelCase_ ) for speech_input in speech_inputs] # Test not batched input lowercase__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowercase__ = feature_extractor(UpperCamelCase_ , return_tensors='''np''' , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowercase__ = feature_extractor( UpperCamelCase_ , return_tensors='''np''' , sampling_rate=44_100 , mask_audio=UpperCamelCase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(UpperCamelCase_ ) lowercase__ = feature_extractor(UpperCamelCase_ , return_tensors='''np''' , sampling_rate=44_100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: str ) -> List[str]: """simple docstring""" lowercase__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech lowercase__ = ds.sort('''id''' ).select(range(UpperCamelCase_ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def lowerCamelCase_ ( self: int ) -> Union[str, Any]: """simple docstring""" lowercase__ = self._load_datasamples(1 ) lowercase__ = TvltFeatureExtractor() lowercase__ = feature_extractor(UpperCamelCase_ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) lowercase__ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , UpperCamelCase_ , atol=1E-4 ) )
110
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase__ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCamelCase__ = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase__ = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase__ = sorted(arg_to_scheduler.keys()) UpperCamelCase__ = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class A ( pl.LightningModule ): def __init__(self : Union[str, Any] , __UpperCAmelCase : argparse.Namespace , __UpperCAmelCase : int=None , __UpperCAmelCase : Tuple="base" , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : int=None , **__UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = Path(self.hparams.output_dir ) UpperCAmelCase__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: UpperCAmelCase__ = config UpperCAmelCase__ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , lowerCAmelCase__ , lowerCAmelCase__ ): assert hasattr(self.config , lowerCAmelCase__ ), f"""model config doesn't have a `{p}` attribute""" setattr(self.config , lowerCAmelCase__ , getattr(self.hparams , lowerCAmelCase__ ) ) if tokenizer is None: UpperCAmelCase__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase__ , ) else: UpperCAmelCase__ = tokenizer UpperCAmelCase__ = MODEL_MODES[mode] if model is None: UpperCAmelCase__ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowerCAmelCase__ , ) else: UpperCAmelCase__ = model def lowercase_ (self : Optional[int] , *__UpperCAmelCase : List[Any] , **__UpperCAmelCase : Any ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_type.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ (self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase__ = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase__ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase__ = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowercase_ (self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model UpperCAmelCase__ = ["bias", "LayerNorm.weight"] UpperCAmelCase__ = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase__ = Adafactor( lowerCAmelCase__ , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase__ , relative_step=lowerCAmelCase__ ) else: UpperCAmelCase__ = AdamW( lowerCAmelCase__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase__ = optimizer UpperCAmelCase__ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> List[Any]: """simple docstring""" return self.validation_step(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" return self.validation_end(lowerCAmelCase__ ) def lowercase_ (self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase__ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowercase_ (self : Tuple , __UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" if stage == "test": UpperCAmelCase__ = len(self.test_dataloader().dataset ) else: UpperCAmelCase__ = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) UpperCAmelCase__ = len(self.train_dataloader().dataset ) def lowercase_ (self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : bool = False ) -> Any: """simple docstring""" raise NotImplementedError("You must implement this for your task" ) def lowercase_ (self : str ) -> int: """simple docstring""" return self.train_loader def lowercase_ (self : str ) -> str: """simple docstring""" return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__ ) def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=lowerCAmelCase__ ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( lowerCAmelCase__ , list(filter(lowerCAmelCase__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowercase_ (self : List[Any] , __UpperCAmelCase : Dict[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.output_dir.joinpath("best_tfmr" ) UpperCAmelCase__ = self.step_count self.model.save_pretrained(lowerCAmelCase__ ) self.tokenizer.save_pretrained(lowerCAmelCase__ ) @staticmethod def lowercase_ (__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" parser.add_argument( "--model_name_or_path" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=lowerCAmelCase__ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(lowerCAmelCase__ ).parent / "test_run" / "cache" ) , type=lowerCAmelCase__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=lowerCAmelCase__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=lowerCAmelCase__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=lowerCAmelCase__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=lowerCAmelCase__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5E-5 , type=lowerCAmelCase__ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=lowerCAmelCase__ , metavar=lowerCAmelCase__ , type=lowerCAmelCase__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=lowerCAmelCase__ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=lowerCAmelCase__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=lowerCAmelCase__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=lowerCAmelCase__ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=lowerCAmelCase__ ) parser.add_argument("--train_batch_size" , default=3_2 , type=lowerCAmelCase__ ) parser.add_argument("--eval_batch_size" , default=3_2 , type=lowerCAmelCase__ ) parser.add_argument("--adafactor" , action="store_true" ) class A ( pl.Callback ): def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class A ( pl.Callback ): def lowercase_ (self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> List[str]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase__ ) class A ( pl.Callback ): def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = trainer.lr_schedulers[0]["scheduler"] UpperCAmelCase__ = {f"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowerCAmelCase__ ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) -> Optional[int]: """simple docstring""" rank_zero_info("***** Validation results *****" ) UpperCAmelCase__ = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key] ) ) ) def lowercase_ (self : int , __UpperCAmelCase : pl.Trainer , __UpperCAmelCase : pl.LightningModule ) -> Optional[Any]: """simple docstring""" rank_zero_info("***** Test results *****" ) UpperCAmelCase__ = trainer.callback_metrics # Log and save results to file UpperCAmelCase__ = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(lowerCAmelCase__ , "w" ) as writer: for key in sorted(lowerCAmelCase__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(lowerCAmelCase__ , str(metrics[key] ) ) ) def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' parser.add_argument( "--output_dir", default=str(Path(_UpperCAmelCase ).parent / "test_run" / "model_checkpoints" ), type=_UpperCAmelCase, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=_UpperCAmelCase, default="O2", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=_UpperCAmelCase ) parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=_UpperCAmelCase, help="Max gradient norm" ) parser.add_argument("--do_train", action="store_true", help="Whether to run training." ) parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps", dest="accumulate_grad_batches", type=_UpperCAmelCase, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--seed", type=_UpperCAmelCase, default=42, help="random seed for initialization" ) parser.add_argument( "--data_dir", default=str(Path(_UpperCAmelCase ).parent / "test_run" / "dummy-train-data" ), type=_UpperCAmelCase, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) def lowerCAmelCase_ ( __A, __A, __A=None, __A=True, __A=[], __A=None, __A=None, **__A, ) -> Tuple: '''simple docstring''' pl.seed_everything(args.seed ) # init model UpperCAmelCase__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCAmelCase ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCAmelCase ) if logging_callback is None: UpperCAmelCase__ = LoggingCallback() UpperCAmelCase__ = {} if args.fpaa: UpperCAmelCase__ = 16 if args.gpus > 1: UpperCAmelCase__ = "auto" UpperCAmelCase__ = "ddp" UpperCAmelCase__ = args.accumulate_grad_batches UpperCAmelCase__ = None UpperCAmelCase__ = "auto" UpperCAmelCase__ = pl.Trainer.from_argparse_args( _UpperCAmelCase, weights_summary=_UpperCAmelCase, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=_UpperCAmelCase, val_check_interval=1, num_sanity_val_steps=2, **_UpperCAmelCase, ) if args.do_train: trainer.fit(_UpperCAmelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
65
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class UpperCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase = field(default="""automatic-speech-recognition""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCamelCase = Features({"""audio""": Audio()} ) UpperCamelCase = Features({"""transcription""": Value("""string""" )} ) UpperCamelCase = "audio" UpperCamelCase = "transcription" def snake_case__ ( self : Optional[Any] , a_ : int ): '''simple docstring''' if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , lowerCAmelCase__ ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) __UpperCAmelCase : Tuple = copy.deepcopy(self ) __UpperCAmelCase : Optional[int] = self.input_schema.copy() __UpperCAmelCase : Dict = features[self.audio_column] __UpperCAmelCase : int = input_schema return task_template @property def snake_case__ ( self : int ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
226
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home a_ :Union[str, Any] = HUGGINGFACE_HUB_CACHE a_ :int = """config.json""" a_ :str = """diffusion_pytorch_model.bin""" a_ :Dict = """diffusion_flax_model.msgpack""" a_ :Optional[int] = """model.onnx""" a_ :List[str] = """diffusion_pytorch_model.safetensors""" a_ :List[Any] = """weights.pb""" a_ :List[str] = """https://huggingface.co""" a_ :Optional[int] = default_cache_path a_ :List[str] = """diffusers_modules""" a_ :Dict = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) a_ :Dict = ["""fp16""", """non-ema"""] a_ :Optional[int] = """.self_attn"""
277
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
from __future__ import annotations def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # noqa: E741 while r - l > 1: lowercase : Tuple = (l + r) // 2 if v[m] >= key: lowercase : int = m else: lowercase : Any = m # noqa: E741 return r def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: if len(_UpperCAmelCase ) == 0: return 0 lowercase : Union[str, Any] = [0] * len(_UpperCAmelCase ) lowercase : int = 1 lowercase : Optional[Any] = v[0] for i in range(1 , len(_UpperCAmelCase ) ): if v[i] < tail[0]: lowercase : int = v[i] elif v[i] > tail[length - 1]: lowercase : int = v[i] length += 1 else: lowercase : List[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( UpperCAmelCase_ ): __lowerCamelCase : int = (KDPMaDiscreteScheduler,) __lowerCamelCase : Optional[Any] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple ={ "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[int] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Any =self.dummy_model() UpperCAmelCase : int =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Optional[int] =sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Tuple =scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] =model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Optional[Any] =scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Tuple =output.prev_sample UpperCAmelCase : Tuple =torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[str] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : Any =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Dict =self.dummy_model() UpperCAmelCase : str =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Any =sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Union[str, Any] =scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Tuple =model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Optional[Any] =scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Tuple =output.prev_sample UpperCAmelCase : List[Any] =torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : str =torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[str] =self.scheduler_classes[0] UpperCAmelCase : Optional[Any] =self.get_scheduler_config() UpperCAmelCase : List[Any] =scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Dict =self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Tuple =scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : str =model(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Any =output.prev_sample UpperCAmelCase : List[Any] =torch.sum(torch.abs(lowerCAmelCase__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(lowerCAmelCase__ ) ) if str(lowerCAmelCase__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( a_ : Any , a_ : Optional[Any] = None , a_ : Dict = None ) -> Dict: if start is None: __SCREAMING_SNAKE_CASE :Tuple = 0 if end is None: __SCREAMING_SNAKE_CASE :Tuple = len(_UpperCAmelCase ) - 1 if start >= end: return __SCREAMING_SNAKE_CASE :List[Any] = (start + end) // 2 slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) if sequence[end] < sequence[mid]: __SCREAMING_SNAKE_CASE :int = sequence[mid], sequence[end] slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
191
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
def lowerCAmelCase_ ( snake_case_=28123 ): _A : Any = [1] * (limit + 1) for i in range(2,int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1,limit // i + 1 ): sum_divs[k * i] += k + i _A : int = set() _A : Tuple = 0 for n in range(1,limit + 1 ): if sum_divs[n] > n: abundants.add(_UpperCAmelCase ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
26
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' __A : Optional[Any] = XGLMTokenizer __A : List[Any] = XGLMTokenizerFast __A : Optional[int] = True __A : Tuple = True def _snake_case ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = "<pad>" lowerCamelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1008 ) def _snake_case ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) lowerCamelCase : Union[str, Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _snake_case ( self ): """simple docstring""" return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _snake_case ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name ) lowerCamelCase : Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__ ) lowerCamelCase : List[str] = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def _snake_case ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : List[str] = self.get_rust_tokenizer() lowerCamelCase : Any = "I was born in 92000, and this is falsé." lowerCamelCase : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) lowerCamelCase : int = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) lowerCamelCase : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase : Optional[int] = self.get_rust_tokenizer() lowerCamelCase : str = tokenizer.encode(lowerCAmelCase__ ) lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "Hello World!" lowerCamelCase : Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off lowerCamelCase : Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
283
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' def _A ( _lowerCAmelCase = 2_000_000 ): """simple docstring""" __lowercase =[0 for i in range(n + 1 )] __lowercase =1 __lowercase =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _UpperCAmelCase ): __lowercase =1 __lowercase =0 for i in range(_UpperCAmelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"{solution() = }")
166
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A : List[Any] = re.compile(R'''^(?P<major>\d+)''' R'''\.(?P<minor>\d+)''' R'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class A : '''simple docstring''' __lowerCamelCase : str __lowerCamelCase : Optional[str] = None __lowerCamelCase : Optional[Union[str, int]] = None __lowerCamelCase : Optional[Union[str, int]] = None __lowerCamelCase : Optional[Union[str, int]] = None def a_ ( self : List[str] ) -> Tuple: """simple docstring""" A__ = _str_to_version_tuple(self.version_str ) def __repr__( self : List[Any] ) -> Dict: """simple docstring""" return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def a_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return self.major, self.minor, self.patch def a_ ( self : str , __lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return Version(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return other raise TypeError(f'{other} (type {type(lowerCAmelCase__ )}) cannot be compared to version.' ) def __eq__( self : Tuple , __lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" try: A__ = self._validate_operand(lowerCAmelCase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" A__ = self._validate_operand(lowerCAmelCase__ ) return self.tuple < other.tuple def __hash__( self : str ) -> List[Any]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def a_ ( cls : List[Any] , __lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" A__ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" return self.version_str def __lowerCamelCase ( __a :Dict ) -> Any: """simple docstring""" A__ = _VERSION_REG.match(_UpperCAmelCase ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(_UpperCAmelCase ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def __lowerCamelCase ( __a :Tuple ) -> Optional[Any]: """simple docstring""" return ".".join(str(_UpperCAmelCase ) for v in version_tuple )
274
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
311
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find("patch" ) UpperCAmelCase__ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=_UpperCAmelCase, num_frames=_UpperCAmelCase ) if "large" in model_name: UpperCAmelCase__ = 768 UpperCAmelCase__ = 3_072 UpperCAmelCase__ = 12 UpperCAmelCase__ = 1_024 UpperCAmelCase__ = 4_096 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 768 UpperCAmelCase__ = 3_072 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 336 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(_UpperCAmelCase, _UpperCAmelCase ) if "large" in model_name: UpperCAmelCase__ = 768 return config def lowerCAmelCase_ ( __A ) -> List[Any]: '''simple docstring''' if name == "token_embedding.weight": UpperCAmelCase__ = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCAmelCase__ = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCAmelCase__ = name.replace("ln_1", "layer_norm1" ) if "ln_2" in name: UpperCAmelCase__ = name.replace("ln_2", "layer_norm2" ) if "c_fc" in name: UpperCAmelCase__ = name.replace("c_fc", "fc1" ) if "c_proj" in name: UpperCAmelCase__ = name.replace("c_proj", "fc2" ) if name.startswith("transformer.resblocks" ): UpperCAmelCase__ = name.replace("transformer.resblocks", "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace("attn.out_proj", "self_attn.out_proj" ) if "ln_final" in name: UpperCAmelCase__ = name.replace("ln_final", "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCAmelCase__ = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace("visual.ln_pre", "vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace("visual.ln_post", "vision_model.post_layernorm" ) if "visual.proj" in name: UpperCAmelCase__ = name.replace("visual.proj", "visual_projection.weight" ) if "text_projection" in name: UpperCAmelCase__ = name.replace("text_projection", "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace("prompts_visual_proj", "prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace("prompts_visual_ln", "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace("positional", "position" ) if name.startswith("mit.resblocks" ): UpperCAmelCase__ = name.replace("mit.resblocks", "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCAmelCase__ = name.replace("prompts_generator.norm", "prompts_generator.layernorm" ) return name def lowerCAmelCase_ ( __A, __A ) -> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(_UpperCAmelCase ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split("." ) if key.startswith("visual" ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith("mit" ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(_UpperCAmelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' if num_frames == 8: UpperCAmelCase__ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCAmelCase__ = "eating_spaghetti.npy" elif num_frames == 32: UpperCAmelCase__ = "eating_spaghetti_32_frames.npy" UpperCAmelCase__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=_UpperCAmelCase, repo_type="dataset", ) UpperCAmelCase__ = np.load(_UpperCAmelCase ) return list(_UpperCAmelCase ) def lowerCAmelCase_ ( __A, __A=None, __A=False ) -> int: '''simple docstring''' UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(_UpperCAmelCase, _UpperCAmelCase ) UpperCAmelCase__ = XCLIPModel(_UpperCAmelCase ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = "pytorch_model.bin" gdown.cached_download(_UpperCAmelCase, _UpperCAmelCase, quiet=_UpperCAmelCase ) UpperCAmelCase__ = torch.load(_UpperCAmelCase, map_location="cpu" )["model"] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(_UpperCAmelCase )["model"] UpperCAmelCase__ = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase ) UpperCAmelCase__ = XCLIPModel(_UpperCAmelCase ) UpperCAmelCase__ = model.load_state_dict(_UpperCAmelCase, strict=_UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCAmelCase__ = VideoMAEImageProcessor(size=_UpperCAmelCase ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase__ = XCLIPProcessor(image_processor=_UpperCAmelCase, tokenizer=_UpperCAmelCase ) UpperCAmelCase__ = prepare_video(_UpperCAmelCase ) UpperCAmelCase__ = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=_UpperCAmelCase, return_tensors="pt", padding=_UpperCAmelCase ) print("Shape of pixel values:", inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**_UpperCAmelCase ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print("Probs:", _UpperCAmelCase ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(_UpperCAmelCase, _UpperCAmelCase, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(_UpperCAmelCase, organization="nielsr" ) processor.push_to_hub(_UpperCAmelCase, organization="nielsr" ) slow_tokenizer.push_to_hub(_UpperCAmelCase, organization="nielsr" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
65
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , a_ : Optional[int] , a_ : Optional[Any] , a_ : bool = True , a_ : bool = False ): '''simple docstring''' __UpperCAmelCase : Any = scheduler __UpperCAmelCase : List[str] = optimizers if isinstance(lowerCAmelCase__ , (list, tuple) ) else [optimizers] __UpperCAmelCase : str = split_batches __UpperCAmelCase : Optional[Any] = step_with_optimizer __UpperCAmelCase : Dict = GradientState() def snake_case__ ( self : Union[str, Any] , *a_ : Tuple , **a_ : List[Any] ): '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __UpperCAmelCase : Union[str, Any] = AcceleratorState().num_processes for _ in range(lowerCAmelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: self.scheduler.step(*lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : str ): '''simple docstring''' return self.scheduler.get_last_lr() def snake_case__ ( self : Dict ): '''simple docstring''' return self.scheduler.state_dict() def snake_case__ ( self : Dict , a_ : Optional[Any] ): '''simple docstring''' self.scheduler.load_state_dict(lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ): '''simple docstring''' return self.scheduler.get_lr() def snake_case__ ( self : Optional[int] , *a_ : List[str] , **a_ : Optional[int] ): '''simple docstring''' return self.scheduler.print_lr(*lowerCAmelCase__ , **lowerCAmelCase__ )
226
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
def lowercase_ (A : List[str] = 1_0_0_0 ): return sum(e for e in range(3 , _UpperCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
277
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( UpperCAmelCase_ , unittest.TestCase ): _a : List[Any]= TransfoXLTokenizer _a : Dict= False _a : Union[str, Any]= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : List[Any] = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = "<unk> UNwanted , running" lowercase : Tuple = "<unk> unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=lowerCAmelCase__ ) lowercase : Union[str, Any] = tokenizer.tokenize("""<unk> UNwanted , running""" ) self.assertListEqual(lowerCAmelCase__ ,["""<unk>""", """unwanted""", """,""", """running"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,[0, 4, 8, 7] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo ! how \n Are yoU ? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) lowercase : Optional[Any] = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" lowercase : List[str] = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) ,lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.get_tokenizer() lowercase : List[str] = len(lowerCAmelCase__ ) tokenizer.add_tokens(["""new1""", """new2"""] ) tokenizer.move_added_token("""new1""" ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("""new1""" ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,"""new1""" )
20
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : List[str] =[0] * len(_UpperCAmelCase ) UpperCAmelCase : List[Any] =[] UpperCAmelCase : str =[] UpperCAmelCase : List[str] =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: UpperCAmelCase : Optional[int] =queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print('''Cycle exists''' ) else: print(_UpperCAmelCase ) # Adjacency List of Graph __snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = '''vision-encoder-decoder''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def __init__( self ,**SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) __SCREAMING_SNAKE_CASE :Tuple = kwargs.pop('''encoder''' ) __SCREAMING_SNAKE_CASE :List[str] = encoder_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = kwargs.pop('''decoder''' ) __SCREAMING_SNAKE_CASE :Any = decoder_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = AutoConfig.for_model(lowerCAmelCase__ ,**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :List[Any] = AutoConfig.for_model(lowerCAmelCase__ ,**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :List[Any] = True @classmethod def _UpperCamelCase ( cls ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :List[Any] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE :List[str] = self.encoder.to_dict() __SCREAMING_SNAKE_CASE :Tuple = self.decoder.to_dict() __SCREAMING_SNAKE_CASE :List[Any] = self.__class__.model_type return output class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : int = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ) -> str: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self ) -> Any: """simple docstring""" return 1E-4 @property def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): @property def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = OrderedDict() __SCREAMING_SNAKE_CASE :Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} __SCREAMING_SNAKE_CASE :List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} __SCREAMING_SNAKE_CASE :Union[str, Any] = {0: "batch", 1: "encoder_sequence"} return common_inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> str: """simple docstring""" import torch __SCREAMING_SNAKE_CASE :int = OrderedDict() __SCREAMING_SNAKE_CASE :str = super().generate_dummy_inputs( lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,seq_length=lowerCAmelCase__ ,is_pair=lowerCAmelCase__ ,framework=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Tuple = dummy_input["input_ids"].shape __SCREAMING_SNAKE_CASE :List[Any] = (batch, encoder_sequence, self._config.encoder_hidden_size) __SCREAMING_SNAKE_CASE :Any = dummy_input.pop('''input_ids''' ) __SCREAMING_SNAKE_CASE :int = dummy_input.pop('''attention_mask''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.zeros(lowerCAmelCase__ ) return common_inputs class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): @property def _UpperCamelCase ( self ) -> Any: """simple docstring""" pass def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = "default" ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase__ ,lowerCAmelCase__ )
191
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _snake_case = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _snake_case = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = set() _A : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char _A : Dict = set(_UpperCAmelCase ) return pairs class lowercase ( UpperCAmelCase_ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , **_a , ) -> List[Any]: super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _A : Union[str, Any] = vocab_file _A : Optional[int] = merges_file _A : List[str] = {} _A : Optional[Any] = 0 _A : Optional[int] = 1 _A : Dict = 2 _A : Optional[Any] = 3 self.add_from_file(lowerCAmelCase__ ) _A : int = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: _A : int = merges_handle.read().split("""\n""" )[:-1] _A : int = [tuple(merge.split()[:-1] ) for merge in merges] _A : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _A : Dict = {} def a__ ( self , _a , _a = None ) -> str: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : List[Any] = [self.cls_token_id] _A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def a__ ( self , _a , _a = None ) -> int: _A : Dict = [self.sep_token_id] _A : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self ) -> int: return len(self.encoder ) def a__ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , _a ) -> Dict: if token in self.cache: return self.cache[token] _A : Optional[int] = tuple(lowerCAmelCase__ ) _A : Dict = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) _A : Tuple = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _A : int = min(lowerCAmelCase__ , key=lambda _a : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _A : Dict = bigram _A : Dict = [] _A : Tuple = 0 while i < len(lowerCAmelCase__ ): try: _A : List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A : List[Any] = tuple(lowerCAmelCase__ ) _A : int = new_word if len(lowerCAmelCase__ ) == 1: break else: _A : Dict = get_pairs(lowerCAmelCase__ ) _A : List[str] = "@@ ".join(lowerCAmelCase__ ) _A : Tuple = word[:-4] _A : int = word return word def a__ ( self , _a ) -> Tuple: _A : Dict = [] _A : Optional[int] = re.findall(R"""\S+\n?""" , lowerCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(""" """ ) ) ) return split_tokens def a__ ( self , _a ) -> Optional[Any]: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def a__ ( self , _a ) -> Any: return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def a__ ( self , _a ) -> List[Any]: _A : int = " ".join(lowerCAmelCase__ ).replace("""@@ """ , """""" ).strip() return out_string def a__ ( self , _a , _a = None ) -> Optional[int]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.merges_file , lowerCAmelCase__ ) return out_vocab_file, out_merge_file def a__ ( self , _a ) -> Union[str, Any]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _A : Any = f.readlines() for lineTmp in lines: _A : str = lineTmp.strip() _A : Any = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) _A : Optional[int] = line[:idx] _A : int = len(self.encoder )
26
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {"""vocab_file""": """spiece.model"""} _snake_case = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } _snake_case = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) _snake_case = 0 _snake_case = 1 _snake_case = 2 _snake_case = 3 _snake_case = 4 class UpperCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' __A : List[Any] = VOCAB_FILES_NAMES __A : List[Any] = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[Any] = '''left''' def __init__( self , __A , __A=False , __A=True , __A=False , __A="<s>" , __A="</s>" , __A="<unk>" , __A="<sep>" , __A="<pad>" , __A="<cls>" , __A="<mask>" , __A=["<eop>", "<eod>"] , __A = None , **__A , ): """simple docstring""" lowerCamelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token lowerCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) lowerCamelCase : Dict = 3 lowerCamelCase : List[str] = do_lower_case lowerCamelCase : List[Any] = remove_space lowerCamelCase : int = keep_accents lowerCamelCase : Tuple = vocab_file lowerCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.__dict__.copy() lowerCamelCase : Optional[int] = None return state def __setstate__( self , __A ): """simple docstring""" lowerCamelCase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : List[Any] = {} lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , __A ): """simple docstring""" if self.remove_space: lowerCamelCase : int = " ".join(inputs.strip().split() ) else: lowerCamelCase : int = inputs lowerCamelCase : Tuple = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase : List[str] = unicodedata.normalize("NFKD" , lowerCAmelCase__ ) lowerCamelCase : int = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__ )] ) if self.do_lower_case: lowerCamelCase : Union[str, Any] = outputs.lower() return outputs def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : str = self.preprocess_text(lowerCAmelCase__ ) lowerCamelCase : Optional[Any] = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) lowerCamelCase : Tuple = [] for piece in pieces: if len(lowerCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase : List[str] = cur_pieces[1:] else: lowerCamelCase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase__ ) else: new_pieces.append(lowerCAmelCase__ ) return new_pieces def _snake_case ( self , __A ): """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase__ ) def _snake_case ( self , __A ): """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase__ ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : List[str] = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip() return out_string def _snake_case ( self , __A , __A = False , __A = None , __A = True , **__A , ): """simple docstring""" lowerCamelCase : List[Any] = kwargs.pop("use_source_tokenizer" , lowerCAmelCase__ ) lowerCamelCase : int = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase : Optional[int] = [] lowerCamelCase : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) lowerCamelCase : Dict = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase : Union[str, Any] = "".join(lowerCAmelCase__ ) lowerCamelCase : Union[str, Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase : Dict = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Optional[int] = [self.sep_token_id] lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , __A , __A = None , __A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] return ([0] * len(lowerCAmelCase__ )) + [1, 1] def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Tuple = [self.sep_token_id] lowerCamelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , __A , __A = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: lowerCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
283
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCamelCase = logging.getLogger(__name__) class _UpperCamelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict=None): '''simple docstring''' super().__init__( lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , ) __lowercase =None def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : int): '''simple docstring''' logger.info('initializing retrieval') # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized') # needs to be set manually __lowercase =self._infer_socket_ifname() # avoid clash with the NCCL port __lowercase =str(distributed_port + 1) __lowercase =dist.new_group(ranks=lowerCAmelCase__ , backend='gloo') # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main') self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return dist.get_rank(group=self.process_group) == 0 def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=torch.floataa): '''simple docstring''' __lowercase =torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__) dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group) return target_tensor def __lowerCamelCase ( self : List[Any]): '''simple docstring''' __lowercase =psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowercase =next((addr for addr in addrs if addr.startswith('e')) , lowerCAmelCase__) return ifname def __lowerCamelCase ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int): '''simple docstring''' if not dist.is_initialized(): __lowercase =self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__) # distributed training __lowercase =dist.get_world_size(group=self.process_group) # gather logic __lowercase =None if self._is_main(): __lowercase =[torch.empty(question_hidden_states.shape , dtype=torch.floataa) for _ in range(lowerCAmelCase__)] dist.gather(torch.tensor(lowerCAmelCase__) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group) # scatter logic __lowercase =question_hidden_states.shape[0] __lowercase =[] __lowercase =[] if self._is_main(): assert len(lowerCAmelCase__) == world_size __lowercase =self._main_retrieve(torch.cat(lowerCAmelCase__).numpy() , lowerCAmelCase__) __lowercase =torch.tensor(lowerCAmelCase__), torch.tensor(lowerCAmelCase__) __lowercase =self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) __lowercase =self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__) __lowercase =self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa) __lowercase =self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]]) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__)
166
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
from __future__ import annotations class A : '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : List[Any]=None ) -> Union[str, Any]: """simple docstring""" A__ = data A__ = None def __repr__( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = [] A__ = self while temp: string_rep.append(f'{temp.data}' ) A__ = temp.next return "->".join(lowerCAmelCase__ ) def __lowerCamelCase ( __a :int ) -> Optional[int]: """simple docstring""" if not elements_list: raise Exception("""The Elements List is empty""" ) A__ = Node(elements_list[0] ) for i in range(1 , len(_UpperCAmelCase ) ): A__ = Node(elements_list[i] ) A__ = current.next return head def __lowerCamelCase ( __a :List[str] ) -> List[str]: """simple docstring""" if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __lowerCamelCase ( ) -> int: """simple docstring""" from doctest import testmod testmod() A__ = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("""Linked List:""" ) print(_UpperCAmelCase ) print("""Elements in Reverse:""" ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
274
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ShapEPipeline SCREAMING_SNAKE_CASE__ : Tuple = ['''prompt'''] SCREAMING_SNAKE_CASE__ : Dict = ['''prompt'''] SCREAMING_SNAKE_CASE__ : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE__ : Optional[int] = False @property def A_ ( self ): '''simple docstring''' return 3_2 @property def A_ ( self ): '''simple docstring''' return 3_2 @property def A_ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def A_ ( self ): '''simple docstring''' return 8 @property def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(lowerCAmelCase__ ) @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Tuple = { "num_attention_heads": 2, "attention_head_dim": 1_6, "embedding_dim": self.time_input_dim, "num_embeddings": 3_2, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCAmelCase : Any = PriorTransformer(**lowerCAmelCase__ ) return model @property def A_ ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 1_2, "background": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase : Optional[int] = ShapERenderer(**lowerCAmelCase__ ) return model def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.dummy_prior UpperCAmelCase : Optional[Any] = self.dummy_text_encoder UpperCAmelCase : Union[str, Any] = self.dummy_tokenizer UpperCAmelCase : List[str] = self.dummy_renderer UpperCAmelCase : Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_0_2_4 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) UpperCAmelCase : Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def A_ ( self , snake_case , snake_case=0 ): '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): UpperCAmelCase : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 3_2, "output_type": "np", } return inputs def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = "cpu" UpperCAmelCase : Tuple = self.get_dummy_components() UpperCAmelCase : Dict = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase : Any = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCAmelCase : Optional[Any] = output.images[0] UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) UpperCAmelCase : Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = torch_device == "cpu" UpperCAmelCase : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : str = self.pipeline_class(**lowerCAmelCase__ ) UpperCAmelCase : Tuple = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase : List[Any] = 1 UpperCAmelCase : Any = 2 UpperCAmelCase : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase : List[Any] = batch_size * [inputs[key]] UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) UpperCAmelCase : List[str] = ShapEPipeline.from_pretrained("openai/shap-e" ) UpperCAmelCase : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) UpperCAmelCase : int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="np" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
311
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase__ = True except (ImportError, AttributeError): UpperCamelCase__ = object def lowerCAmelCase_ ( *__A, **__A ) -> List[Any]: '''simple docstring''' pass UpperCamelCase__ = False UpperCamelCase__ = logging.get_logger('transformers-cli/serving') def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(_UpperCAmelCase, args.host, args.port, args.workers ) class A ( UpperCAmelCase_ ): __UpperCAmelCase : dict class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] __UpperCAmelCase : Optional[List[int]] class A ( UpperCAmelCase_ ): __UpperCAmelCase : str class A ( UpperCAmelCase_ ): __UpperCAmelCase : Any class A ( UpperCAmelCase_ ): @staticmethod def lowercase_ (__UpperCAmelCase : ArgumentParser ) -> int: """simple docstring""" UpperCAmelCase__ = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=lowerCAmelCase__ , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=lowerCAmelCase__ , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=lowerCAmelCase__ , default=8_8_8_8 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=lowerCAmelCase__ , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=lowerCAmelCase__ , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=lowerCAmelCase__ , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=lowerCAmelCase__ , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=lowerCAmelCase__ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=lowerCAmelCase__ ) def __init__(self : Optional[int] , __UpperCAmelCase : Pipeline , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = pipeline UpperCAmelCase__ = host UpperCAmelCase__ = port UpperCAmelCase__ = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(f"""Serving model over {host}:{port}""" ) UpperCAmelCase__ = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=lowerCAmelCase__ , response_class=lowerCAmelCase__ , methods=["POST"] , ), ] , timeout=6_0_0 , ) def lowercase_ (self : Tuple ) -> Tuple: """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers ) def lowercase_ (self : List[str] ) -> int: """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def lowercase_ (self : Dict , __UpperCAmelCase : str = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , __UpperCAmelCase : bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> int: """simple docstring""" try: UpperCAmelCase__ = self._pipeline.tokenizer.tokenize(lowerCAmelCase__ ) if return_ids: UpperCAmelCase__ = self._pipeline.tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) return ServeTokenizeResult(tokens=lowerCAmelCase__ , tokens_ids=lowerCAmelCase__ ) else: return ServeTokenizeResult(tokens=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={"model": "", "error": str(lowerCAmelCase__ )} ) def lowercase_ (self : str , __UpperCAmelCase : List[int] = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , __UpperCAmelCase : bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , __UpperCAmelCase : bool = Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) , ) -> List[str]: """simple docstring""" try: UpperCAmelCase__ = self._pipeline.tokenizer.decode(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return ServeDeTokenizeResult(model="" , text=lowerCAmelCase__ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={"model": "", "error": str(lowerCAmelCase__ )} ) async def lowercase_ (self : List[str] , __UpperCAmelCase : Optional[int]=Body(lowerCAmelCase__ , embed=lowerCAmelCase__ ) ) -> List[str]: """simple docstring""" if len(lowerCAmelCase__ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model UpperCAmelCase__ = self._pipeline(lowerCAmelCase__ ) return ServeForwardResult(output=lowerCAmelCase__ ) except Exception as e: raise HTTPException(5_0_0 , {"error": str(lowerCAmelCase__ )} )
65
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
from math import sqrt def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" __UpperCAmelCase : Optional[int] = True # 0 and 1 are none primes. if number <= 1: __UpperCAmelCase : List[Any] = False for divisor in range(2 , int(round(sqrt(_UpperCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __UpperCAmelCase : Union[str, Any] = False break # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'status' must been from type bool" return status def a ( _UpperCAmelCase : int ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __UpperCAmelCase : List[str] = list(range(2 , n + 1 ) ) __UpperCAmelCase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __UpperCAmelCase : List[Any] = 0 # filters actual prime numbers. __UpperCAmelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def a ( _UpperCAmelCase : Optional[Any] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2" __UpperCAmelCase : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_UpperCAmelCase ): ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def a ( _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0" __UpperCAmelCase : Dict = [] # this list will be returns of the function. # potential prime number factors. __UpperCAmelCase : Union[str, Any] = 2 __UpperCAmelCase : List[str] = number if number == 0 or number == 1: ans.append(_UpperCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCAmelCase ): while quotient != 1: if is_prime(_UpperCAmelCase ) and (quotient % factor == 0): ans.append(_UpperCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list" return ans def a ( _UpperCAmelCase : List[str] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : int = 0 # prime factorization of 'number' __UpperCAmelCase : List[Any] = prime_factorization(_UpperCAmelCase ) __UpperCAmelCase : Tuple = max(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def a ( _UpperCAmelCase : Dict ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __UpperCAmelCase : Optional[Any] = 0 # prime factorization of 'number' __UpperCAmelCase : Dict = prime_factorization(_UpperCAmelCase ) __UpperCAmelCase : Dict = min(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int" return ans def a ( _UpperCAmelCase : str ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def a ( _UpperCAmelCase : Any ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , _UpperCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def a ( _UpperCAmelCase : Union[str, Any] ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (number > 2) and is_even(_UpperCAmelCase ) ), "'number' must been an int, even and > 2" __UpperCAmelCase : Dict = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __UpperCAmelCase : Optional[int] = get_prime_numbers(_UpperCAmelCase ) __UpperCAmelCase : str = len(_UpperCAmelCase ) # run variable for while-loops. __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[str] = None # exit variable. for break up the loops __UpperCAmelCase : int = True while i < len_pn and loop: __UpperCAmelCase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __UpperCAmelCase : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (len(_UpperCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : Dict = 0 while numbera != 0: __UpperCAmelCase : Union[str, Any] = numbera % numbera __UpperCAmelCase : List[str] = numbera __UpperCAmelCase : Tuple = rest # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __UpperCAmelCase : str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __UpperCAmelCase : Optional[int] = prime_factorization(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = prime_factorization(_UpperCAmelCase ) elif numbera == 1 or numbera == 1: __UpperCAmelCase : int = [] __UpperCAmelCase : Any = [] __UpperCAmelCase : str = max(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : str = 0 __UpperCAmelCase : str = 0 __UpperCAmelCase : Any = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __UpperCAmelCase : Any = prime_fac_a.count(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(max(_UpperCAmelCase , _UpperCAmelCase ) ): ans *= n else: __UpperCAmelCase : int = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __UpperCAmelCase : Union[str, Any] = prime_fac_a.count(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ): ans *= n done.append(_UpperCAmelCase ) # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'number' must been a positive int" __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Any = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCAmelCase ): ans += 1 # precondition assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and is_prime( _UpperCAmelCase ), "'ans' must been a prime number and from type int" return ans def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): '''simple docstring''' assert ( is_prime(_UpperCAmelCase ) and is_prime(_UpperCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __UpperCAmelCase : List[str] = p_number_a + 1 # jump to the next number __UpperCAmelCase : int = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 while number < p_number_a: ans.append(_UpperCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCAmelCase ): number += 1 # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ans[0] != p_number_a and ans[len(_UpperCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1" __UpperCAmelCase : Optional[int] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_UpperCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def a ( _UpperCAmelCase : List[str] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __UpperCAmelCase : Optional[Any] = get_divisors(_UpperCAmelCase ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str ): '''simple docstring''' assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __UpperCAmelCase : Union[str, Any] = gcd(abs(_UpperCAmelCase ) , abs(_UpperCAmelCase ) ) # precondition assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" __UpperCAmelCase : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a ( _UpperCAmelCase : Optional[int] ): '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Any = 1 # this will be return for _ in range(n - 1 ): __UpperCAmelCase : Optional[int] = ans ans += fiba __UpperCAmelCase : Union[str, Any] = tmp return ans
226
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
def lowercase_ (A : List[str] , A : str , A : Dict , A : List[Any] , A : List[Any] , ): snake_case__ : Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: snake_case__ : int = 1 - (matter_density + radiation_density + dark_energy) snake_case__ : Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) snake_case__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a_ :List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
277
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = word.split() def justify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Dict = max_width - width lowercase : str = len(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowercase : List[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowercase : List[Any] = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowercase : Tuple = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_UpperCAmelCase ): num_spaces_between_words_list[i] += 1 lowercase : Optional[int] = [] for i in range(_UpperCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_UpperCAmelCase ) lowercase : Any = [] lowercase : list[str] = [] lowercase : Tuple = 0 for word in words: if width + len(_UpperCAmelCase ) + len(_UpperCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_UpperCAmelCase ) width += len(_UpperCAmelCase ) else: # justify the line and add it to result answer.append(justify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) # reset new line and new width lowercase : int = [word], len(_UpperCAmelCase ) lowercase : List[Any] = max_width - width - len(_UpperCAmelCase ) answer.append(""" """.join(_UpperCAmelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Union[str, Any] =is_training UpperCAmelCase : List[Any] =use_input_mask UpperCAmelCase : Tuple =use_token_type_ids UpperCAmelCase : Any =use_labels UpperCAmelCase : Optional[int] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : int =rotary_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : List[Any] =intermediate_size UpperCAmelCase : List[str] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Optional[Any] =attention_probs_dropout_prob UpperCAmelCase : Optional[int] =max_position_embeddings UpperCAmelCase : Optional[int] =initializer_range UpperCAmelCase : List[str] =None UpperCAmelCase : Tuple =vocab_size - 1 UpperCAmelCase : Any =vocab_size - 1 UpperCAmelCase : Dict =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any =None if self.use_input_mask: UpperCAmelCase : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : List[Any] =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.prepare_config_and_inputs() UpperCAmelCase : Any =config_and_inputs UpperCAmelCase : List[Any] ={"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] =20 UpperCAmelCase : Union[str, Any] =model_class_name(lowerCAmelCase__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) UpperCAmelCase : Optional[Any] =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[int] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : int =model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) UpperCAmelCase : int =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Union[str, Any] =model( input_ids[:, -1:] , attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCAmelCase__ , ) UpperCAmelCase : Union[str, Any] =model(lowerCAmelCase__ ) UpperCAmelCase : int =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =20 UpperCAmelCase : List[Any] =model_class_name(lowerCAmelCase__ ) UpperCAmelCase : List[Any] =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Optional[int] =model.init_cache(input_ids.shape[0] , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Dict =model( input_ids[:, :-1] , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , ) UpperCAmelCase : int =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __lowerCamelCase : int = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @tooslow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Any =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) UpperCAmelCase : Tuple =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Optional[int] =False UpperCAmelCase : int =model.config.eos_token_id UpperCAmelCase : Union[str, Any] =jax.jit(model.generate ) UpperCAmelCase : int =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : str =tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) UpperCAmelCase : str =[ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : int =self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Any ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Tuple =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Tuple =getattr(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : str =pt_inputs["input_ids"].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): UpperCAmelCase : Dict =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Any =pt_model_class(lowerCAmelCase__ ).eval() UpperCAmelCase : Any =model_class(lowerCAmelCase__ , dtype=jnp.floataa ) UpperCAmelCase : List[Any] =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) UpperCAmelCase : int =fx_state with torch.no_grad(): UpperCAmelCase : Union[str, Any] =pt_model(**lowerCAmelCase__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase : List[str] =model_class.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) UpperCAmelCase : Tuple =fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Any =self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Dict ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Optional[int] =getattr(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase : Union[str, Any] =pt_model_class(lowerCAmelCase__ ).eval() UpperCAmelCase : Dict =model_class(lowerCAmelCase__ , dtype=jnp.floataa ) UpperCAmelCase : List[str] =load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) UpperCAmelCase : List[str] =pt_inputs["input_ids"].shape UpperCAmelCase : List[str] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase__ ): UpperCAmelCase : Optional[Any] =0 UpperCAmelCase : List[str] =1 UpperCAmelCase : Any =0 UpperCAmelCase : List[str] =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : List[str] =pt_model(**lowerCAmelCase__ ).to_tuple() UpperCAmelCase : Union[str, Any] =fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase : int =pt_model_class.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual( len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : Dict =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : List[Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
348
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
"""simple docstring""" def __lowerCamelCase ( a_ : str ) -> int: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
191
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = image.size _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : Tuple = image.resize((w, h),resample=PIL_INTERPOLATION["""lanczos"""] ) _A : str = np.array(_UpperCAmelCase ).astype(np.floataa ) / 255.0 _A : Optional[Any] = image[None].transpose(0,3,1,2 ) _A : str = torch.from_numpy(_UpperCAmelCase ) return 2.0 * image - 1.0 class lowercase ( UpperCAmelCase_ ): def __init__( self , _a , _a , _a , ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , _a = None , _a = 1 , _a = 100 , _a = 0.0 , _a = None , _a = "pil" , _a = True , ) -> Dict: if isinstance(lowerCAmelCase__ , PIL.Image.Image ): _A : List[str] = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): _A : str = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__ )}''' ) if isinstance(lowerCAmelCase__ , PIL.Image.Image ): _A : Dict = preprocess(lowerCAmelCase__ ) _A : Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : List[str] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : List[str] = next(self.unet.parameters() ).dtype _A : Dict = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) _A : str = image.to(device=self.device , dtype=lowerCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device ) _A : List[str] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : List[str] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A : Optional[Any] = {} if accepts_eta: _A : int = eta for t in self.progress_bar(lowerCAmelCase__ ): # concat latents and low resolution image in the channel dimension. _A : Optional[Any] = torch.cat([latents, image] , dim=1 ) _A : List[Any] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual _A : Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 _A : int = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # decode the image latents with the VQVAE _A : int = self.vqvae.decode(lowerCAmelCase__ ).sample _A : Optional[Any] = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0 ) _A : Optional[int] = image / 2 + 0.5 _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A : Dict = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
26
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE_: Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE_: Any = DisjunctiveConstraint(lowerCAmelCase__) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__)) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__): DisjunctiveConstraint(lowerCAmelCase__) # fails here def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE_: Tuple = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = dc.update(1) SCREAMING_SNAKE_CASE_: Dict = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = dc.update(2) SCREAMING_SNAKE_CASE_: Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(3) SCREAMING_SNAKE_CASE_: Tuple = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE_: List[Any] = DisjunctiveConstraint(lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
13
0
from pathlib import Path import numpy as np from PIL import Image def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return (gray > 127) & (gray <= 255) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = np.zeros_like(_UpperCAmelCase ) lowerCamelCase : Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCamelCase : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCamelCase : str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCamelCase : Union[str, Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _snake_case = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" _snake_case = np.array(Image.open(lena_path)) # kernel to be applied _snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _snake_case = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
283
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = XGLMTokenizer _UpperCAmelCase : List[Any] = XGLMTokenizerFast _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Tuple = True def _SCREAMING_SNAKE_CASE ( self : Tuple): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_: List[Any] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = "<pad>" SCREAMING_SNAKE_CASE_: int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__) , lowerCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<s>") self.assertEqual(vocab_keys[1] , "<pad>") self.assertEqual(len(lowerCAmelCase__) , 1008) def _SCREAMING_SNAKE_CASE ( self : Any): self.assertEqual(self.get_tokenizer().vocab_size , 1008) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = XGLMTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize("This is a test") self.assertListEqual(lowerCAmelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any): return XGLMTokenizer.from_pretrained("facebook/xglm-564M") def _SCREAMING_SNAKE_CASE ( self : str): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ , f.name) SCREAMING_SNAKE_CASE_: Tuple = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = pickle.dumps(lowerCAmelCase__) pickle.loads(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_: Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_: List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: Any = "I was born in 92000, and this is falsé." SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = rust_tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_: str = tokenizer.encode(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = "Hello World!" SCREAMING_SNAKE_CASE_: Union[str, Any] = [2, 3_1227, 4447, 35] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off SCREAMING_SNAKE_CASE_: Optional[Any] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__)) @slow def _SCREAMING_SNAKE_CASE ( self : int): # fmt: off SCREAMING_SNAKE_CASE_: str = { "input_ids": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="facebook/xglm-564M" , padding=lowerCAmelCase__ , )
13
0
'''simple docstring''' def _A ( _lowerCAmelCase ): """simple docstring""" if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) __lowercase ="" while len(_UpperCAmelCase ) % 3 != 0: __lowercase ="0" + bin_string __lowercase =[ bin_string[index : index + 3] for index in range(len(_UpperCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowercase =0 for index, val in enumerate(_UpperCAmelCase ): oct_val += int(2 ** (2 - index) * int(_UpperCAmelCase ) ) oct_string += str(_UpperCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
166
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
from __future__ import annotations def __lowerCamelCase ( __a :Union[str, Any] , __a :List[Any] , __a :Optional[int] , __a :List[str] , __a :Dict , ) -> Optional[Any]: """simple docstring""" A__ = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def __lowerCamelCase ( __a :Dict ) -> Optional[int]: """simple docstring""" A__ = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print("""""" ) print(len(_UpperCAmelCase ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
274
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : int = logging.get_logger(__name__) # General docstring lowerCAmelCase : int = """MobileNetV1Config""" # Base docstring lowerCAmelCase : List[Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : Union[str, Any] = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Any = """tabby, tabby cat""" lowerCAmelCase : List[Any] = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = model.mobilenet_va else: SCREAMING_SNAKE_CASE_: int = model SCREAMING_SNAKE_CASE_: Dict = "MobilenetV1/Conv2d_0/" SCREAMING_SNAKE_CASE_: str = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE_: int = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE_: List[str] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE_: List[str] = i + 1 SCREAMING_SNAKE_CASE_: Optional[int] = i * 2 SCREAMING_SNAKE_CASE_: Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE_: Any = f"MobilenetV1/Conv2d_{tf_index}_depthwise/" SCREAMING_SNAKE_CASE_: Any = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: str = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE_: Tuple = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE_: List[str] = f"MobilenetV1/Conv2d_{tf_index}_pointwise/" SCREAMING_SNAKE_CASE_: int = pointer.convolution.weight SCREAMING_SNAKE_CASE_: Any = pointer.normalization.bias SCREAMING_SNAKE_CASE_: Optional[int] = pointer.normalization.weight SCREAMING_SNAKE_CASE_: Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE_: Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" SCREAMING_SNAKE_CASE_: Optional[Any] = model.classifier.weight SCREAMING_SNAKE_CASE_: Tuple = model.classifier.bias return tf_to_pt_map def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model SCREAMING_SNAKE_CASE_: int = tf.train.list_variables(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}" ) SCREAMING_SNAKE_CASE_: Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE_: Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"Importing {name}" ) if name not in tf_weights: logger.info(f"{name} not in tf pre-trained weights, skipping" ) continue SCREAMING_SNAKE_CASE_: int = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) SCREAMING_SNAKE_CASE_: int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE_: List[str] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE_: Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" ) logger.info(f"Initialize PyTorch weight {name} {array.shape}" ) SCREAMING_SNAKE_CASE_: int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp" , _UpperCAmelCase ) tf_weights.pop(name + "/RMSProp_1" , _UpperCAmelCase ) tf_weights.pop(name + "/ExponentialMovingAverage" , _UpperCAmelCase ) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}" ) return model def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = conv_layer.stride SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE_: int = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE_: Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE_: str = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE_: Dict = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE_: str = pad_along_width // 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = pad_along_width - pad_left SCREAMING_SNAKE_CASE_: int = pad_along_height // 2 SCREAMING_SNAKE_CASE_: Tuple = pad_along_height - pad_top SCREAMING_SNAKE_CASE_: Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , "constant" , 0.0 ) class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool or str] = True , ): super().__init__() SCREAMING_SNAKE_CASE_: Optional[int] = config if in_channels % groups != 0: raise ValueError(F"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(F"Output channels ({out_channels}) are not divisible by {groups} groups.") SCREAMING_SNAKE_CASE_: int = 0 if config.tf_padding else int((kernel_size - 1) / 2) SCREAMING_SNAKE_CASE_: Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode="zeros" , ) if use_normalization: SCREAMING_SNAKE_CASE_: str = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: SCREAMING_SNAKE_CASE_: str = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_: Any = config.hidden_act else: SCREAMING_SNAKE_CASE_: int = None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : torch.Tensor): if self.config.tf_padding: SCREAMING_SNAKE_CASE_: Union[str, Any] = apply_tf_padding(lowerCAmelCase__ , self.convolution) SCREAMING_SNAKE_CASE_: Optional[int] = self.convolution(lowerCAmelCase__) if self.normalization is not None: SCREAMING_SNAKE_CASE_: int = self.normalization(lowerCAmelCase__) if self.activation is not None: SCREAMING_SNAKE_CASE_: List[Any] = self.activation(lowerCAmelCase__) return features class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = MobileNetVaConfig _UpperCAmelCase : List[Any] = load_tf_weights_in_mobilenet_va _UpperCAmelCase : List[Any] = '''mobilenet_v1''' _UpperCAmelCase : int = '''pixel_values''' _UpperCAmelCase : List[Any] = False def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Union[nn.Linear, nn.Convad]): if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase : Any = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : MobileNetVaConfig , lowerCAmelCase__ : bool = True): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = config SCREAMING_SNAKE_CASE_: Union[str, Any] = 32 SCREAMING_SNAKE_CASE_: Dict = max(int(depth * config.depth_multiplier) , config.min_depth) SCREAMING_SNAKE_CASE_: Tuple = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE_: Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE_: str = nn.ModuleList() for i in range(13): SCREAMING_SNAKE_CASE_: List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE_: str = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , )) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , )) SCREAMING_SNAKE_CASE_: List[str] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str): raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_: Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") SCREAMING_SNAKE_CASE_: Optional[Any] = self.conv_stem(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): SCREAMING_SNAKE_CASE_: Tuple = layer_module(lowerCAmelCase__) if output_hidden_states: SCREAMING_SNAKE_CASE_: Optional[int] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE_: Optional[Any] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE_: int = torch.flatten(self.pooler(lowerCAmelCase__) , start_dim=1) else: SCREAMING_SNAKE_CASE_: List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : MobileNetVaConfig): super().__init__(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = config.num_labels SCREAMING_SNAKE_CASE_: Dict = MobileNetVaModel(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE_: str = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.Linear(lowerCAmelCase__ , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[torch.Tensor] = None , lowerCAmelCase__ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE_: List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_: List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_: Tuple = self.classifier(self.dropout(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_: int = "single_label_classification" else: SCREAMING_SNAKE_CASE_: str = "multi_label_classification" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_: Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_: Any = loss_fct(logits.squeeze() , labels.squeeze()) else: SCREAMING_SNAKE_CASE_: int = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_: Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_: Dict = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_: Dict = loss_fct(lowerCAmelCase__ , lowerCAmelCase__) if not return_dict: SCREAMING_SNAKE_CASE_: int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
13
0
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class UpperCamelCase__ : """simple docstring""" def __init__( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = {} def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = {} def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' if nodea not in self.connections: self.add_node(lowerCAmelCase__ ) if nodea not in self.connections: self.add_node(lowerCAmelCase__ ) UpperCAmelCase : List[Any] = probability def A_ ( self ): '''simple docstring''' return list(self.connections ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = 0 UpperCAmelCase : Tuple = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : Tuple = Counter(graph.get_nodes() ) UpperCAmelCase : Optional[Any] = start for _ in range(_UpperCAmelCase ): UpperCAmelCase : int = graph.transition(_UpperCAmelCase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
311
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class A ( unittest.TestCase ): __UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase_ (self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return generator, ["Something to write", "Something else"] def lowercase_ (self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) -> str: """simple docstring""" UpperCAmelCase__ = generator("Something there" ) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) UpperCAmelCase__ = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], ] , ) UpperCAmelCase__ = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], [{"generated_text": ANY(lowerCAmelCase__ )}, {"generated_text": ANY(lowerCAmelCase__ )}], ] , ) with self.assertRaises(lowerCAmelCase__ ): generator(4 ) @require_torch def lowercase_ (self : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility UpperCAmelCase__ = generator("Something there" , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}] ) UpperCAmelCase__ = 3 UpperCAmelCase__ = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) UpperCAmelCase__ = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) UpperCAmelCase__ = generator.model.config.eos_token_id UpperCAmelCase__ = "<pad>" UpperCAmelCase__ = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase_ (self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility UpperCAmelCase__ = generator("Something there" , do_sample=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}] )
65
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: Union[str, Any] = [] for _ in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def A_ ( _UpperCAmelCase , _UpperCAmelCase=10 ): SCREAMING_SNAKE_CASE_: List[str] = [] for step in range(_UpperCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(_UpperCAmelCase , "schedule.bin" ) torch.save(scheduler.state_dict() , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.load(_UpperCAmelCase ) scheduler.load_state_dict(_UpperCAmelCase ) return lrs @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0) for _ in range(100): SCREAMING_SNAKE_CASE_: Dict = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.tensor([0.4, 0.2, -0.5]) SCREAMING_SNAKE_CASE_: Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping SCREAMING_SNAKE_CASE_: int = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=lowerCAmelCase__ , weight_decay=0.0 , relative_step=lowerCAmelCase__ , scale_parameter=lowerCAmelCase__ , warmup_init=lowerCAmelCase__ , ) for _ in range(1000): SCREAMING_SNAKE_CASE_: List[Any] = criterion(lowerCAmelCase__ , lowerCAmelCase__) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None _UpperCAmelCase : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _UpperCAmelCase : Optional[Any] = 10 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]=None): self.assertEqual(len(lowerCAmelCase__) , len(lowerCAmelCase__)) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ , msg=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) SCREAMING_SNAKE_CASE_: Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = data SCREAMING_SNAKE_CASE_: List[Any] = scheduler_func(self.optimizer , **lowerCAmelCase__) self.assertEqual(len([scheduler.get_lr()[0]]) , 1) SCREAMING_SNAKE_CASE_: int = unwrap_schedule(lowerCAmelCase__ , self.num_steps) self.assertListAlmostEqual( lowerCAmelCase__ , lowerCAmelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) SCREAMING_SNAKE_CASE_: List[str] = scheduler_func(self.optimizer , **lowerCAmelCase__) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(lowerCAmelCase__) # wrap to test picklability of the schedule SCREAMING_SNAKE_CASE_: Tuple = unwrap_and_save_reload_schedule(lowerCAmelCase__ , self.num_steps) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ , msg=F"failed for {scheduler_func} in save and reload") class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: List[Any] = fn def __call__( self : Optional[int] , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple): return self.fn(*lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: str = list(map(self , scheduler.lr_lambdas))
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A ={"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
226
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[Any] ) ->Tuple: snake_case__ : int = "laion/clap-htsat-unfused" snake_case__ : Optional[int] = tempfile.mkdtemp() def lowercase_ ( self : Union[str, Any], **_snake_case : Optional[Any] ) ->Optional[int]: return RobertaTokenizer.from_pretrained(self.checkpoint, **lowerCAmelCase__ ) def lowercase_ ( self : Tuple, **_snake_case : List[Any] ) ->int: return ClapFeatureExtractor.from_pretrained(self.checkpoint, **lowerCAmelCase__ ) def lowercase_ ( self : Union[str, Any] ) ->int: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Tuple ) ->Tuple: snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_feature_extractor() snake_case__ : Tuple = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[int] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase__ ) def lowercase_ ( self : List[str] ) ->str: snake_case__ : int = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) snake_case__ : Optional[int] = self.get_feature_extractor(do_normalize=lowerCAmelCase__, padding_value=1.0 ) snake_case__ : Tuple = ClapProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase__ ) def lowercase_ ( self : str ) ->Tuple: snake_case__ : Tuple = self.get_feature_extractor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Union[str, Any] = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) snake_case__ : Union[str, Any] = floats_list((3, 1_0_0_0) ) snake_case__ : Union[str, Any] = feature_extractor(lowerCAmelCase__, return_tensors='np' ) snake_case__ : List[Any] = processor(audios=lowerCAmelCase__, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : List[str] ) ->List[Any]: snake_case__ : List[str] = self.get_feature_extractor() snake_case__ : int = self.get_tokenizer() snake_case__ : Tuple = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) snake_case__ : Tuple = "This is a test string" snake_case__ : int = processor(text=lowerCAmelCase__ ) snake_case__ : Optional[int] = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase_ ( self : List[Any] ) ->List[Any]: snake_case__ : Optional[Any] = self.get_feature_extractor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : str = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) snake_case__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : Union[str, Any] = processor.batch_decode(lowerCAmelCase__ ) snake_case__ : Dict = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) def lowercase_ ( self : Union[str, Any] ) ->int: snake_case__ : str = self.get_feature_extractor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Dict = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
277
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase : Optional[int] = logging.get_logger(__name__) lowercase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart lowercase : int = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } lowercase : List[str] = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def _snake_case( ) -> Optional[int]: lowercase : List[Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowercase : Optional[Any] = bs[:] lowercase : int = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase : Any = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Optional[int] = set() lowercase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : Tuple = char return pairs class __snake_case ( UpperCAmelCase_ ): _a : Tuple= VOCAB_FILES_NAMES _a : Any= PRETRAINED_VOCAB_FILES_MAP _a : Union[str, Any]= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : str= ['''input_ids''', '''attention_mask'''] def __init__( self ,snake_case ,snake_case ,snake_case="replace" ,snake_case="<s>" ,snake_case="</s>" ,snake_case="</s>" ,snake_case="<s>" ,snake_case="<unk>" ,snake_case="<pad>" ,snake_case="<mask>" ,snake_case=False ,**snake_case ,): '''simple docstring''' lowercase : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowercase : str = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowercase : Union[str, Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowercase : Any = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowercase : Any = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowercase : str = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="""utf-8""" ) as vocab_handle: lowercase : str = json.load(lowerCAmelCase__ ) lowercase : Dict = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = errors # how to handle errors in decoding lowercase : Optional[Any] = bytes_to_unicode() lowercase : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="""utf-8""" ) as merges_handle: lowercase : Any = merges_handle.read().split("""\n""" )[1:-1] lowercase : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase : List[str] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowercase : str = {} lowercase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : List[str] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : str = tuple(lowerCAmelCase__ ) lowercase : str = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowercase : str = min(lowerCAmelCase__ ,key=lambda snake_case : self.bpe_ranks.get(lowerCAmelCase__ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowercase : Tuple = bigram lowercase : Union[str, Any] = [] lowercase : Any = 0 while i < len(lowerCAmelCase__ ): try: lowercase : Optional[Any] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Union[str, Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : Tuple = tuple(lowerCAmelCase__ ) lowercase : int = new_word if len(lowerCAmelCase__ ) == 1: break else: lowercase : int = get_pairs(lowerCAmelCase__ ) lowercase : Union[str, Any] = " ".join(lowerCAmelCase__ ) lowercase : Any = word return word def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowercase : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = "".join(lowerCAmelCase__ ) lowercase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowercase : List[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase : Any = os.path.join( lowerCAmelCase__ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + """\n""" ) lowercase : Union[str, Any] = 0 with open(lowerCAmelCase__ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) lowercase : str = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ): '''simple docstring''' lowercase : Any = [self.sep_token_id] lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=False ,**snake_case ): '''simple docstring''' lowercase : List[Any] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowercase : Optional[int] = " " + text return (text, kwargs)
20
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
0
import os import numpy import onnx def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =a.name UpperCAmelCase : int =b.name UpperCAmelCase : Any ="" UpperCAmelCase : Tuple ="" UpperCAmelCase : List[Any] =a == b UpperCAmelCase : Any =name_a UpperCAmelCase : Optional[int] =name_b return res def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_UpperCAmelCase , _UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _UpperCAmelCase , _UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _UpperCAmelCase , _UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Tuple: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =list(model.graph.initializer ) UpperCAmelCase : Optional[Any] =list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase : Optional[Any] =inits[i].name UpperCAmelCase : Union[str, Any] =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] =os.path.dirname(_UpperCAmelCase ) UpperCAmelCase : Any =os.path.basename(_UpperCAmelCase ) UpperCAmelCase : int =onnx.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase : Any =list(model.graph.initializer ) UpperCAmelCase : Optional[Any] =set() UpperCAmelCase : Any ={} UpperCAmelCase : Any =[] UpperCAmelCase : int =0 for i in range(len(_UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_UpperCAmelCase ) dup_set.add(_UpperCAmelCase ) UpperCAmelCase : List[str] =inits[j].data_type UpperCAmelCase : Any =numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , _UpperCAmelCase ) total_reduced_size += mem_size UpperCAmelCase : Optional[int] =inits[i].name UpperCAmelCase : Optional[int] =inits[j].name if name_i in dup_map: dup_map[name_i].append(_UpperCAmelCase ) else: UpperCAmelCase : List[Any] =[name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 10_24 / 10_24 / 10_24 , '''GB''' ) UpperCAmelCase : List[Any] =sorted(_UpperCAmelCase ) _remove_dup_initializers_from_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : Union[str, Any] ="optimized_" + model_file_name UpperCAmelCase : Union[str, Any] =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) onnx.save(_UpperCAmelCase , _UpperCAmelCase ) return new_model
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[int] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCamelCase_ = logging.get_logger(__name__) # General docstring lowerCamelCase_ = """MobileNetV1Config""" # Base docstring lowerCamelCase_ = """google/mobilenet_v1_1.0_224""" lowerCamelCase_ = [1, 1_0_2_4, 7, 7] # Image classification docstring lowerCamelCase_ = """google/mobilenet_v1_1.0_224""" lowerCamelCase_ = """tabby, tabby cat""" lowerCamelCase_ = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __lowerCamelCase ( a_ : List[Any] , a_ : List[Any] , a_ : Optional[Any]=None ) -> int: __SCREAMING_SNAKE_CASE :List[str] = {} if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __SCREAMING_SNAKE_CASE :Any = model.mobilenet_va else: __SCREAMING_SNAKE_CASE :int = model __SCREAMING_SNAKE_CASE :Dict = "MobilenetV1/Conv2d_0/" __SCREAMING_SNAKE_CASE :str = backbone.conv_stem.convolution.weight __SCREAMING_SNAKE_CASE :List[str] = backbone.conv_stem.normalization.bias __SCREAMING_SNAKE_CASE :int = backbone.conv_stem.normalization.weight __SCREAMING_SNAKE_CASE :List[str] = backbone.conv_stem.normalization.running_mean __SCREAMING_SNAKE_CASE :Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): __SCREAMING_SNAKE_CASE :List[str] = i + 1 __SCREAMING_SNAKE_CASE :Optional[int] = i * 2 __SCREAMING_SNAKE_CASE :Any = backbone.layer[pt_index] __SCREAMING_SNAKE_CASE :Any = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' __SCREAMING_SNAKE_CASE :Any = pointer.convolution.weight __SCREAMING_SNAKE_CASE :Any = pointer.normalization.bias __SCREAMING_SNAKE_CASE :str = pointer.normalization.weight __SCREAMING_SNAKE_CASE :Dict = pointer.normalization.running_mean __SCREAMING_SNAKE_CASE :Optional[Any] = pointer.normalization.running_var __SCREAMING_SNAKE_CASE :Tuple = backbone.layer[pt_index + 1] __SCREAMING_SNAKE_CASE :List[str] = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' __SCREAMING_SNAKE_CASE :int = pointer.convolution.weight __SCREAMING_SNAKE_CASE :Any = pointer.normalization.bias __SCREAMING_SNAKE_CASE :Optional[int] = pointer.normalization.weight __SCREAMING_SNAKE_CASE :Optional[Any] = pointer.normalization.running_mean __SCREAMING_SNAKE_CASE :Dict = pointer.normalization.running_var if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __SCREAMING_SNAKE_CASE :List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" __SCREAMING_SNAKE_CASE :Optional[Any] = model.classifier.weight __SCREAMING_SNAKE_CASE :Tuple = model.classifier.bias return tf_to_pt_map def __lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : str ) -> str: try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __SCREAMING_SNAKE_CASE :int = tf.train.list_variables(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :int = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) __SCREAMING_SNAKE_CASE :Any = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = array # Build TF to PyTorch weights loading map __SCREAMING_SNAKE_CASE :Optional[Any] = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue __SCREAMING_SNAKE_CASE :int = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __SCREAMING_SNAKE_CASE :int = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __SCREAMING_SNAKE_CASE :List[str] = array.squeeze().transpose() else: __SCREAMING_SNAKE_CASE :Any = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) __SCREAMING_SNAKE_CASE :int = torch.from_numpy(_UpperCAmelCase ) tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase ) tf_weights.pop(name + '''/RMSProp''' , _UpperCAmelCase ) tf_weights.pop(name + '''/RMSProp_1''' , _UpperCAmelCase ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , _UpperCAmelCase ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def __lowerCamelCase ( a_ : str , a_ : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :List[Any] = features.shape[-2:] __SCREAMING_SNAKE_CASE :List[str] = conv_layer.stride __SCREAMING_SNAKE_CASE :Any = conv_layer.kernel_size if in_height % stride_height == 0: __SCREAMING_SNAKE_CASE :int = max(kernel_height - stride_height , 0 ) else: __SCREAMING_SNAKE_CASE :Tuple = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __SCREAMING_SNAKE_CASE :str = max(kernel_width - stride_width , 0 ) else: __SCREAMING_SNAKE_CASE :Dict = max(kernel_width - (in_width % stride_width) , 0 ) __SCREAMING_SNAKE_CASE :str = pad_along_width // 2 __SCREAMING_SNAKE_CASE :Union[str, Any] = pad_along_width - pad_left __SCREAMING_SNAKE_CASE :int = pad_along_height // 2 __SCREAMING_SNAKE_CASE :Tuple = pad_along_height - pad_top __SCREAMING_SNAKE_CASE :Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , '''constant''' , 0.0 ) class _SCREAMING_SNAKE_CASE( nn.Module ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = True ,SCREAMING_SNAKE_CASE__ = True ,) -> Tuple: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE :Optional[int] = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) __SCREAMING_SNAKE_CASE :int = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = nn.Convad( in_channels=lowerCAmelCase__ ,out_channels=lowerCAmelCase__ ,kernel_size=lowerCAmelCase__ ,stride=lowerCAmelCase__ ,padding=lowerCAmelCase__ ,groups=lowerCAmelCase__ ,bias=lowerCAmelCase__ ,padding_mode='''zeros''' ,) if use_normalization: __SCREAMING_SNAKE_CASE :str = nn.BatchNormad( num_features=lowerCAmelCase__ ,eps=config.layer_norm_eps ,momentum=0.9_9_9_7 ,affine=lowerCAmelCase__ ,track_running_stats=lowerCAmelCase__ ,) else: __SCREAMING_SNAKE_CASE :str = None if use_activation: if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE :Dict = ACTaFN[use_activation] elif isinstance(config.hidden_act ,lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE :Dict = ACTaFN[config.hidden_act] else: __SCREAMING_SNAKE_CASE :Any = config.hidden_act else: __SCREAMING_SNAKE_CASE :int = None def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" if self.config.tf_padding: __SCREAMING_SNAKE_CASE :Union[str, Any] = apply_tf_padding(lowerCAmelCase__ ,self.convolution ) __SCREAMING_SNAKE_CASE :Optional[int] = self.convolution(lowerCAmelCase__ ) if self.normalization is not None: __SCREAMING_SNAKE_CASE :int = self.normalization(lowerCAmelCase__ ) if self.activation is not None: __SCREAMING_SNAKE_CASE :List[Any] = self.activation(lowerCAmelCase__ ) return features class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = MobileNetVaConfig SCREAMING_SNAKE_CASE_ : List[Any] = load_tf_weights_in_mobilenet_va SCREAMING_SNAKE_CASE_ : List[Any] = '''mobilenet_v1''' SCREAMING_SNAKE_CASE_ : int = '''pixel_values''' SCREAMING_SNAKE_CASE_ : List[Any] = False def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" if isinstance(lowerCAmelCase__ ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCamelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , UpperCAmelCase_ , ) class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ) -> Optional[int]: """simple docstring""" super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Dict = config __SCREAMING_SNAKE_CASE :Union[str, Any] = 32 __SCREAMING_SNAKE_CASE :Dict = max(int(depth * config.depth_multiplier ) ,config.min_depth ) __SCREAMING_SNAKE_CASE :Tuple = MobileNetVaConvLayer( lowerCAmelCase__ ,in_channels=config.num_channels ,out_channels=lowerCAmelCase__ ,kernel_size=3 ,stride=2 ,) __SCREAMING_SNAKE_CASE :Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __SCREAMING_SNAKE_CASE :str = nn.ModuleList() for i in range(13 ): __SCREAMING_SNAKE_CASE :List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __SCREAMING_SNAKE_CASE :str = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ ,in_channels=lowerCAmelCase__ ,out_channels=lowerCAmelCase__ ,kernel_size=3 ,stride=strides[i] ,groups=lowerCAmelCase__ ,) ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ ,in_channels=lowerCAmelCase__ ,out_channels=lowerCAmelCase__ ,kernel_size=1 ,) ) __SCREAMING_SNAKE_CASE :List[str] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCAmelCase__ ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __SCREAMING_SNAKE_CASE :Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.conv_stem(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :List[Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __SCREAMING_SNAKE_CASE :Tuple = layer_module(lowerCAmelCase__ ) if output_hidden_states: __SCREAMING_SNAKE_CASE :Optional[int] = all_hidden_states + (hidden_states,) __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_states if self.pooler is not None: __SCREAMING_SNAKE_CASE :int = torch.flatten(self.pooler(lowerCAmelCase__ ) ,start_dim=1 ) else: __SCREAMING_SNAKE_CASE :List[str] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ ,pooler_output=lowerCAmelCase__ ,hidden_states=lowerCAmelCase__ ,) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , UpperCAmelCase_ , ) class _SCREAMING_SNAKE_CASE( UpperCAmelCase_ ): def __init__( self ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = config.num_labels __SCREAMING_SNAKE_CASE :Dict = MobileNetVaModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __SCREAMING_SNAKE_CASE :str = nn.Dropout(config.classifier_dropout_prob ,inplace=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = nn.Linear(lowerCAmelCase__ ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCAmelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE :List[str] = self.mobilenet_va(lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = outputs.pooler_output if return_dict else outputs[1] __SCREAMING_SNAKE_CASE :Tuple = self.classifier(self.dropout(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE :Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __SCREAMING_SNAKE_CASE :List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __SCREAMING_SNAKE_CASE :int = "single_label_classification" else: __SCREAMING_SNAKE_CASE :str = "multi_label_classification" if self.config.problem_type == "regression": __SCREAMING_SNAKE_CASE :Dict = MSELoss() if self.num_labels == 1: __SCREAMING_SNAKE_CASE :Any = loss_fct(logits.squeeze() ,labels.squeeze() ) else: __SCREAMING_SNAKE_CASE :int = loss_fct(lowerCAmelCase__ ,lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": __SCREAMING_SNAKE_CASE :Any = CrossEntropyLoss() __SCREAMING_SNAKE_CASE :Dict = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __SCREAMING_SNAKE_CASE :Dict = BCEWithLogitsLoss() __SCREAMING_SNAKE_CASE :Dict = loss_fct(lowerCAmelCase__ ,lowerCAmelCase__ ) if not return_dict: __SCREAMING_SNAKE_CASE :int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ ,logits=lowerCAmelCase__ ,hidden_states=outputs.hidden_states ,)
191
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : str = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = TextaTextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return generator, ["Something to write", "Something else"] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there") self.assertEqual(lowerCAmelCase__ , [{"generated_text": ANY(lowerCAmelCase__)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there")) SCREAMING_SNAKE_CASE_: List[Any] = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) SCREAMING_SNAKE_CASE_: Dict = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], [{"generated_text": ANY(lowerCAmelCase__)}, {"generated_text": ANY(lowerCAmelCase__)}], ] , ) with self.assertRaises(lowerCAmelCase__): generator(4) @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: Union[str, Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}]) SCREAMING_SNAKE_CASE_: Union[str, Any] = 3 SCREAMING_SNAKE_CASE_: Any = generator( "Something there" , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Any = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = generator("This is a test" , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__) self.assertEqual( lowerCAmelCase__ , [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE_: str = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE_: Union[str, Any] = "<pad>" SCREAMING_SNAKE_CASE_: Tuple = generator( ["This is a test", "This is a second test"] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , ) self.assertEqual( lowerCAmelCase__ , [ [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], [ {"generated_token_ids": ANY(torch.Tensor)}, {"generated_token_ids": ANY(torch.Tensor)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf") # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE_: List[Any] = generator("Something there" , do_sample=lowerCAmelCase__) self.assertEqual(lowerCAmelCase__ , [{"generated_text": ""}])
13
0
_snake_case = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _snake_case = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _snake_case = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _snake_case = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _snake_case = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _snake_case = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _snake_case = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _snake_case = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
26
def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [0] * len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = [] SCREAMING_SNAKE_CASE_: str = [] SCREAMING_SNAKE_CASE_: List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_UpperCAmelCase ) ): if indegree[i] == 0: queue.append(_UpperCAmelCase ) while queue: SCREAMING_SNAKE_CASE_: Optional[int] = queue.pop(0 ) cnt += 1 topo.append(_UpperCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_UpperCAmelCase ) if cnt != len(_UpperCAmelCase ): print("Cycle exists" ) else: print(_UpperCAmelCase ) # Adjacency List of Graph lowerCAmelCase : Any = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
13
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _snake_case = """src/diffusers""" # Matches is_xxx_available() _snake_case = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla _snake_case = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') _snake_case = """ {0} = None """ _snake_case = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ _snake_case = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = _re_backend.findall(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None return "_and_".join(_UpperCAmelCase ) def lowercase_( ): '''simple docstring''' with open(os.path.join(_UpperCAmelCase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase : Optional[Any] = f.readlines() # Get to the point we do the actual imports for type checking lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : Optional[int] = {} # Go through the end of the file while line_index < len(_UpperCAmelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowerCamelCase : List[str] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 lowerCamelCase : str = [] # Until we unindent, add backend objects to the list while line_index < len(_UpperCAmelCase ) and len(lines[line_index] ) > 1: lowerCamelCase : List[Any] = lines[line_index] lowerCamelCase : Optional[int] = _re_single_line_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_UpperCAmelCase ) > 0: lowerCamelCase : Any = objects else: line_index += 1 return backend_specific_objects def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(_UpperCAmelCase ) elif name.islower(): return DUMMY_FUNCTION.format(_UpperCAmelCase , _UpperCAmelCase ) else: return DUMMY_CLASS.format(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_( SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' if backend_specific_objects is None: lowerCamelCase : Optional[Any] = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowerCamelCase : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): lowerCamelCase : Tuple = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" lowerCamelCase : Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_UpperCAmelCase , _UpperCAmelCase ) for o in objects] ) lowerCamelCase : Any = dummy_file return dummy_files def lowercase_( SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' lowerCamelCase : Union[str, Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowerCamelCase : int = {"torch": "pt"} # Locate actual dummy modules and read their content. lowerCamelCase : Dict = os.path.join(_UpperCAmelCase , "utils" ) lowerCamelCase : List[Any] = { backend: os.path.join(_UpperCAmelCase , f"""dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py""" ) for backend in dummy_files.keys() } lowerCamelCase : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_UpperCAmelCase ): with open(_UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase : Tuple = f.read() else: lowerCamelCase : Optional[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(_UpperCAmelCase , _UpperCAmelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
283
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : List[str] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Tuple = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: List[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_: List[str] = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Dict = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=(accelerator.mixed_precision == "fp8") , ) return train_dataloader, eval_dataloader def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_: str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: int = config["lr"] SCREAMING_SNAKE_CASE_: Any = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: List[Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_: Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_: Tuple = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_: Dict = MAX_GPU_BATCH_SIZE set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: Tuple = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Optional[int] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Tuple = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.loss SCREAMING_SNAKE_CASE_: Tuple = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: Optional[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
13
0
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _UpperCamelCase ( UpperCAmelCase_ ): '''simple docstring''' def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =tempfile.mkdtemp() __lowercase =8 # DPR tok __lowercase =[ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __lowercase =os.path.join(self.tmpdirname , 'dpr_tokenizer') os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) __lowercase =os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) # BART tok __lowercase =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __lowercase =dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) __lowercase =["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __lowercase ={"unk_token": "<unk>"} __lowercase =os.path.join(self.tmpdirname , 'bart_tokenizer') os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) __lowercase =os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES['vocab_file']) __lowercase =os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase__) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowerCAmelCase__)) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer')) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer')) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' shutil.rmtree(self.tmpdirname) @require_tokenizers def __lowerCamelCase ( self : Any): '''simple docstring''' __lowercase =os.path.join(self.tmpdirname , 'rag_tokenizer') __lowercase =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict()) __lowercase =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer()) rag_config.save_pretrained(lowerCAmelCase__) rag_tokenizer.save_pretrained(lowerCAmelCase__) __lowercase =RagTokenizer.from_pretrained(lowerCAmelCase__ , config=lowerCAmelCase__) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab()) self.assertIsInstance(new_rag_tokenizer.generator , lowerCAmelCase__) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab()) @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =RagTokenizer.from_pretrained('facebook/rag-token-nq') __lowercase =[ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] __lowercase =tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =RagTokenizer.from_pretrained('facebook/rag-sequence-nq') __lowercase =[ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] __lowercase =tokenizer(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__)
166
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Callable | None = None): # Stores actual heap items. SCREAMING_SNAKE_CASE_: list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_: dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_: Optional[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_: Any = key or (lambda lowerCAmelCase__: x) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int): return int((i - 1) / 2) if i > 0 else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 1) return left if 0 < left < self.size else None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = int(2 * i + 2) return right if 0 < right < self.size else None def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = self.arr[j], self.arr[i] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int): return self.arr[i][1] < self.arr[j][1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Any = self._left(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = self._right(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = i if left is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[int] = left if right is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Tuple = right return valid_parent def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: List[Any] = self._parent(lowerCAmelCase__) while parent is not None and not self._cmp(lowerCAmelCase__ , lowerCAmelCase__): self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = parent, self._parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = self._get_valid_parent(lowerCAmelCase__) while valid_parent != index: self._swap(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = valid_parent, self._get_valid_parent(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Any = self.pos_map[item] SCREAMING_SNAKE_CASE_: int = [item, self.key(lowerCAmelCase__)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : int): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_: Optional[Any] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_: List[str] = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_: Tuple = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCAmelCase__) self._heapify_down(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(lowerCAmelCase__)]) else: SCREAMING_SNAKE_CASE_: str = [item, self.key(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.arr[0] if self.size else None def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
13
0
def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ = 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(_UpperCAmelCase )[-1_0:] if __name__ == "__main__": print(solution())
274
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Dict = TaTokenizerFast lowerCAmelCase : Optional[int] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' from __future__ import annotations def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = [True] * limit UpperCAmelCase : int = False UpperCAmelCase : Dict = False UpperCAmelCase : Optional[Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCAmelCase : List[str] = i * 2 while index < limit: UpperCAmelCase : Dict = False UpperCAmelCase : str = index + i UpperCAmelCase : str = [2] for i in range(3 , _UpperCAmelCase , 2 ): if is_prime[i]: primes.append(_UpperCAmelCase ) return primes def lowercase ( __magic_name__ = 100_0000 ): '''simple docstring''' UpperCAmelCase : Any = prime_sieve(_UpperCAmelCase ) UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : List[str] = 0 for i in range(len(_UpperCAmelCase ) ): for j in range(i + length , len(_UpperCAmelCase ) ): UpperCAmelCase : Tuple = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCAmelCase : Dict = j - i UpperCAmelCase : Tuple = sol return largest if __name__ == "__main__": print(F'{solution() = }')
311
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
0
import pprint import requests UpperCamelCase__ = """https://zenquotes.io/api""" def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": UpperCamelCase__ = random_quotes() pprint.pprint(response)
65
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
13
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase__ ( UpperCAmelCase_ ,UpperCAmelCase_ ,unittest.TestCase ): '''simple docstring''' UpperCamelCase = IFInpaintingPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case__ ( self : int ): '''simple docstring''' return self._get_dummy_components() def snake_case__ ( self : str , a_ : str , a_ : Any=0 ): '''simple docstring''' if str(lowerCAmelCase__ ).startswith('''mps''' ): __UpperCAmelCase : Dict = torch.manual_seed(lowerCAmelCase__ ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __UpperCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case__ ( self : List[str] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case__ ( self : Optional[int] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case__ ( self : Tuple ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case__ ( self : List[Any] ): '''simple docstring''' self._test_save_load_local() def snake_case__ ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
226
class __lowercase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = name SCREAMING_SNAKE_CASE_: Union[str, Any] = val def __str__( self : Dict): return F"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : List[str] , lowerCAmelCase__ : Any): return self.val < other.val class __lowercase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: int = {} SCREAMING_SNAKE_CASE_: Any = self.build_heap(lowerCAmelCase__) def __getitem__( self : List[Any] , lowerCAmelCase__ : Dict): return self.get_value(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Dict): return (idx - 1) // 2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any]): return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return idx * 2 + 2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): return self.heap_dict[key] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = len(lowerCAmelCase__) - 1 SCREAMING_SNAKE_CASE_: List[str] = self.get_parent_idx(lowerCAmelCase__) for idx, i in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Union[str, Any] = idx SCREAMING_SNAKE_CASE_: str = i.val for i in range(lowerCAmelCase__ , -1 , -1): self.sift_down(lowerCAmelCase__ , lowerCAmelCase__) return array def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]): while True: SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_left_child_idx(lowerCAmelCase__) # noqa: E741 SCREAMING_SNAKE_CASE_: Dict = self.get_right_child_idx(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = idx if l < len(lowerCAmelCase__) and array[l] < array[idx]: SCREAMING_SNAKE_CASE_: List[str] = l if r < len(lowerCAmelCase__) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE_: str = r if smallest != idx: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE_: Optional[int] = smallest else: break def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Any = self.get_parent_idx(lowerCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE_: Union[str, Any] = p SCREAMING_SNAKE_CASE_: Optional[int] = self.get_parent_idx(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return self.heap[0] def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE_: int = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): self.heap.append(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = len(self.heap) - 1 SCREAMING_SNAKE_CASE_: List[str] = node.val self.sift_up(len(self.heap) - 1) def _SCREAMING_SNAKE_CASE ( self : List[Any]): return len(self.heap) == 0 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE_: Any = new_value SCREAMING_SNAKE_CASE_: Tuple = new_value self.sift_up(self.idx_of_element[node]) lowerCAmelCase : int = Node("""R""", -1) lowerCAmelCase : str = Node("""B""", 6) lowerCAmelCase : str = Node("""A""", 3) lowerCAmelCase : List[str] = Node("""X""", 1) lowerCAmelCase : Union[str, Any] = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowerCAmelCase : Optional[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
13
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowercase_ (A : List[Any] , A : Tuple , **A : Tuple ): snake_case__ : Any = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) snake_case__ : Dict = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) AutoTokenizer.from_pretrained(_UpperCAmelCase ).save_pretrained(_UpperCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
277
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase : Any = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): if rng is None: SCREAMING_SNAKE_CASE_: List[Any] = random.Random() SCREAMING_SNAKE_CASE_: Optional[Any] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_: Optional[Any] = [] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def A_ ( _UpperCAmelCase , _UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_: Optional[int] = ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_: Optional[Any] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = () def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[int] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE_: List[str] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_: Any = jnp.ones_like(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_: Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_: Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: Dict = max_length SCREAMING_SNAKE_CASE_: List[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_: List[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = pt_model_class(lowerCAmelCase__).eval() SCREAMING_SNAKE_CASE_: str = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , flax_model.params) SCREAMING_SNAKE_CASE_: List[Any] = flax_model.generate(lowerCAmelCase__).sequences SCREAMING_SNAKE_CASE_: str = pt_model.generate(torch.tensor(lowerCAmelCase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_: List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[int] = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Optional[Any] = True SCREAMING_SNAKE_CASE_: Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = jit(model.generate) SCREAMING_SNAKE_CASE_: Dict = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length SCREAMING_SNAKE_CASE_: Optional[int] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[int] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: int = max_length SCREAMING_SNAKE_CASE_: str = 2 SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Tuple = True SCREAMING_SNAKE_CASE_: List[str] = max_length SCREAMING_SNAKE_CASE_: Any = 0.8 SCREAMING_SNAKE_CASE_: Any = 10 SCREAMING_SNAKE_CASE_: List[str] = 0.3 SCREAMING_SNAKE_CASE_: Tuple = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: int = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: int = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_: Any = max_length SCREAMING_SNAKE_CASE_: List[str] = 2 SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: Tuple = 8 SCREAMING_SNAKE_CASE_: List[Any] = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = model.generate(lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = jit(model.generate) SCREAMING_SNAKE_CASE_: List[str] = jit_generate(lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Any = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: List[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: List[Any] = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jit(model.generate) SCREAMING_SNAKE_CASE_: Optional[Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_: Dict = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE_: Optional[Any] = 2 SCREAMING_SNAKE_CASE_: Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = model.generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = jit(model.generate) SCREAMING_SNAKE_CASE_: Union[str, Any] = jit_generate(lowerCAmelCase__ , attention_mask=lowerCAmelCase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") SCREAMING_SNAKE_CASE_: List[Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") SCREAMING_SNAKE_CASE_: Optional[int] = "Hello world" SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowerCAmelCase__ , "do_samples"): model.generate(lowerCAmelCase__ , do_samples=lowerCAmelCase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowerCAmelCase__ , "foo"): SCREAMING_SNAKE_CASE_: str = {"foo": "bar"} model.generate(lowerCAmelCase__ , **lowerCAmelCase__)
13
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _a : Tuple= IFInpaintingSuperResolutionPipeline _a : List[Any]= TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _a : Optional[Any]= TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) _a : List[Any]= PipelineTesterMixin.required_optional_params - {'''latents'''} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=0 ): '''simple docstring''' if str(lowerCAmelCase__ ).startswith("""mps""" ): lowercase : Tuple = torch.manual_seed(lowerCAmelCase__ ) else: lowercase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowercase : Union[str, Any] = floats_tensor((1, 3, 16, 16) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowercase : Dict = floats_tensor((1, 3, 32, 32) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowercase : Optional[int] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowercase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
20
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCAmelCase : Union[str, Any] = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } lowerCAmelCase : int = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = create_model( "HTSAT-tiny" , "roberta" , _UpperCAmelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_UpperCAmelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = {} SCREAMING_SNAKE_CASE_: Tuple = R".*sequential.(\d+).*" SCREAMING_SNAKE_CASE_: Dict = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_: Any = key.replace(_UpperCAmelCase , _UpperCAmelCase ) if re.match(_UpperCAmelCase , _UpperCAmelCase ): # replace sequential layers with list SCREAMING_SNAKE_CASE_: Optional[int] = re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) SCREAMING_SNAKE_CASE_: Dict = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCAmelCase )//3}.linear." ) elif re.match(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = int(re.match(_UpperCAmelCase , _UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE_: Optional[int] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE_: Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE_: Tuple = value SCREAMING_SNAKE_CASE_: List[str] = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE_: Any = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE_: Optional[int] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE_: str = query_layer SCREAMING_SNAKE_CASE_: int = key_layer SCREAMING_SNAKE_CASE_: List[Any] = value_layer else: SCREAMING_SNAKE_CASE_: int = value return model_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = init_clap(_UpperCAmelCase , enable_fusion=_UpperCAmelCase ) clap_model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = clap_model.state_dict() SCREAMING_SNAKE_CASE_: Optional[int] = rename_state_dict(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ClapConfig() SCREAMING_SNAKE_CASE_: Tuple = enable_fusion SCREAMING_SNAKE_CASE_: Tuple = ClapModel(_UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) transformers_config.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") lowerCAmelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
13
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __snake_case ( UpperCAmelCase_ ): __lowerCamelCase : Optional[Any] = '''gpt_neo''' __lowerCamelCase : Dict = ['''past_key_values'''] __lowerCamelCase : List[Any] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , snake_case__=5_0257 , snake_case__=2048 , snake_case__=2048 , snake_case__=24 , snake_case__=[[["global", "local"], 12]] , snake_case__=16 , snake_case__=None , snake_case__=256 , snake_case__="gelu_new" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : Optional[Any] =hidden_size UpperCAmelCase : Any =num_layers UpperCAmelCase : Any =num_heads UpperCAmelCase : Union[str, Any] =intermediate_size UpperCAmelCase : int =window_size UpperCAmelCase : Tuple =activation_function UpperCAmelCase : Union[str, Any] =resid_dropout UpperCAmelCase : Optional[int] =embed_dropout UpperCAmelCase : Any =attention_dropout UpperCAmelCase : Tuple =classifier_dropout UpperCAmelCase : int =layer_norm_epsilon UpperCAmelCase : Tuple =initializer_range UpperCAmelCase : Tuple =use_cache UpperCAmelCase : Optional[Any] =bos_token_id UpperCAmelCase : Optional[Any] =eos_token_id UpperCAmelCase : List[Any] =attention_types UpperCAmelCase : int =self.expand_attention_types_params(lowerCAmelCase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @staticmethod def UpperCAmelCase__ ( snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' import torch UpperCAmelCase : str =input.size() UpperCAmelCase : Union[str, Any] =len(_UpperCAmelCase ) UpperCAmelCase : Optional[int] =shape[dimension] UpperCAmelCase : List[str] =torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : List[str] =torch.div(sizedim - size , _UpperCAmelCase , rounding_mode='''floor''' ) + 1 UpperCAmelCase : Optional[int] =torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] UpperCAmelCase : List[str] =[slice(_UpperCAmelCase )] * rank UpperCAmelCase : List[str] =indices UpperCAmelCase : List[Any] =input[s] UpperCAmelCase : List[Any] =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' import torch UpperCAmelCase : Dict =torch.arange(1 , _UpperCAmelCase ) UpperCAmelCase : Dict =torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase : Optional[int] =remainders == 0 UpperCAmelCase : List[Any] =candidates[divisor_indices] UpperCAmelCase : Union[str, Any] =torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode='''floor''' ) class __snake_case ( UpperCAmelCase_ ): @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction='''inputs''' ) UpperCAmelCase : Dict ={0: "batch", 1: "past_sequence + sequence"} else: UpperCAmelCase : Tuple ={0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return self._config.num_heads def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ) -> Dict: '''simple docstring''' UpperCAmelCase : str =super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Tuple =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase : int =common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase : int =seqlen + 2 UpperCAmelCase : List[str] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] =[ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] UpperCAmelCase : Optional[Any] =common_inputs["attention_mask"] if self.use_past: UpperCAmelCase : Optional[Any] =ordered_inputs["attention_mask"].dtype UpperCAmelCase : Tuple =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 13
348
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : Tuple=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=2 , ): SCREAMING_SNAKE_CASE_: str = parent SCREAMING_SNAKE_CASE_: Optional[Any] = batch_size SCREAMING_SNAKE_CASE_: str = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: int = num_channels SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: str = use_labels SCREAMING_SNAKE_CASE_: int = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: str = hidden_act SCREAMING_SNAKE_CASE_: str = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = type_sequence_label_size SCREAMING_SNAKE_CASE_: Dict = initializer_range SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_: List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Dict = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = None if self.use_labels: SCREAMING_SNAKE_CASE_: Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[int] = ViTForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Dict = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: List[str] = ViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ): List[str] = config_and_inputs SCREAMING_SNAKE_CASE_: Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCAmelCase : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : List[str] = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = ViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : int): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Union[str, Any] = ViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : int): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_: str = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = torch.tensor([-0.2744, 0.8215, -0.0836]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE_: str = ViTModel.from_pretrained("facebook/dino-vits8").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480) SCREAMING_SNAKE_CASE_: List[Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: int = inputs.pixel_values.to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Tuple = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto") SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Dict = image_processor(images=lowerCAmelCase__ , return_tensors="pt") SCREAMING_SNAKE_CASE_: str = inputs.pixel_values.to(lowerCAmelCase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__)
13
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCamelCase_ = """true""" def __lowerCamelCase ( a_ : List[Any] , a_ : Dict=82 , a_ : List[str]=16 ) -> int: set_seed(42 ) __SCREAMING_SNAKE_CASE :Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE :List[str] = deepcopy(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = RegressionDataset(length=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE :int = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return model, ddp_model, dataloader def __lowerCamelCase ( a_ : Union[str, Any] , a_ : Optional[int]=False ) -> Tuple: __SCREAMING_SNAKE_CASE :Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE :int = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(a_ : Tuple ): __SCREAMING_SNAKE_CASE :int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE :int = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE :Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(a_ : Any ): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(_UpperCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 ) def __lowerCamelCase ( a_ : Tuple , a_ : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Union[str, Any] = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = get_dataloader(_UpperCAmelCase , not dispatch_batches ) __SCREAMING_SNAKE_CASE :List[Any] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[Any] , a_ : Dict ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE :Any = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE :Optional[int] = model(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Any = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE :Any = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase ) targs.append(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase ) return logits, targs def __lowerCamelCase ( a_ : List[Any] , a_ : str=82 , a_ : str=False , a_ : Optional[int]=False , a_ : Dict=16 ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) assert ( len(_UpperCAmelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}''' def __lowerCamelCase ( a_ : Optional[Any] = False , a_ : int = False ) -> List[str]: __SCREAMING_SNAKE_CASE :int = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE :Any = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase ) # First do baseline __SCREAMING_SNAKE_CASE :int = setup["no"] model.to(_UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE :Optional[Any] = model(**_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_UpperCAmelCase , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE :List[Any] = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE :str = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE :Union[str, Any] = model(**_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE :Any = batch["labels"] __SCREAMING_SNAKE_CASE :str = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __lowerCamelCase ( ) -> Dict: __SCREAMING_SNAKE_CASE :Tuple = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(_UpperCAmelCase , _UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE :int = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(_UpperCAmelCase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() test_torch_metrics(_UpperCAmelCase , 5_12 ) accelerator.state._reset_state() def __lowerCamelCase ( a_ : Tuple ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
191
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } lowerCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A_ ( ): SCREAMING_SNAKE_CASE_: Any = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_: Tuple = bs[:] SCREAMING_SNAKE_CASE_: str = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_: Optional[int] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = set() SCREAMING_SNAKE_CASE_: Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_: Tuple = char return pairs class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]="replace" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Any="<mask>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8") as vocab_handle: SCREAMING_SNAKE_CASE_: Tuple = json.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_: List[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8") as merges_handle: SCREAMING_SNAKE_CASE_: List[Any] = merges_handle.read().split("\n")[1:-1] SCREAMING_SNAKE_CASE_: str = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_: List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__)))) SCREAMING_SNAKE_CASE_: str = {} SCREAMING_SNAKE_CASE_: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_: List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _SCREAMING_SNAKE_CASE ( self : int): return len(self.encoder) def _SCREAMING_SNAKE_CASE ( self : int): return dict(self.encoder , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[str]): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_: Optional[int] = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = get_pairs(lowerCAmelCase__) if not pairs: return token while True: SCREAMING_SNAKE_CASE_: int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__: self.bpe_ranks.get(lowerCAmelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = bigram SCREAMING_SNAKE_CASE_: Optional[int] = [] SCREAMING_SNAKE_CASE_: List[Any] = 0 while i < len(lowerCAmelCase__): try: SCREAMING_SNAKE_CASE_: List[Any] = word.index(lowerCAmelCase__ , lowerCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_: Tuple = j if word[i] == first and i < len(lowerCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_: str = tuple(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = new_word if len(lowerCAmelCase__) == 1: break else: SCREAMING_SNAKE_CASE_: Dict = get_pairs(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = " ".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = word return word def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Tuple): SCREAMING_SNAKE_CASE_: Optional[Any] = [] for token in re.findall(self.pat , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: str = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__).split(" ")) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Tuple): return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Union[str, Any]): return self.decoder.get(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Any = "".join(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_: Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCAmelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__) + "\n") SCREAMING_SNAKE_CASE_: List[Any] = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") SCREAMING_SNAKE_CASE_: List[Any] = token_index writer.write(" ".join(lowerCAmelCase__) + "\n") index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__)) + [1] return [1] + ([0] * len(lowerCAmelCase__)) + [1, 1] + ([0] * len(lowerCAmelCase__)) + [1] def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_: Optional[Any] = " " + text return (text, kwargs)
13
0