code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
_lowerCamelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Dict = {
"""vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""},
"""tokenizer_file""": {
"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json"""
},
}
_lowerCamelCase : Optional[int] = {"""mobilebert-uncased""": 512}
_lowerCamelCase : str = {}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = MobileBertTokenizer
def __init__( self : Any , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]="[UNK]" , UpperCAmelCase__ : Tuple="[SEP]" , UpperCAmelCase__ : List[Any]="[PAD]" , UpperCAmelCase__ : List[Any]="[CLS]" , UpperCAmelCase__ : Optional[int]="[MASK]" , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Dict , ) ->Tuple:
'''simple docstring'''
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get('''lowercase''' , UpperCAmelCase__) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCAmelCase__) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase__) != tokenize_chinese_chars
):
A__ = getattr(UpperCAmelCase__ , normalizer_state.pop('''type'''))
A__ = do_lower_case
A__ = strip_accents
A__ = tokenize_chinese_chars
A__ = normalizer_class(**UpperCAmelCase__)
A__ = do_lower_case
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]=None) ->Optional[Any]:
'''simple docstring'''
A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__)
return tuple(UpperCAmelCase__)
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=True ) -> str:
"""simple docstring"""
model.train()
A__ = model(lowercase_ )
A__ = F.mse_loss(lowercase_ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> int:
"""simple docstring"""
set_seed(42 )
A__ = RegressionModel()
A__ = deepcopy(lowercase_ )
A__ = RegressionDataset(length=80 )
A__ = DataLoader(lowercase_ , batch_size=16 )
model.to(accelerator.device )
if sched:
A__ = AdamW(params=model.parameters() , lr=1E-3 )
A__ = AdamW(params=ddp_model.parameters() , lr=1E-3 )
A__ = LambdaLR(lowercase_ , lr_lambda=lambda lowercase_ : epoch**0.65 )
A__ = LambdaLR(lowercase_ , lr_lambda=lambda lowercase_ : epoch**0.65 )
# Make a copy of `model`
if sched:
A__ , A__ , A__ , A__ = accelerator.prepare(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
A__ , A__ = accelerator.prepare(lowercase_ , lowercase_ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ , A__ , A__ = get_training_setup(lowercase_ )
# Use a single batch
A__ , A__ = next(iter(lowercase_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
# Sync grads
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
A__ = ddp_input[torch.randperm(len(lowercase_ ) )]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ , A__ , A__ = get_training_setup(lowercase_ )
# Use a single batch
A__ , A__ = next(iter(lowercase_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
else:
# Sync grads
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
A__ = ddp_input[torch.randperm(len(lowercase_ ) )]
def SCREAMING_SNAKE_CASE ( lowercase_=False , lowercase_=False ) -> Dict:
"""simple docstring"""
A__ = Accelerator(
split_batches=lowercase_ , dispatch_batches=lowercase_ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A__ , A__ , A__ = get_training_setup(lowercase_ )
for iteration, batch in enumerate(lowercase_ ):
A__ , A__ = batch.values()
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase_ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
A__ = ddp_input[torch.randperm(len(lowercase_ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE ( lowercase_=False , lowercase_=False ) -> int:
"""simple docstring"""
A__ = Accelerator(
split_batches=lowercase_ , dispatch_batches=lowercase_ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
A__ , A__ , A__ , A__ , A__ , A__ , A__ = get_training_setup(lowercase_ , lowercase_ )
for iteration, batch in enumerate(lowercase_ ):
A__ , A__ = batch.values()
# Gather the distributed inputs and targs for the base model
A__ , A__ = accelerator.gather((ddp_input, ddp_target) )
A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase_ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(lowercase_ ):
step_model(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n"""
A__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase_ ))
if accelerator.num_processes > 1:
check_model_parameters(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
"""simple docstring"""
A__ = Accelerator()
A__ = RegressionDataset(length=80 )
A__ = DataLoader(lowercase_ , batch_size=16 )
A__ = RegressionDataset(length=96 )
A__ = DataLoader(lowercase_ , batch_size=16 )
A__ , A__ = accelerator.prepare(lowercase_ , lowercase_ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(lowercase_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase_ )
if iteration < len(lowercase_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(lowercase_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase_ )
if batch_num < len(lowercase_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE ( ) -> Dict:
"""simple docstring"""
A__ = Accelerator()
A__ = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(lowercase_ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(lowercase_ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation(lowercase_ , lowercase_ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , )
test_gradient_accumulation_with_opt_and_scheduler(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
from __future__ import annotations
_lowerCamelCase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
A__ = 1
A__ = max(lowercase_ )
while placement <= max_digit:
# declare and initialize empty buckets
A__ = [[] for _ in range(lowercase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
A__ = int((i / placement) % RADIX )
buckets[tmp].append(lowercase_ )
# put each buckets' contents into list_of_ints
A__ = 0
for b in range(lowercase_ ):
for i in buckets[b]:
A__ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
_lowerCamelCase : Tuple = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
_lowerCamelCase : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
_lowerCamelCase : Tuple = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from copy import deepcopy
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase__ : list[int] | None = None , UpperCAmelCase__ : int | None = None) ->None:
'''simple docstring'''
if arr is None and size is not None:
A__ = size
A__ = [0] * size
elif arr is not None:
self.init(UpperCAmelCase__)
else:
raise ValueError('''Either arr or size must be specified''')
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : list[int]) ->None:
'''simple docstring'''
A__ = len(UpperCAmelCase__)
A__ = deepcopy(UpperCAmelCase__)
for i in range(1 , self.size):
A__ = self.next_(UpperCAmelCase__)
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->list[int]:
'''simple docstring'''
A__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1):
A__ = self.next_(UpperCAmelCase__)
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : int) ->int:
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : int) ->int:
'''simple docstring'''
return index - (index & (-index))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->None:
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
A__ = self.next_(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->None:
'''simple docstring'''
self.add(UpperCAmelCase__ , value - self.get(UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
if right == 0:
return 0
A__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
A__ = self.prev(UpperCAmelCase__)
return result
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
return self.prefix(UpperCAmelCase__) - self.prefix(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
return self.query(UpperCAmelCase__ , index + 1)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
A__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
A__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
from ..utils import DummyObject, requires_backends
class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''flax''', '''transformers''']
def __init__( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any]) ->str:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple) ->Dict:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : List[str]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''flax''', '''transformers''']
def __init__( self : Tuple , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Optional[int]) ->List[Any]:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : int , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : List[str] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''flax''', '''transformers''']
def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Any) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : int , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[int]) ->Any:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
class UpperCamelCase_ ( metaclass=UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''flax''', '''transformers''']
def __init__( self : int , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : int) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int]) ->Dict:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
@classmethod
def SCREAMING_SNAKE_CASE ( cls : List[str] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : str) ->Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''])
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase : List[str] = 16
_lowerCamelCase : int = 32
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 16 ) -> List[str]:
"""simple docstring"""
A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' )
A__ = DatasetDict(
{
'''train''': dataset['''train'''].select(lowercase_ ),
'''validation''': dataset['''train'''].select(lowercase_ ),
'''test''': dataset['''validation'''],
} )
def tokenize_function(lowercase_ ):
# max_length=None => use the model max length (it's actually the default)
A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
A__ = datasets.map(
lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowercase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
A__ = 16
elif accelerator.mixed_precision != "no":
A__ = 8
else:
A__ = None
return tokenizer.pad(
lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
A__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
A__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
A__ = DataLoader(
tokenized_datasets['''test'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
return train_dataloader, eval_dataloader, test_dataloader
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = []
# Download the dataset
A__ = load_dataset('''glue''' , '''mrpc''' )
# Create our splits
A__ = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A__ = config['''lr''']
A__ = int(config['''num_epochs'''] )
A__ = int(config['''seed'''] )
A__ = int(config['''batch_size'''] )
A__ = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
A__ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
A__ = batch_size // MAX_GPU_BATCH_SIZE
A__ = MAX_GPU_BATCH_SIZE
set_seed(lowercase_ )
# New Code #
# Create our folds:
A__ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] )
A__ = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(lowercase_ ):
A__ , A__ , A__ = get_fold_dataloaders(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
A__ = model.to(accelerator.device )
# Instantiate optimizer
A__ = AdamW(params=model.parameters() , lr=lowercase_ )
# Instantiate scheduler
A__ = get_linear_schedule_with_warmup(
optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A__ , A__ , A__ , A__ , A__ = accelerator.prepare(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Now we train the model
for epoch in range(lowercase_ ):
model.train()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
A__ = model(**lowercase_ )
A__ = outputs.loss
A__ = loss / gradient_accumulation_steps
accelerator.backward(lowercase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A__ = model(**lowercase_ )
A__ = outputs.logits.argmax(dim=-1 )
A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=lowercase_ , references=lowercase_ , )
A__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , lowercase_ )
# New Code #
# We also run predictions on the test set at the very end
A__ = []
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A__ = model(**lowercase_ )
A__ = outputs.logits
A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(lowercase_ , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
A__ = torch.cat(lowercase_ , dim=0 )
A__ = torch.stack(lowercase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
A__ = metric.compute(predictions=lowercase_ , references=lowercase_ )
accelerator.print('''Average test metrics from all folds:''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
"""simple docstring"""
A__ = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
# New Code #
parser.add_argument('''--num_folds''' , type=lowercase_ , default=3 , help='''The number of splits to perform across the dataset''' )
A__ = parser.parse_args()
A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(lowercase_ , lowercase_ )
if __name__ == "__main__":
main()
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowerCamelCase : Tuple = 16
_lowerCamelCase : Optional[int] = 32
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return int(x / 2**20 )
class UpperCamelCase_ :
'''simple docstring'''
def __enter__( self : Tuple) ->int:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
A__ = torch.cuda.memory_allocated()
return self
def __exit__( self : Optional[int] , *UpperCAmelCase__ : int) ->Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
A__ = torch.cuda.memory_allocated()
A__ = torch.cuda.max_memory_allocated()
A__ = bamb(self.end - self.begin)
A__ = bamb(self.peak - self.begin)
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 , lowercase_ = "bert-base-cased" , lowercase_ = 320 , lowercase_ = 160 , ) -> int:
"""simple docstring"""
A__ = AutoTokenizer.from_pretrained(lowercase_ )
A__ = load_dataset(
'''glue''' , '''mrpc''' , split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} )
def tokenize_function(lowercase_ ):
# max_length=None => use the model max length (it's actually the default)
A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A__ = datasets.map(
lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowercase_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowercase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowercase_ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
A__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
A__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
return train_dataloader, eval_dataloader
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
"""simple docstring"""
A__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A__ = config['''lr''']
A__ = int(config['''num_epochs'''] )
A__ = int(config['''seed'''] )
A__ = int(config['''batch_size'''] )
A__ = args.model_name_or_path
set_seed(lowercase_ )
A__ , A__ = get_dataloaders(lowercase_ , lowercase_ , lowercase_ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A__ = AutoModelForSequenceClassification.from_pretrained(lowercase_ , return_dict=lowercase_ )
# Instantiate optimizer
A__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A__ = optimizer_cls(params=model.parameters() , lr=lowercase_ )
if accelerator.state.deepspeed_plugin is not None:
A__ = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
A__ = 1
A__ = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A__ = get_linear_schedule_with_warmup(
optimizer=lowercase_ , num_warmup_steps=0 , num_training_steps=lowercase_ , )
else:
A__ = DummyScheduler(lowercase_ , total_num_steps=lowercase_ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A__ , A__ , A__ , A__ , A__ = accelerator.prepare(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# We need to keep track of how many total steps we have iterated over
A__ = 0
# We also need to keep track of the stating epoch so files are named properly
A__ = 0
# Now we train the model
A__ = {}
for epoch in range(lowercase_ , lowercase_ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(lowercase_ ):
A__ = model(**lowercase_ )
A__ = outputs.loss
A__ = loss / gradient_accumulation_steps
accelerator.backward(lowercase_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) )
accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) )
accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) )
accelerator.print(
'''Total Peak Memory consumed during the train (max): {}'''.format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
A__ = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f:
json.dump(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE ( ) -> List[str]:
"""simple docstring"""
A__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=lowercase_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowercase_ , )
parser.add_argument(
'''--output_dir''' , type=lowercase_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--peak_memory_upper_bound''' , type=lowercase_ , default=lowercase_ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , )
parser.add_argument(
'''--n_train''' , type=lowercase_ , default=320 , help='''Number of training examples to use.''' , )
parser.add_argument(
'''--n_val''' , type=lowercase_ , default=160 , help='''Number of validation examples to use.''' , )
parser.add_argument(
'''--num_epochs''' , type=lowercase_ , default=1 , help='''Number of train epochs.''' , )
A__ = parser.parse_args()
A__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(lowercase_ , lowercase_ )
if __name__ == "__main__":
main()
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
_lowerCamelCase : Dict = logging.get_logger(__name__)
_lowerCamelCase : List[str] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Optional[int] = {
"""vocab_file""": {
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""",
},
"""merges_file""": {
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""Salesforce/codegen-350M-mono""": (
"""https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : List[Any] = {
"""Salesforce/codegen-350M-mono""": 2048,
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = CodeGenTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Any="<|endoftext|>" , UpperCAmelCase__ : Optional[int]="<|endoftext|>" , UpperCAmelCase__ : Tuple="<|endoftext|>" , UpperCAmelCase__ : Optional[int]=False , **UpperCAmelCase__ : Tuple , ) ->Dict:
'''simple docstring'''
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , )
if kwargs.pop('''add_bos_token''' , UpperCAmelCase__):
A__ = kwargs.pop('''name_or_path''' , '''''')
raise ValueError(
'''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.'''
'''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n'''
f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n"""
f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n"""
'''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.'''
''' so that the fast tokenizer works correctly.''')
A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space:
A__ = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type'''))
A__ = add_prefix_space
A__ = pre_tok_class(**UpperCAmelCase__)
A__ = add_prefix_space
def SCREAMING_SNAKE_CASE ( self : Tuple , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[int]) ->BatchEncoding:
'''simple docstring'''
A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__)
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Dict) ->BatchEncoding:
'''simple docstring'''
A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__)
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__)
return tuple(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[List[str]] = None , **UpperCAmelCase__ : str , ) ->str:
'''simple docstring'''
A__ = super().decode(
token_ids=UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , **UpperCAmelCase__ , )
if truncate_before_pattern is not None and len(UpperCAmelCase__) > 0:
A__ = self.truncate(UpperCAmelCase__ , UpperCAmelCase__)
return decoded_text
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]) ->Tuple:
'''simple docstring'''
def find_re(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]):
A__ = pattern.search(UpperCAmelCase__ , UpperCAmelCase__)
return m.start() if m else -1
A__ = [re.compile(UpperCAmelCase__ , re.MULTILINE) for pattern in truncate_before_pattern]
A__ = list(re.finditer('''^print''' , UpperCAmelCase__ , re.MULTILINE))
if len(UpperCAmelCase__) > 1:
A__ = completion[: prints[1].start()]
A__ = list(re.finditer('''^def''' , UpperCAmelCase__ , re.MULTILINE))
if len(UpperCAmelCase__) > 1:
A__ = completion[: defs[1].start()]
A__ = 0
A__ = [
pos for pos in [find_re(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) for terminal in terminals] if pos != -1
]
if len(UpperCAmelCase__) > 0:
return completion[: min(UpperCAmelCase__)]
else:
return completion
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> float:
"""simple docstring"""
return np.dot(lowercase_ , lowercase_ )
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , *,
UpperCAmelCase__ : float = np.inf , UpperCAmelCase__ : str = "linear" , UpperCAmelCase__ : float = 0.0 , ) ->None:
'''simple docstring'''
A__ = regularization
A__ = gamma
if kernel == "linear":
A__ = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''')
if not isinstance(self.gamma , (float, int)):
raise ValueError('''gamma must be float or int''')
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''')
A__ = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
A__ = f"""Unknown kernel: {kernel}"""
raise ValueError(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : ndarray , UpperCAmelCase__ : ndarray) ->float:
'''simple docstring'''
return np.dot(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : ndarray , UpperCAmelCase__ : ndarray) ->float:
'''simple docstring'''
return np.exp(-(self.gamma * norm_squared(vectora - vectora)))
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : list[ndarray] , UpperCAmelCase__ : ndarray) ->None:
'''simple docstring'''
A__ = observations
A__ = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((A__) , ) = np.shape(UpperCAmelCase__)
def to_minimize(UpperCAmelCase__ : ndarray) -> float:
A__ = 0
((A__) , ) = np.shape(UpperCAmelCase__)
for i in range(UpperCAmelCase__):
for j in range(UpperCAmelCase__):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j])
)
return 1 / 2 * s - sum(UpperCAmelCase__)
A__ = LinearConstraint(UpperCAmelCase__ , 0 , 0)
A__ = Bounds(0 , self.regularization)
A__ = minimize(
UpperCAmelCase__ , np.ones(UpperCAmelCase__) , bounds=UpperCAmelCase__ , constraints=[ly_contraint]).x
A__ = l_star
# calculating mean offset of separation plane to points
A__ = 0
for i in range(UpperCAmelCase__):
for j in range(UpperCAmelCase__):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j])
A__ = s / n
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : ndarray) ->int:
'''simple docstring'''
A__ = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , UpperCAmelCase__)
for n in range(len(self.classes)))
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_lowerCamelCase : Any = 500000
_lowerCamelCase , _lowerCamelCase : List[Any] = os.path.split(__file__)
_lowerCamelCase : Tuple = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def SCREAMING_SNAKE_CASE ( lowercase_ , **lowercase_ ) -> str:
"""simple docstring"""
A__ = dataset.map(**lowercase_ )
@get_duration
def SCREAMING_SNAKE_CASE ( lowercase_ , **lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = dataset.filter(**lowercase_ )
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
"""simple docstring"""
A__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
A__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
A__ = generate_example_dataset(
os.path.join(lowercase_ , '''dataset.arrow''' ) , lowercase_ , num_examples=lowercase_ )
A__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowercase_ )
def tokenize(lowercase_ ):
return tokenizer(examples['''text'''] )
A__ = map(lowercase_ )
A__ = map(lowercase_ , batched=lowercase_ )
A__ = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ )
with dataset.formatted_as(type='''numpy''' ):
A__ = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ )
with dataset.formatted_as(type='''pandas''' ):
A__ = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
A__ = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
A__ = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ )
A__ = map(lowercase_ , function=lowercase_ , batched=lowercase_ )
A__ = filter(lowercase_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(lowercase_ , '''wb''' ) as f:
f.write(json.dumps(lowercase_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
from math import ceil
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
"""simple docstring"""
A__ = list(range(0 , lowercase_ ) )
A__ = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
A__ = []
for i in device_map_blocks:
if device_map_blocks.count(lowercase_ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(lowercase_ )
# Missing blocks
A__ = [i for i in blocks if i not in device_map_blocks]
A__ = [i for i in device_map_blocks if i not in blocks]
if len(lowercase_ ) != 0:
raise ValueError(
'''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'''
''' These attention blocks were specified more than once: ''' + str(lowercase_ ) )
if len(lowercase_ ) != 0:
raise ValueError(
'''There are attention blocks for this model that are not specified in the device_map. Add these attention '''
'''blocks to a device on the device_map: ''' + str(lowercase_ ) )
if len(lowercase_ ) != 0:
raise ValueError(
'''The device_map contains more attention blocks than this model has. Remove these from the device_map:'''
+ str(lowercase_ ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = list(range(lowercase_ ) )
A__ = int(ceil(n_layers / len(lowercase_ ) ) )
A__ = [layers[i : i + n_blocks] for i in range(0 , lowercase_ , lowercase_ )]
return dict(zip(lowercase_ , lowercase_ ) )
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
_lowerCamelCase : Tuple = re.compile(r"""^(?P<major>\d+)""" r"""\.(?P<minor>\d+)""" r"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 42
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE ( self : Any) ->Any:
'''simple docstring'''
A__ , A__ , A__ = _str_to_version_tuple(self.version_str)
def __repr__( self : Dict) ->List[str]:
'''simple docstring'''
return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"""
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
'''simple docstring'''
return self.major, self.minor, self.patch
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
return Version(UpperCAmelCase__)
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__):
return other
raise TypeError(f"""{other} (type {type(UpperCAmelCase__)}) cannot be compared to version.""")
def __eq__( self : Tuple , UpperCAmelCase__ : int) ->Union[str, Any]:
'''simple docstring'''
try:
A__ = self._validate_operand(UpperCAmelCase__)
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : List[Any] , UpperCAmelCase__ : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = self._validate_operand(UpperCAmelCase__)
return self.tuple < other.tuple
def __hash__( self : int) ->Any:
'''simple docstring'''
return hash(_version_tuple_to_str(self.tuple))
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[int] , UpperCAmelCase__ : int) ->List[str]:
'''simple docstring'''
A__ = {f.name for f in dataclasses.fields(cls)}
return cls(**{k: v for k, v in dic.items() if k in field_names})
def SCREAMING_SNAKE_CASE ( self : Dict) ->str:
'''simple docstring'''
return self.version_str
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = _VERSION_REG.match(lowercase_ )
if not res:
raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" )
return tuple(int(lowercase_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
return ".".join(str(lowercase_ ) for v in version_tuple )
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = ''''''
for word_or_phrase in separated:
if not isinstance(lowercase_ , lowercase_ ):
raise Exception('''join() accepts only strings to be joined''' )
joined += word_or_phrase + separator
return joined.strip(lowercase_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
import colorsys
from PIL import Image # type: ignore
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float:
"""simple docstring"""
A__ = x
A__ = y
for step in range(lowercase_ ): # noqa: B007
A__ = a * a - b * b + x
A__ = 2 * a * b + y
A__ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ = 800 , lowercase_ = 600 , lowercase_ = -0.6 , lowercase_ = 0 , lowercase_ = 3.2 , lowercase_ = 50 , lowercase_ = True , ) -> Image.Image:
"""simple docstring"""
A__ = Image.new('''RGB''' , (image_width, image_height) )
A__ = img.load()
# loop through the image-coordinates
for image_x in range(lowercase_ ):
for image_y in range(lowercase_ ):
# determine the figure-coordinates based on the image-coordinates
A__ = figure_width / image_width * image_height
A__ = figure_center_x + (image_x / image_width - 0.5) * figure_width
A__ = figure_center_y + (image_y / image_height - 0.5) * figure_height
A__ = get_distance(lowercase_ , lowercase_ , lowercase_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
A__ = get_color_coded_rgb(lowercase_ )
else:
A__ = get_black_and_white_rgb(lowercase_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
_lowerCamelCase : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(lowercase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowercase_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowercase_ ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''pixel_values''']
def __init__( self : Any , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : Tuple , ) ->None:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = size if size is not None else {'''shortest_edge''': 224}
A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__)
A__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
A__ = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''')
A__ = do_resize
A__ = size
A__ = do_center_crop
A__ = crop_size
A__ = resample
A__ = do_rescale
A__ = rescale_factor
A__ = do_normalize
A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Tuple , ) ->np.ndarray:
'''simple docstring'''
A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__)
if "shortest_edge" in size:
A__ = get_resize_output_image_size(UpperCAmelCase__ , size['''shortest_edge'''] , default_to_square=UpperCAmelCase__)
elif "height" in size and "width" in size:
A__ = (size['''height'''], size['''width'''])
else:
raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""")
return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) ->np.ndarray:
'''simple docstring'''
A__ = get_size_dict(UpperCAmelCase__)
if "height" not in size or "width" not in size:
raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""")
return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) ->Union[str, Any]:
'''simple docstring'''
return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ) ->np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) ->np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''')
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''')
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''')
# All transformations expect numpy arrays.
A__ = to_numpy_array(UpperCAmelCase__)
if do_resize:
A__ = self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__)
if do_center_crop:
A__ = self.center_crop(UpperCAmelCase__ , size=UpperCAmelCase__)
if do_rescale:
A__ = self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__)
if do_normalize:
A__ = self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__)
A__ = to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__)
return image
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : Optional[Any] , ) ->PIL.Image.Image:
'''simple docstring'''
A__ = do_resize if do_resize is not None else self.do_resize
A__ = resample if resample is not None else self.resample
A__ = do_center_crop if do_center_crop is not None else self.do_center_crop
A__ = do_rescale if do_rescale is not None else self.do_rescale
A__ = rescale_factor if rescale_factor is not None else self.rescale_factor
A__ = do_normalize if do_normalize is not None else self.do_normalize
A__ = image_mean if image_mean is not None else self.image_mean
A__ = image_std if image_std is not None else self.image_std
A__ = size if size is not None else self.size
A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__)
A__ = crop_size if crop_size is not None else self.crop_size
A__ = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''')
if not valid_images(UpperCAmelCase__):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''')
A__ = make_batched(UpperCAmelCase__)
A__ = [
[
self._preprocess_image(
image=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , do_center_crop=UpperCAmelCase__ , crop_size=UpperCAmelCase__ , do_rescale=UpperCAmelCase__ , rescale_factor=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , )
for img in video
]
for video in videos
]
A__ = {'''pixel_values''': videos}
return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__)
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCamelCase : Optional[int] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : int = ["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Union[str, Any] = ["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : str = [
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[int] = [
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DiTPipeline
UpperCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
UpperCAmelCase__ = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
UpperCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
torch.manual_seed(0)
A__ = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCAmelCase__ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=UpperCAmelCase__ , )
A__ = AutoencoderKL()
A__ = DDIMScheduler()
A__ = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=0) ->Dict:
'''simple docstring'''
if str(UpperCAmelCase__).startswith('''mps'''):
A__ = torch.manual_seed(UpperCAmelCase__)
else:
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__)
A__ = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
A__ = '''cpu'''
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**UpperCAmelCase__)
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs(UpperCAmelCase__)
A__ = pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3))
A__ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457])
A__ = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(UpperCAmelCase__ , 1e-3)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=UpperCAmelCase__ , expected_max_diff=1e-3)
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE ( self : int) ->Dict:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@require_torch_gpu
@slow
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = torch.manual_seed(0)
A__ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''')
pipe.to('''cuda''')
A__ = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
A__ = pipe.get_label_ids(UpperCAmelCase__)
A__ = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=40 , output_type='''np''').images
for word, image in zip(UpperCAmelCase__ , UpperCAmelCase__):
A__ = load_numpy(
f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""")
assert np.abs((expected_image - image).max()) < 1e-2
def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]:
'''simple docstring'''
A__ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''')
A__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.to('''cuda''')
A__ = ['''vase''', '''umbrella''']
A__ = pipe.get_label_ids(UpperCAmelCase__)
A__ = torch.manual_seed(0)
A__ = pipe(UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=25 , output_type='''np''').images
for word, image in zip(UpperCAmelCase__ , UpperCAmelCase__):
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
f"""/dit/{word}_512.npy""")
assert np.abs((expected_image - image).max()) < 1e-1
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
A__ = inspect.getfile(accelerate.test_utils)
A__ = os.path.sep.join(
mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''])
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
A__ = test_metrics
@require_cpu
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
debug_launcher(self.test_metrics.main , num_processes=1)
@require_cpu
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
'''simple docstring'''
debug_launcher(self.test_metrics.main)
@require_single_gpu
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
self.test_metrics.main()
@require_multi_gpu
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
print(f"""Found {torch.cuda.device_count()} devices.""")
A__ = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCamelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
_lowerCamelCase : Tuple = 256047
_lowerCamelCase : int = 256145
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = NllbTokenizer
UpperCAmelCase__ = NllbTokenizerFast
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = {}
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = NllbTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
'''simple docstring'''
A__ = NllbTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__)
A__ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__)
self.assertListEqual(
UpperCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__)
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
A__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
A__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = tempfile.mkdtemp()
A__ = tokenizer_r.save_pretrained(UpperCAmelCase__)
A__ = tokenizer_p.save_pretrained(UpperCAmelCase__)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files))
A__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f)
self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__)
# Checks everything loads correctly in the same way
A__ = tokenizer_r.from_pretrained(UpperCAmelCase__)
A__ = tokenizer_p.from_pretrained(UpperCAmelCase__)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__))
shutil.rmtree(UpperCAmelCase__)
# Save tokenizer rust, legacy_format=True
A__ = tempfile.mkdtemp()
A__ = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__)
A__ = tokenizer_p.save_pretrained(UpperCAmelCase__)
# Checks it save with the same files
self.assertSequenceEqual(UpperCAmelCase__ , UpperCAmelCase__)
# Checks everything loads correctly in the same way
A__ = tokenizer_r.from_pretrained(UpperCAmelCase__)
A__ = tokenizer_p.from_pretrained(UpperCAmelCase__)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__))
shutil.rmtree(UpperCAmelCase__)
# Save tokenizer rust, legacy_format=False
A__ = tempfile.mkdtemp()
A__ = tokenizer_r.save_pretrained(UpperCAmelCase__ , legacy_format=UpperCAmelCase__)
A__ = tokenizer_p.save_pretrained(UpperCAmelCase__)
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
A__ = tokenizer_r.from_pretrained(UpperCAmelCase__)
A__ = tokenizer_p.from_pretrained(UpperCAmelCase__)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__))
shutil.rmtree(UpperCAmelCase__)
@require_torch
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any:
'''simple docstring'''
if not self.test_seqaseq:
return
A__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}"""):
# Longer text that will definitely require truncation.
A__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'''
''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'''
''' will only worsen the violence and misery for millions of people.''',
]
A__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'''
''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'''
''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
try:
A__ = tokenizer.prepare_seqaseq_batch(
src_texts=UpperCAmelCase__ , tgt_texts=UpperCAmelCase__ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3)
self.assertEqual(batch.labels.shape[1] , 10)
# max_target_length will default to max_length if not specified
A__ = tokenizer.prepare_seqaseq_batch(
UpperCAmelCase__ , tgt_texts=UpperCAmelCase__ , max_length=3 , return_tensors='''pt''')
self.assertEqual(batch.input_ids.shape[1] , 3)
self.assertEqual(batch.labels.shape[1] , 3)
A__ = tokenizer.prepare_seqaseq_batch(
src_texts=UpperCAmelCase__ , max_length=3 , max_target_length=10 , return_tensors='''pt''')
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3)
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3)
self.assertNotIn('''decoder_input_ids''' , UpperCAmelCase__)
@unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''')
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
A__ = [AddedToken('''<special>''' , lstrip=UpperCAmelCase__)]
A__ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = tokenizer_r.encode('''Hey this is a <special> token''')
A__ = tokenizer_r.encode('''<special>''' , add_special_tokens=UpperCAmelCase__)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
A__ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = self.tokenizer_class.from_pretrained(
UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = tokenizer_p.encode('''Hey this is a <special> token''')
A__ = tokenizer_cr.encode('''Hey this is a <special> token''')
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = '''facebook/nllb-200-distilled-600M'''
UpperCAmelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
UpperCAmelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
UpperCAmelCase__ = [
25_6047,
1_6297,
13_4408,
8165,
24_8066,
1_4734,
950,
1135,
10_5721,
3573,
83,
2_7352,
108,
4_9486,
2,
]
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Tuple) ->int:
'''simple docstring'''
A__ = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''')
A__ = 1
return cls
def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 256_001)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 256_002)
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 256_057)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple:
'''simple docstring'''
A__ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
self.assertIn(UpperCAmelCase__ , self.tokenizer.all_special_ids)
# fmt: off
A__ = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047]
# fmt: on
A__ = self.tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__)
A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase__)
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
A__ = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , UpperCAmelCase__)
A__ = 10
A__ = self.tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__).input_ids[0]
self.assertEqual(ids[-1] , 2)
self.assertEqual(ids[0] , UpperCAmelCase__)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR''']) , [256_203, 3])
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = tempfile.mkdtemp()
A__ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(UpperCAmelCase__)
A__ = NllbTokenizer.from_pretrained(UpperCAmelCase__)
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase__)
@require_torch
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=len(self.expected_src_tokens) , return_tensors='''pt''' , )
A__ = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''])
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__)
self.assertEqual((2, 15) , batch.input_ids.shape)
self.assertEqual((2, 15) , batch.attention_mask.shape)
A__ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__)
self.assertEqual(UpperCAmelCase__ , batch.decoder_input_ids[0, 0]) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE])
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id])
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = self.tokenizer(self.src_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=3 , return_tensors='''pt''')
A__ = self.tokenizer(
text_target=self.tgt_text , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=10 , return_tensors='''pt''')
A__ = targets['''input_ids''']
A__ = shift_tokens_right(
UpperCAmelCase__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3)
self.assertEqual(batch.decoder_input_ids.shape[1] , 10)
@require_torch
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
A__ = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''')
self.assertEqual(
nested_simplify(UpperCAmelCase__) , {
# A, test, EOS, en_XX
'''input_ids''': [[256_047, 70, 7_356, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 256_057,
} , )
@require_torch
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = True
A__ = self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''')
self.assertEqual(
inputs.input_ids , [16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047])
A__ = False
A__ = self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''')
self.assertEqual(
inputs.input_ids , [256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2])
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
_lowerCamelCase : str = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : List[Any]) ->None:
'''simple docstring'''
warnings.warn(
'''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use FlavaImageProcessor instead.''' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from pathlib import Path
import numpy as np
from PIL import Image
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> np.ndarray:
"""simple docstring"""
A__ , A__ , A__ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> np.ndarray:
"""simple docstring"""
return (gray > 127) & (gray <= 255)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> np.ndarray:
"""simple docstring"""
A__ = np.zeros_like(lowercase_ )
A__ = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
A__ = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
A__ = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
A__ = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
_lowerCamelCase : Tuple = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
_lowerCamelCase : Any = np.array(Image.open(lena_path))
# kernel to be applied
_lowerCamelCase : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
_lowerCamelCase : List[str] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
_lowerCamelCase : Dict = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = int(lowercase_ )
assert noofclusters < len(lowercase_ )
# Find out the dimensionality
A__ = len(vectors[0] )
# Will help select random centroids from among the available vectors
A__ = list(range(len(lowercase_ ) ) )
shuffle(lowercase_ )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
A__ = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
A__ = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
A__ = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ )
]
##These nodes will assign the centroid Variables the appropriate
##values
A__ = tf.placeholder('''float64''' , [dim] )
A__ = []
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
A__ = [tf.Variable(0 ) for i in range(len(lowercase_ ) )]
##These nodes will assign an assignment Variable the appropriate
##value
A__ = tf.placeholder('''int32''' )
A__ = []
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
A__ = tf.placeholder('''float''' , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
A__ = tf.reduce_mean(lowercase_ , 0 )
##Node for computing Euclidean distances
# Placeholders for input
A__ = tf.placeholder('''float''' , [dim] )
A__ = tf.placeholder('''float''' , [dim] )
A__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
A__ = tf.placeholder('''float''' , [noofclusters] )
A__ = tf.argmin(lowercase_ , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
A__ = tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase_ )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
A__ = 100
for _ in range(lowercase_ ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase_ ) ):
A__ = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
A__ = [
sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
A__ = sess.run(
lowercase_ , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase_ ):
# Collect all the vectors assigned to this cluster
A__ = [
vectors[i]
for i in range(len(lowercase_ ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
A__ = sess.run(
lowercase_ , feed_dict={mean_input: array(lowercase_ )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
A__ = sess.run(lowercase_ )
A__ = sess.run(lowercase_ )
return centroids, assignments
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = tmp_path / '''file.csv'''
A__ = textwrap.dedent(
'''\
header1,header2
1,2
10,20
''' )
with open(lowercase_ , '''w''' ) as f:
f.write(lowercase_ )
return str(lowercase_ )
@pytest.fixture
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = tmp_path / '''malformed_file.csv'''
A__ = textwrap.dedent(
'''\
header1,header2
1,2
10,20,
''' )
with open(lowercase_ , '''w''' ) as f:
f.write(lowercase_ )
return str(lowercase_ )
@pytest.fixture
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = tmp_path / '''csv_with_image.csv'''
A__ = textwrap.dedent(
f"""\
image
{image_file}
""" )
with open(lowercase_ , '''w''' ) as f:
f.write(lowercase_ )
return str(lowercase_ )
@pytest.fixture
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = tmp_path / '''csv_with_label.csv'''
A__ = textwrap.dedent(
'''\
label
good
bad
good
''' )
with open(lowercase_ , '''w''' ) as f:
f.write(lowercase_ )
return str(lowercase_ )
@pytest.fixture
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
A__ = tmp_path / '''csv_with_int_list.csv'''
A__ = textwrap.dedent(
'''\
int_list
1 2 3
4 5 6
7 8 9
''' )
with open(lowercase_ , '''w''' ) as f:
f.write(lowercase_ )
return str(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict:
"""simple docstring"""
A__ = Csv()
A__ = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(lowercase_ , match='''Error tokenizing data''' ):
for _ in generator:
pass
assert any(
record.levelname == '''ERROR'''
and '''Failed to read file''' in record.message
and os.path.basename(lowercase_ ) in record.message
for record in caplog.records )
@require_pil
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
with open(lowercase_ , encoding='''utf-8''' ) as f:
A__ = f.read().splitlines()[1]
A__ = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) )
A__ = csv._generate_tables([[csv_file_with_image]] )
A__ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('''image''' ).type == Image()()
A__ = pa_table.to_pydict()['''image''']
assert generated_content == [{"path": image_file, "bytes": None}]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
with open(lowercase_ , encoding='''utf-8''' ) as f:
A__ = f.read().splitlines()[1:]
A__ = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) )
A__ = csv._generate_tables([[csv_file_with_label]] )
A__ = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )()
A__ = pa_table.to_pydict()['''label''']
assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowercase_ ) for label in labels]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
A__ = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowercase_ : [int(lowercase_ ) for i in x.split()]} )
A__ = csv._generate_tables([[csv_file_with_int_list]] )
A__ = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type )
A__ = pa_table.to_pydict()['''int_list''']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__( self : Dict , UpperCAmelCase__ : int = 768 , ) ->Tuple:
'''simple docstring'''
super().__init__()
A__ = nn.Parameter(torch.zeros(1 , UpperCAmelCase__))
A__ = nn.Parameter(torch.ones(1 , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Union[str, torch.device]] = None , UpperCAmelCase__ : Optional[torch.dtype] = None , ) ->List[str]:
'''simple docstring'''
A__ = nn.Parameter(self.mean.to(UpperCAmelCase__).to(UpperCAmelCase__))
A__ = nn.Parameter(self.std.to(UpperCAmelCase__).to(UpperCAmelCase__))
return self
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple) ->Dict:
'''simple docstring'''
A__ = (embeds - self.mean) * 1.0 / self.std
return embeds
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any]) ->str:
'''simple docstring'''
A__ = (embeds * self.std) + self.mean
return embeds
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> tuple[int, float, str]:
"""simple docstring"""
A__ = cipher_alphabet or [chr(lowercase_ ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
A__ = {
'''a''': 0.0_84_97,
'''b''': 0.0_14_92,
'''c''': 0.0_22_02,
'''d''': 0.0_42_53,
'''e''': 0.1_11_62,
'''f''': 0.0_22_28,
'''g''': 0.0_20_15,
'''h''': 0.0_60_94,
'''i''': 0.0_75_46,
'''j''': 0.0_01_53,
'''k''': 0.0_12_92,
'''l''': 0.0_40_25,
'''m''': 0.0_24_06,
'''n''': 0.0_67_49,
'''o''': 0.0_75_07,
'''p''': 0.0_19_29,
'''q''': 0.0_00_95,
'''r''': 0.0_75_87,
'''s''': 0.0_63_27,
'''t''': 0.0_93_56,
'''u''': 0.0_27_58,
'''v''': 0.0_09_78,
'''w''': 0.0_25_60,
'''x''': 0.0_01_50,
'''y''': 0.0_19_94,
'''z''': 0.0_00_77,
}
else:
# Custom frequencies dictionary
A__ = frequencies_dict
if not case_sensitive:
A__ = ciphertext.lower()
# Chi squared statistic values
A__ = {}
# cycle through all of the shifts
for shift in range(len(lowercase_ ) ):
A__ = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
A__ = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase_ )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
A__ = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
A__ = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
A__ = decrypted_with_shift.lower().count(lowercase_ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
A__ = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
A__ = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
A__ = decrypted_with_shift.count(lowercase_ )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
A__ = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
A__ = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
A__ = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase_ ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
A__ = min(
lowercase_ , key=lowercase_ , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
A__
) , (
A__
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowerCamelCase : str = {
"""configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""],
"""processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Any = ["""VisionTextDualEncoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Dict = ["""FlaxVisionTextDualEncoderModel"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Union[str, Any] = ["""TFVisionTextDualEncoderModel"""]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
_lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = len(lowercase_ )
A__ = []
for i in range(len(lowercase_ ) - pat_len + 1 ):
A__ = True
for j in range(lowercase_ ):
if s[i + j] != pattern[j]:
A__ = False
break
if match_found:
position.append(lowercase_ )
return position
if __name__ == "__main__":
assert naive_pattern_search("""ABCDEFG""", """DE""") == [3]
print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
from __future__ import annotations
import pandas as pd
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> list[int]:
"""simple docstring"""
A__ = [0] * no_of_processes
A__ = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(lowercase_ ):
A__ = burst_time[i]
A__ = 0
A__ = 0
A__ = 999_999_999
A__ = 0
A__ = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(lowercase_ ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
A__ = remaining_time[j]
A__ = j
A__ = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
A__ = remaining_time[short]
if minm == 0:
A__ = 999_999_999
if remaining_time[short] == 0:
complete += 1
A__ = False
# Find finish time of current process
A__ = increment_time + 1
# Calculate waiting time
A__ = finish_time - arrival_time[short]
A__ = finar - burst_time[short]
if waiting_time[short] < 0:
A__ = 0
# Increment time
increment_time += 1
return waiting_time
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> list[int]:
"""simple docstring"""
A__ = [0] * no_of_processes
for i in range(lowercase_ ):
A__ = burst_time[i] + waiting_time[i]
return turn_around_time
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None:
"""simple docstring"""
A__ = 0
A__ = 0
for i in range(lowercase_ ):
A__ = total_waiting_time + waiting_time[i]
A__ = total_turn_around_time + turn_around_time[i]
print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" )
print('''Average turn around time =''' , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print("""Enter how many process you want to analyze""")
_lowerCamelCase : str = int(input())
_lowerCamelCase : Optional[int] = [0] * no_of_processes
_lowerCamelCase : str = [0] * no_of_processes
_lowerCamelCase : Tuple = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print("""Enter the arrival time and burst time for process:--""" + str(i + 1))
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = map(int, input().split())
_lowerCamelCase : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_lowerCamelCase : Any = burst_time
_lowerCamelCase : Optional[Any] = no_of_processes
_lowerCamelCase : Any = waiting_time
_lowerCamelCase : Optional[int] = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
_lowerCamelCase : Optional[Any] = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
"""Process""",
"""BurstTime""",
"""ArrivalTime""",
"""WaitingTime""",
"""TurnAroundTime""",
],
)
# Printing the dataFrame
pd.set_option("""display.max_rows""", fcfs.shape[0] + 1)
print(fcfs)
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
_lowerCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(lowercase_ ):
return ext
raise Exception(
f"""Unable to determine file format from file extension {path}. """
f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
A__ = try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format
A__ = PipelineDataFormat.from_str(
format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(lowercase_ , lowercase_ )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase__ : Pipeline , UpperCAmelCase__ : PipelineDataFormat) ->Union[str, Any]:
'''simple docstring'''
A__ = nlp
A__ = reader
@staticmethod
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : ArgumentParser) ->Any:
'''simple docstring'''
A__ = parser.add_parser('''run''' , help='''Run a pipeline through the CLI''')
run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''')
run_parser.add_argument('''--input''' , type=UpperCAmelCase__ , help='''Path to the file to use for inference''')
run_parser.add_argument('''--output''' , type=UpperCAmelCase__ , help='''Path to the file that will be used post to write results.''')
run_parser.add_argument('''--model''' , type=UpperCAmelCase__ , help='''Name or path to the model to instantiate.''')
run_parser.add_argument('''--config''' , type=UpperCAmelCase__ , help='''Name or path to the model\'s config to instantiate.''')
run_parser.add_argument(
'''--tokenizer''' , type=UpperCAmelCase__ , help='''Name of the tokenizer to use. (default: same as the model name)''')
run_parser.add_argument(
'''--column''' , type=UpperCAmelCase__ , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , )
run_parser.add_argument(
'''--format''' , type=UpperCAmelCase__ , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , )
run_parser.add_argument(
'''--device''' , type=UpperCAmelCase__ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , )
run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''')
run_parser.set_defaults(func=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
A__ , A__ = self._nlp, []
for entry in self._reader:
A__ = nlp(**UpperCAmelCase__) if self._reader.is_multi_columns else nlp(UpperCAmelCase__)
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
outputs.append(UpperCAmelCase__)
else:
outputs += output
# Saving data
if self._nlp.binary_output:
A__ = self._reader.save_binary(UpperCAmelCase__)
logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""")
else:
self._reader.save(UpperCAmelCase__)
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool:
"""simple docstring"""
A__ = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
A__ = set()
return any(
node not in visited and depth_first_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
for node in graph )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> bool:
"""simple docstring"""
visited.add(lowercase_ )
rec_stk.add(lowercase_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(lowercase_ , lowercase_ , lowercase_ , lowercase_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(lowercase_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = StableDiffusionInpaintPipeline
UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
UpperCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
UpperCAmelCase__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
UpperCAmelCase__ = frozenset([] )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
torch.manual_seed(0)
A__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , )
A__ = PNDMScheduler(skip_prk_steps=UpperCAmelCase__)
torch.manual_seed(0)
A__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0)
A__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
A__ = CLIPTextModel(UpperCAmelCase__)
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
A__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any]=0) ->Optional[Any]:
'''simple docstring'''
A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__)
A__ = image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64))
A__ = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((64, 64))
if str(UpperCAmelCase__).startswith('''mps'''):
A__ = torch.manual_seed(UpperCAmelCase__)
else:
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__)
A__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
'''simple docstring'''
A__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = StableDiffusionInpaintPipeline(**UpperCAmelCase__)
A__ = sd_pipe.to(UpperCAmelCase__)
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = self.get_dummy_inputs(UpperCAmelCase__)
A__ = sd_pipe(**UpperCAmelCase__).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def SCREAMING_SNAKE_CASE ( self : int) ->Dict:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''')
A__ = '''stabilityai/stable-diffusion-2-inpainting'''
A__ = StableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__)
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
pipe.enable_attention_slicing()
A__ = '''Face of a yellow cat, high resolution, sitting on a park bench'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , )
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 9e-3
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict:
'''simple docstring'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''')
A__ = '''stabilityai/stable-diffusion-2-inpainting'''
A__ = StableDiffusionInpaintPipeline.from_pretrained(
UpperCAmelCase__ , torch_dtype=torch.floataa , safety_checker=UpperCAmelCase__ , )
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
pipe.enable_attention_slicing()
A__ = '''Face of a yellow cat, high resolution, sitting on a park bench'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , )
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
A__ = '''stabilityai/stable-diffusion-2-inpainting'''
A__ = PNDMScheduler.from_pretrained(UpperCAmelCase__ , subfolder='''scheduler''')
A__ = StableDiffusionInpaintPipeline.from_pretrained(
UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , torch_dtype=torch.floataa , )
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
A__ = '''Face of a yellow cat, high resolution, sitting on a park bench'''
A__ = torch.manual_seed(0)
A__ = pipe(
prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , mask_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=2 , output_type='''np''' , )
A__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : Union[str, Any] = {
"""configuration_clap""": [
"""CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ClapAudioConfig""",
"""ClapConfig""",
"""ClapTextConfig""",
],
"""processing_clap""": ["""ClapProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = [
"""CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ClapModel""",
"""ClapPreTrainedModel""",
"""ClapTextModel""",
"""ClapTextModelWithProjection""",
"""ClapAudioModel""",
"""ClapAudioModelWithProjection""",
]
_lowerCamelCase : str = ["""ClapFeatureExtractor"""]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
_lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
import baseaa
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bytes:
"""simple docstring"""
return baseaa.baaencode(string.encode('''utf-8''' ) )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
return baseaa.baadecode(lowercase_ ).decode('''utf-8''' )
if __name__ == "__main__":
_lowerCamelCase : List[str] = """Hello World!"""
_lowerCamelCase : Union[str, Any] = baseaa_encode(test)
print(encoded)
_lowerCamelCase : Union[str, Any] = baseaa_decode(encoded)
print(decoded)
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_owlvit""": [
"""OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""OwlViTConfig""",
"""OwlViTOnnxConfig""",
"""OwlViTTextConfig""",
"""OwlViTVisionConfig""",
],
"""processing_owlvit""": ["""OwlViTProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Any = ["""OwlViTFeatureExtractor"""]
_lowerCamelCase : str = ["""OwlViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : str = [
"""OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""OwlViTModel""",
"""OwlViTPreTrainedModel""",
"""OwlViTTextModel""",
"""OwlViTVisionModel""",
"""OwlViTForObjectDetection""",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowerCamelCase : int = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''input_values''', '''attention_mask''']
def __init__( self : Optional[int] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 16_000 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 80 , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : str = "hann_window" , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : float = 80 , UpperCAmelCase__ : float = 7_600 , UpperCAmelCase__ : float = 1e-10 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) ->int:
'''simple docstring'''
super().__init__(feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = do_normalize
A__ = return_attention_mask
A__ = num_mel_bins
A__ = hop_length
A__ = win_length
A__ = win_function
A__ = frame_signal_scale
A__ = fmin
A__ = fmax
A__ = mel_floor
A__ = reduction_factor
A__ = win_length * sampling_rate // 1_000
A__ = hop_length * sampling_rate // 1_000
A__ = optimal_fft_length(self.sample_size)
A__ = (self.n_fft // 2) + 1
A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase__)
A__ = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , )
if frame_signal_scale != 1.0:
warnings.warn(
'''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , UpperCAmelCase__ , )
if reduction_factor != 2.0:
warnings.warn(
'''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , UpperCAmelCase__ , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : List[np.ndarray] , UpperCAmelCase__ : List[np.ndarray] , UpperCAmelCase__ : float = 0.0) ->List[np.ndarray]:
'''simple docstring'''
if attention_mask is not None:
A__ = np.array(UpperCAmelCase__ , np.intaa)
A__ = []
for vector, length in zip(UpperCAmelCase__ , attention_mask.sum(-1)):
A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
if length < normed_slice.shape[0]:
A__ = padding_value
normed_input_values.append(UpperCAmelCase__)
else:
A__ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]
return normed_input_values
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : np.ndarray , ) ->np.ndarray:
'''simple docstring'''
A__ = spectrogram(
UpperCAmelCase__ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , )
return log_mel_spec.T
def __call__( self : Optional[int] , UpperCAmelCase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase__ : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : int , ) ->BatchFeature:
'''simple docstring'''
if audio is None and audio_target is None:
raise ValueError('''You must provide either `audio` or `audio_target` values.''')
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""")
else:
logger.warning(
'''It is strongly recommended to pass the ``sampling_rate`` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''')
if audio is not None:
A__ = self._process_audio(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , )
else:
A__ = None
if audio_target is not None:
A__ = self._process_audio(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , )
if inputs is None:
return inputs_target
else:
A__ = inputs_target['''input_values''']
A__ = inputs_target.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : int , ) ->BatchFeature:
'''simple docstring'''
A__ = isinstance(UpperCAmelCase__ , np.ndarray) and len(speech.shape) > 1
if is_batched_numpy and len(speech.shape) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""")
A__ = is_batched_numpy or (
isinstance(UpperCAmelCase__ , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list)))
)
if is_batched:
A__ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa) for speech in speech]
elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray):
A__ = np.asarray(UpperCAmelCase__ , dtype=np.floataa)
elif isinstance(UpperCAmelCase__ , np.ndarray) and speech.dtype is np.dtype(np.floataa):
A__ = speech.astype(np.floataa)
# always return batch
if not is_batched:
A__ = [speech]
# needed to make pad() work on spectrogram inputs
A__ = self.feature_size
# convert into correct format for padding
if is_target:
A__ = [self._extract_mel_features(UpperCAmelCase__) for waveform in speech]
A__ = BatchFeature({'''input_values''': features})
A__ = self.num_mel_bins
else:
A__ = BatchFeature({'''input_values''': speech})
A__ = self.pad(
UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = feature_size_hack
# convert input values to correct format
A__ = padded_inputs['''input_values''']
if not isinstance(input_values[0] , np.ndarray):
A__ = [np.asarray(UpperCAmelCase__ , dtype=np.floataa) for array in input_values]
elif (
not isinstance(UpperCAmelCase__ , np.ndarray)
and isinstance(input_values[0] , np.ndarray)
and input_values[0].dtype is np.dtype(np.floataa)
):
A__ = [array.astype(np.floataa) for array in input_values]
elif isinstance(UpperCAmelCase__ , np.ndarray) and input_values.dtype is np.dtype(np.floataa):
A__ = input_values.astype(np.floataa)
# convert attention_mask to correct format
A__ = padded_inputs.get('''attention_mask''')
if attention_mask is not None:
A__ = [np.asarray(UpperCAmelCase__ , dtype=np.intaa) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
A__ = (
attention_mask
if self._get_padding_strategies(UpperCAmelCase__ , max_length=UpperCAmelCase__) is not PaddingStrategy.DO_NOT_PAD
else None
)
A__ = self.zero_mean_unit_var_norm(
padded_inputs['''input_values'''] , attention_mask=UpperCAmelCase__ , padding_value=self.padding_value)
if return_tensors is not None:
A__ = padded_inputs.convert_to_tensors(UpperCAmelCase__)
return padded_inputs
def SCREAMING_SNAKE_CASE ( self : int) ->Dict[str, Any]:
'''simple docstring'''
A__ = super().to_dict()
# Don't serialize these as they are derived from the other properties.
A__ = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs''']
for name in names:
if name in output:
del output[name]
return output
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def SCREAMING_SNAKE_CASE ( *lowercase_ ) -> Dict:
"""simple docstring"""
with open(lowercase_ , '''r''' ) as fh:
fcntl.flock(lowercase_ , fcntl.LOCK_EX )
try:
print(*lowercase_ )
finally:
fcntl.flock(lowercase_ , fcntl.LOCK_UN )
_lowerCamelCase : Optional[int] = int(os.environ["""LOCAL_RANK"""])
torch.cuda.set_device(local_rank)
_lowerCamelCase : List[Any] = torch.device("""cuda""", local_rank)
_lowerCamelCase : Union[str, Any] = socket.gethostname()
_lowerCamelCase : str = F'''[{hostname}-{local_rank}]'''
try:
# test distributed
dist.init_process_group("""nccl""")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
_lowerCamelCase : Any = dist.get_rank()
_lowerCamelCase : int = dist.get_world_size()
printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''')
dist.barrier()
if rank == 0:
printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''')
except Exception:
printflock(F'''{gpu} is broken''')
raise
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 42
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE ( ) -> Node | None:
"""simple docstring"""
A__ = Node(1 )
A__ = Node(2 )
A__ = Node(3 )
A__ = Node(4 )
A__ = Node(5 )
return tree
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Sequence[Node | None]:
"""simple docstring"""
A__ = []
if root is None:
return output
A__ = deque([root] )
while process_queue:
A__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Sequence[Node | None]:
"""simple docstring"""
A__ = []
def populate_output(lowercase_ , lowercase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowercase_ , lowercase_ )
return output
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Sequence[Node | None]:
"""simple docstring"""
A__ = []
def populate_output(lowercase_ , lowercase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowercase_ , lowercase_ )
return output
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
A__ = []
A__ = 0
A__ = height(lowercase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowercase_ , lowercase_ ) )
A__ = 1
else:
output.append(get_nodes_from_right_to_left(lowercase_ , lowercase_ ) )
A__ = 0
return output
def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing.
"""simple docstring"""
A__ = make_tree()
print(f"""In-order Traversal: {inorder(lowercase_ )}""" )
print(f"""Pre-order Traversal: {preorder(lowercase_ )}""" )
print(f"""Post-order Traversal: {postorder(lowercase_ )}""" , '''\n''' )
print(f"""Height of Tree: {height(lowercase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowercase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowercase_ ) + 1 ):
print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowercase_ , level=lowercase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowercase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
from __future__ import annotations
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
A__ , A__ = text, pattern
A__ , A__ = len(UpperCAmelCase__), len(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->int:
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1):
if char == self.pattern[i]:
return i
return -1
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def SCREAMING_SNAKE_CASE ( self : int) ->list[int]:
'''simple docstring'''
A__ = []
for i in range(self.textLen - self.patLen + 1):
A__ = self.mismatch_in_text(UpperCAmelCase__)
if mismatch_index == -1:
positions.append(UpperCAmelCase__)
else:
A__ = self.match_in_pattern(self.text[mismatch_index])
A__ = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowerCamelCase : List[Any] = """ABAABA"""
_lowerCamelCase : List[Any] = """AB"""
_lowerCamelCase : Dict = BoyerMooreSearch(text, pattern)
_lowerCamelCase : List[Any] = bms.bad_character_heuristic()
if len(positions) == 0:
print("""No match found""")
else:
print("""Pattern found in following positions: """)
print(positions)
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
_lowerCamelCase : Tuple = """CompVis/stable-diffusion-v1-1"""
_lowerCamelCase : Tuple = """CompVis/stable-diffusion-v1-2"""
_lowerCamelCase : List[Any] = """CompVis/stable-diffusion-v1-3"""
_lowerCamelCase : Optional[Any] = """CompVis/stable-diffusion-v1-4"""
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , UpperCAmelCase__ : bool = True , ) ->List[Any]:
'''simple docstring'''
super()._init_()
A__ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__)
A__ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__)
A__ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__)
A__ = StableDiffusionPipeline(
vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , requires_safety_checker=UpperCAmelCase__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea)
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict[str, Any]:
'''simple docstring'''
return {k: getattr(self , UpperCAmelCase__) for k in self.config.keys() if not k.startswith('''_''')}
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Optional[Union[str, int]] = "auto") ->List[Any]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
A__ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
self.enable_attention_slicing(UpperCAmelCase__)
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : str , ) ->Tuple:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : str , ) ->Optional[int]:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : List[str] , ) ->List[Any]:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Union[str, Any] , ) ->Optional[Any]:
'''simple docstring'''
return self.pipea(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 512 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Union[str, Any] , ) ->Tuple:
'''simple docstring'''
A__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(UpperCAmelCase__)
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""")
# Get first result from Stable Diffusion Checkpoint v1.1
A__ = self.textaimg_sda_a(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
A__ = self.textaimg_sda_a(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
A__ = self.textaimg_sda_a(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
A__ = self.textaimg_sda_a(
prompt=UpperCAmelCase__ , height=UpperCAmelCase__ , width=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__ , guidance_scale=UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , output_type=UpperCAmelCase__ , return_dict=UpperCAmelCase__ , callback=UpperCAmelCase__ , callback_steps=UpperCAmelCase__ , **UpperCAmelCase__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]])
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : Optional[Any] = {
"""google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''canine'''
def __init__( self : int , UpperCAmelCase__ : List[str]=768 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Optional[Any]=3_072 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Union[str, Any]=16_384 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : List[str]=0xe0_00 , UpperCAmelCase__ : Dict=0xe0_01 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : List[Any]=8 , UpperCAmelCase__ : Optional[int]=16_384 , UpperCAmelCase__ : Dict=128 , **UpperCAmelCase__ : Any , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = max_position_embeddings
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = type_vocab_size
A__ = layer_norm_eps
# Character config:
A__ = downsampling_rate
A__ = upsampling_kernel_size
A__ = num_hash_functions
A__ = num_hash_buckets
A__ = local_transformer_stride
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = 0
while b > 0:
if b & 1:
A__ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = 3
A__ = 250
A__ = ids_tensor((batch_size, length) , UpperCAmelCase__)
A__ = torch.ones((batch_size, length) , device=UpperCAmelCase__ , dtype=torch.float) / length
return input_ids, scores
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
A__ , A__ = self._get_tensors(5)
A__ = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10),
MaxTimeCriteria(max_time=0.1),
])
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ , A__ = self._get_tensors(9)
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ , A__ = self._get_tensors(10)
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = MaxLengthCriteria(max_length=10)
A__ , A__ = self._get_tensors(5)
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ , A__ = self._get_tensors(9)
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ , A__ = self._get_tensors(10)
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
'''simple docstring'''
A__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5)
A__ , A__ = self._get_tensors(5)
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ , A__ = self._get_tensors(9)
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ , A__ = self._get_tensors(10)
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ = StoppingCriteriaList([criteria])
self.assertEqual(criteria_list.max_length , 10)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
'''simple docstring'''
A__ , A__ = self._get_tensors(5)
A__ = MaxTimeCriteria(max_time=0.1)
self.assertFalse(criteria(UpperCAmelCase__ , UpperCAmelCase__))
A__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2)
self.assertTrue(criteria(UpperCAmelCase__ , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 10)
with self.assertWarns(UpperCAmelCase__):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]) , 11)
A__ = validate_stopping_criteria(StoppingCriteriaList() , 11)
self.assertEqual(len(UpperCAmelCase__) , 1)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse("""3.8"""):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
_lowerCamelCase : List[Any] = """"""
if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""):
class UpperCamelCase_ ( tr.AbstractTransform ):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase__ : str = " ") ->Union[str, Any]:
'''simple docstring'''
A__ = sentence_delimiter
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : str) ->int:
'''simple docstring'''
return list(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[str]) ->str:
'''simple docstring'''
A__ = []
for sent_idx, sentence in enumerate(UpperCAmelCase__):
chars.extend(self.process_string(UpperCAmelCase__))
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCAmelCase__) - 1:
chars.append(self.sentence_delimiter)
return chars
_lowerCamelCase : Optional[int] = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
_lowerCamelCase : str = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
_lowerCamelCase : Any = """\
@inproceedings{inproceedings,
author = {Morris, Andrew and Maier, Viktoria and Green, Phil},
year = {2004},
month = {01},
pages = {},
title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}
}
"""
_lowerCamelCase : Union[str, Any] = """\
Character error rate (CER) is a common metric of the performance of an automatic speech recognition system.
CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.
Character error rate can be computed as:
CER = (S + D + I) / N = (S + D + I) / (S + D + C)
where
S is the number of substitutions,
D is the number of deletions,
I is the number of insertions,
C is the number of correct characters,
N is the number of characters in the reference (N=S+D+C).
CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the
performance of the ASR system with a CER of 0 being a perfect score.
"""
_lowerCamelCase : List[str] = """
Computes CER score of transcribed segments against references.
Args:
references: list of references for each speech input.
predictions: list of transcribtions to score.
concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.
Returns:
(float): the character error rate
Examples:
>>> predictions = [\"this is the prediction\", \"there is an other sample\"]
>>> references = [\"this is the reference\", \"there is another one\"]
>>> cer = datasets.load_metric(\"cer\")
>>> cer_score = cer.compute(predictions=predictions, references=references)
>>> print(cer_score)
0.34146341463414637
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence'''),
'''references''': datasets.Value('''string''' , id='''sequence'''),
}) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
'''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''',
] , )
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=False) ->Any:
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
UpperCAmelCase__ , UpperCAmelCase__ , truth_transform=UpperCAmelCase__ , hypothesis_transform=UpperCAmelCase__ , )["wer"]
A__ = 0
A__ = 0
for prediction, reference in zip(UpperCAmelCase__ , UpperCAmelCase__):
A__ = jiwer.compute_measures(
UpperCAmelCase__ , UpperCAmelCase__ , truth_transform=UpperCAmelCase__ , hypothesis_transform=UpperCAmelCase__ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
from statistics import mean
import numpy as np
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = 0
# Number of processes finished
A__ = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
A__ = [0] * no_of_process
# List to include calculation results
A__ = [0] * no_of_process
# Sort by arrival time.
A__ = [burst_time[i] for i in np.argsort(lowercase_ )]
A__ = [process_name[i] for i in np.argsort(lowercase_ )]
arrival_time.sort()
while no_of_process > finished_process_count:
A__ = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
A__ = arrival_time[i]
A__ = 0
# Index showing the location of the process being performed
A__ = 0
# Saves the current response ratio.
A__ = 0
for i in range(0 , lowercase_ ):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
A__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
A__ = temp
A__ = i
# Calculate the turn around time
A__ = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
A__ = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = [0] * no_of_process
for i in range(0 , lowercase_ ):
A__ = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
_lowerCamelCase : List[Any] = 5
_lowerCamelCase : Any = ["""A""", """B""", """C""", """D""", """E"""]
_lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5]
_lowerCamelCase : Optional[int] = [1, 2, 3, 4, 5]
_lowerCamelCase : Union[str, Any] = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
_lowerCamelCase : Tuple = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""")
for i in range(0, no_of_process):
print(
F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t'''
F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}'''
)
print(F'''average waiting time : {mean(waiting_time):.5f}''')
print(F'''average turn around time : {mean(turn_around_time):.5f}''')
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowerCamelCase : str = """src/transformers"""
# Matches is_xxx_available()
_lowerCamelCase : Optional[int] = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
_lowerCamelCase : Tuple = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowerCamelCase : Union[str, Any] = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
_lowerCamelCase : Tuple = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
_lowerCamelCase : Union[str, Any] = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowerCamelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
_lowerCamelCase : Optional[int] = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowerCamelCase : int = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
_lowerCamelCase : str = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
_lowerCamelCase : str = re.compile(r"""^\s*try:""")
# Catches a line with else:
_lowerCamelCase : Any = re.compile(r"""^\s*else:""")
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
if _re_test_backend.search(lowercase_ ) is None:
return None
A__ = [b[0] for b in _re_backend.findall(lowercase_ )]
backends.sort()
return "_and_".join(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
A__ = f.readlines()
A__ = 0
while line_index < len(lowercase_ ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase_ ):
return None
# First grab the objects without a specific backend in _import_structure
A__ = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
A__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase_ ):
A__ = _re_one_line_import_struct.search(lowercase_ ).groups()[0]
A__ = re.findall('''\[([^\]]+)\]''' , lowercase_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
A__ = _re_import_struct_key_value.search(lowercase_ )
if single_line_import_search is not None:
A__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
A__ = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
A__ = lines[line_index]
if _re_import_struct_add_one.search(lowercase_ ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase_ ) is not None:
A__ = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(''', ''' )
A__ = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif _re_between_brackets.search(lowercase_ ) is not None:
A__ = _re_between_brackets.search(lowercase_ ).groups()[0].split(''', ''' )
A__ = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0]
objects.extend(lowercase_ )
elif _re_quote_object.search(lowercase_ ) is not None:
objects.append(_re_quote_object.search(lowercase_ ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 12 + '''"''' ):
objects.append(line[13:-3] )
line_index += 1
A__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A__ = []
while (
line_index < len(lowercase_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
A__ = lines[line_index]
A__ = _re_import.search(lowercase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A__ = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase_ ):
# If the line is an if is_backend_available, we grab all objects associated.
A__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
A__ = lines[line_index]
A__ = _re_import.search(lowercase_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
def find_duplicates(lowercase_ ):
return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A__ = []
for key in import_dict_objects.keys():
A__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
A__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A__ = '''base imports''' if key == '''none''' else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def SCREAMING_SNAKE_CASE ( ) -> List[Any]:
"""simple docstring"""
A__ = []
for root, _, files in os.walk(lowercase_ ):
if "__init__.py" in files:
A__ = os.path.join(lowercase_ , '''__init__.py''' )
A__ = parse_init(lowercase_ )
if objects is not None:
A__ = analyze_results(*lowercase_ )
if len(lowercase_ ) > 0:
A__ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(lowercase_ ) )
if len(lowercase_ ) > 0:
raise ValueError('''\n\n'''.join(lowercase_ ) )
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = []
for path, directories, files in os.walk(lowercase_ ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(lowercase_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase_ ) / folder).glob('''*.py''' ) ) ) == 0:
continue
A__ = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) )
A__ = short_path.replace(os.path.sep , '''.''' )
submodules.append(lowercase_ )
for fname in files:
if fname == "__init__.py":
continue
A__ = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) )
A__ = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(lowercase_ )
return submodules
_lowerCamelCase : int = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
"""simple docstring"""
A__ = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(lowercase_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
A__ = spec.loader.load_module()
A__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase_ ) > 0:
A__ = '''\n'''.join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
f"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
from __future__ import annotations
import queue
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase__ : str) ->Tuple:
'''simple docstring'''
A__ = data
A__ = None
A__ = None
def SCREAMING_SNAKE_CASE ( ) -> TreeNode:
"""simple docstring"""
print('''\n********Press N to stop entering at any point of time********\n''' )
A__ = input('''Enter the value of the root node: ''' ).strip().lower()
A__ = queue.Queue()
A__ = TreeNode(int(lowercase_ ) )
q.put(lowercase_ )
while not q.empty():
A__ = q.get()
A__ = f"""Enter the left node of {node_found.data}: """
A__ = input(lowercase_ ).strip().lower() or '''n'''
if check == "n":
return tree_node
A__ = TreeNode(int(lowercase_ ) )
A__ = left_node
q.put(lowercase_ )
A__ = f"""Enter the right node of {node_found.data}: """
A__ = input(lowercase_ ).strip().lower() or '''n'''
if check == "n":
return tree_node
A__ = TreeNode(int(lowercase_ ) )
A__ = right_node
q.put(lowercase_ )
raise
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = queue.Queue()
q.put(lowercase_ )
while not q.empty():
A__ = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = queue.Queue()
q.put(lowercase_ )
while not q.empty():
A__ = []
while not q.empty():
A__ = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = []
A__ = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(lowercase_ )
A__ = n.left
# end of while means current node doesn't have left child
A__ = stack.pop()
# start to traverse its right child
A__ = n.right
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ = []
A__ = node
while n or stack:
while n:
stack.append(lowercase_ )
A__ = n.left
A__ = stack.pop()
print(n.data , end=''',''' )
A__ = n.right
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not node:
return
A__ , A__ = [], []
A__ = node
stacka.append(lowercase_ )
while stacka: # to find the reversed order of post order, store it in stack2
A__ = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(lowercase_ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def SCREAMING_SNAKE_CASE ( lowercase_ = "" , lowercase_=50 , lowercase_="*" ) -> str:
"""simple docstring"""
if not s:
return "\n" + width * char
A__ , A__ = divmod(width - len(lowercase_ ) - 2 , 2 )
return f"""{left * char} {s} {(left + extra) * char}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
_lowerCamelCase : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ = 600_851_475_143 ) -> int:
"""simple docstring"""
try:
A__ = int(lowercase_ )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
A__ = 2
A__ = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
A__ = i
while n % i == 0:
A__ = n // i
i += 1
return int(lowercase_ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = (DDPMScheduler,)
def SCREAMING_SNAKE_CASE ( self : Optional[int] , **UpperCAmelCase__ : Any) ->Dict:
'''simple docstring'''
A__ = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase__)
return config
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict:
'''simple docstring'''
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]:
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase__)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , )
def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
'''simple docstring'''
for t in [0, 500, 999]:
self.check_over_forward(time_step=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->int:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
A__ = len(UpperCAmelCase__)
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
A__ = torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase__)):
# 1. predict noise residual
A__ = model(UpperCAmelCase__ , UpperCAmelCase__)
# 2. predict previous mean of sample x_t-1
A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
A__ = pred_prev_sample
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 258.9606) < 1e-2
assert abs(result_mean.item() - 0.3372) < 1e-3
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(prediction_type='''v_prediction''')
A__ = scheduler_class(**UpperCAmelCase__)
A__ = len(UpperCAmelCase__)
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
A__ = torch.manual_seed(0)
for t in reversed(range(UpperCAmelCase__)):
# 1. predict noise residual
A__ = model(UpperCAmelCase__ , UpperCAmelCase__)
# 2. predict previous mean of sample x_t-1
A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
A__ = pred_prev_sample
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 202.0296) < 1e-2
assert abs(result_mean.item() - 0.2631) < 1e-3
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
A__ = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=UpperCAmelCase__)
A__ = scheduler.timesteps
for i, timestep in enumerate(UpperCAmelCase__):
if i == len(UpperCAmelCase__) - 1:
A__ = -1
else:
A__ = timesteps[i + 1]
A__ = scheduler.previous_timestep(UpperCAmelCase__)
A__ = prev_t.item()
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Dict:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
A__ = [100, 87, 50, 51, 0]
with self.assertRaises(UpperCAmelCase__ , msg='''`custom_timesteps` must be in descending order.'''):
scheduler.set_timesteps(timesteps=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
A__ = [100, 87, 50, 1, 0]
A__ = len(UpperCAmelCase__)
with self.assertRaises(UpperCAmelCase__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''):
scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ , timesteps=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
A__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
UpperCAmelCase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=UpperCAmelCase__)
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
_lowerCamelCase : int = {
"""a""": """AAAAA""",
"""b""": """AAAAB""",
"""c""": """AAABA""",
"""d""": """AAABB""",
"""e""": """AABAA""",
"""f""": """AABAB""",
"""g""": """AABBA""",
"""h""": """AABBB""",
"""i""": """ABAAA""",
"""j""": """BBBAA""",
"""k""": """ABAAB""",
"""l""": """ABABA""",
"""m""": """ABABB""",
"""n""": """ABBAA""",
"""o""": """ABBAB""",
"""p""": """ABBBA""",
"""q""": """ABBBB""",
"""r""": """BAAAA""",
"""s""": """BAAAB""",
"""t""": """BAABA""",
"""u""": """BAABB""",
"""v""": """BBBAB""",
"""w""": """BABAA""",
"""x""": """BABAB""",
"""y""": """BABBA""",
"""z""": """BABBB""",
""" """: """ """,
}
_lowerCamelCase : Union[str, Any] = {value: key for key, value in encode_dict.items()}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = ''''''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('''encode() accepts only letters of the alphabet and spaces''' )
return encoded
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
if set(lowercase_ ) - {"A", "B", " "} != set():
raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' )
A__ = ''''''
for word in coded.split():
while len(lowercase_ ) != 0:
decoded += decode_dict[word[:5]]
A__ = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
_lowerCamelCase : List[str] = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = {}
state_dict.pop('''pixel_mean''' , lowercase_ )
state_dict.pop('''pixel_std''' , lowercase_ )
A__ = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'''
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A__ = key.replace(lowercase_ , lowercase_ )
if re.match(lowercase_ , lowercase_ ):
A__ = int(re.match(lowercase_ , lowercase_ ).group(2 ) )
if layer_nb == 0:
A__ = key.replace('''layers.0''' , '''proj_in''' )
elif layer_nb == 1:
A__ = key.replace('''layers.1''' , '''layers.0''' )
elif layer_nb == 2:
A__ = key.replace('''layers.2''' , '''proj_out''' )
A__ = value
A__ = model_state_dict[
'''prompt_encoder.shared_embedding.positional_embedding'''
]
return model_state_dict
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_="ybelkada/segment-anything" ) -> Union[str, Any]:
"""simple docstring"""
A__ = hf_hub_download(lowercase_ , f"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
A__ = SamConfig()
elif "sam_vit_l" in model_name:
A__ = SamVisionConfig(
hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
A__ = SamConfig(
vision_config=lowercase_ , )
elif "sam_vit_h" in model_name:
A__ = SamVisionConfig(
hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
A__ = SamConfig(
vision_config=lowercase_ , )
A__ = torch.load(lowercase_ , map_location='''cpu''' )
A__ = replace_keys(lowercase_ )
A__ = SamImageProcessor()
A__ = SamProcessor(image_processor=lowercase_ )
A__ = SamModel(lowercase_ )
hf_model.load_state_dict(lowercase_ )
A__ = hf_model.to('''cuda''' )
A__ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'''
A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert('''RGB''' )
A__ = [[[400, 650]]]
A__ = [[1]]
A__ = processor(images=np.array(lowercase_ ) , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
A__ = hf_model(**lowercase_ )
A__ = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.5_79_89_02_51_15_96_68
A__ = processor(
images=np.array(lowercase_ ) , input_points=lowercase_ , input_labels=lowercase_ , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
A__ = hf_model(**lowercase_ )
A__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.97_12_60_30_92_19_36_04
A__ = ((75, 275, 1_725, 850),)
A__ = processor(images=np.array(lowercase_ ) , input_boxes=lowercase_ , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
A__ = hf_model(**lowercase_ )
A__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.86_86_01_56_05_92_65_14
# Test with 2 points and 1 image.
A__ = [[[400, 650], [800, 650]]]
A__ = [[1, 1]]
A__ = processor(
images=np.array(lowercase_ ) , input_points=lowercase_ , input_labels=lowercase_ , return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
A__ = hf_model(**lowercase_ )
A__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.99_36_04_77_92_43_46_92
if __name__ == "__main__":
_lowerCamelCase : Any = argparse.ArgumentParser()
_lowerCamelCase : Union[str, Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
_lowerCamelCase : Optional[int] = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
_lowerCamelCase : Tuple = {
0: """0""",
1: """1""",
2: """2""",
3: """3""",
4: """4""",
5: """5""",
6: """6""",
7: """7""",
8: """8""",
9: """9""",
10: """a""",
11: """b""",
12: """c""",
13: """d""",
14: """e""",
15: """f""",
}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
assert type(lowercase_ ) in (int, float) and decimal == int(lowercase_ )
A__ = int(lowercase_ )
A__ = ''''''
A__ = False
if decimal < 0:
A__ = True
decimal *= -1
while decimal > 0:
A__ , A__ = divmod(lowercase_ , 16 )
A__ = values[remainder] + hexadecimal
A__ = '''0x''' + hexadecimal
if negative:
A__ = '''-''' + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
_lowerCamelCase : Optional[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
_lowerCamelCase : str = {
"""facebook/blenderbot_small-90M""": 512,
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = BlenderbotSmallTokenizer
def __init__( self : List[str] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[Any]="<|endoftext|>" , UpperCAmelCase__ : Union[str, Any]="<|endoftext|>" , UpperCAmelCase__ : Any="<|endoftext|>" , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : int=True , **UpperCAmelCase__ : Dict , ) ->Tuple:
'''simple docstring'''
super().__init__(
ByteLevelBPETokenizer(
vocab=UpperCAmelCase__ , merges=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , ) , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = add_prefix_space
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]=None) ->Dict:
'''simple docstring'''
A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
"""simple docstring"""
A__ = []
for part_id in partition_order:
A__ = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect()
for row_idx, row in enumerate(lowercase_ ):
expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ) -> str:
"""simple docstring"""
A__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
A__ = spark.range(100 ).repartition(1 )
A__ = Spark(lowercase_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ) -> Dict:
"""simple docstring"""
A__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
A__ = spark.range(10 ).repartition(2 )
A__ = [1, 0]
A__ = _generate_iterable_examples(lowercase_ , lowercase_ ) # Reverse the partitions.
A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , lowercase_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A__ , A__ = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ) -> Dict:
"""simple docstring"""
A__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
A__ = spark.range(10 ).repartition(1 )
A__ = SparkExamplesIterable(lowercase_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(lowercase_ ):
assert row_id == f"""0_{i}"""
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
"""simple docstring"""
A__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
A__ = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('''numpy.random.Generator''' ) as generator_mock:
A__ = lambda lowercase_ : x.reverse()
A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , [2, 1, 0] )
A__ = SparkExamplesIterable(lowercase_ ).shuffle_data_sources(lowercase_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(lowercase_ ):
A__ , A__ = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
"""simple docstring"""
A__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
A__ = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A__ = SparkExamplesIterable(lowercase_ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , [0, 2] )
for i, (row_id, row_dict) in enumerate(lowercase_ ):
A__ , A__ = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A__ = SparkExamplesIterable(lowercase_ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
A__ = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase_ , [1, 3] )
for i, (row_id, row_dict) in enumerate(lowercase_ ):
A__ , A__ = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE ( ) -> str:
"""simple docstring"""
A__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
A__ = spark.range(100 ).repartition(1 )
A__ = Spark(lowercase_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
from random import randint, random
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False , lowercase_ = False , lowercase_ = 5 , ) -> list:
"""simple docstring"""
A__ = [[-1] * number_of_cells] # Create a highway without any car
A__ = 0
A__ = max(lowercase_ , 0 )
while i < number_of_cells:
A__ = (
randint(0 , lowercase_ ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = 0
A__ = highway_now[car_index + 1 :]
for cell in range(len(lowercase_ ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(lowercase_ , -1 )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = len(lowercase_ )
# Beforce calculations, the highway is empty
A__ = [-1] * number_of_cells
for car_index in range(lowercase_ ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
A__ = min(highway_now[car_index] + 1 , lowercase_ )
# Number of empty cell before the next car
A__ = get_distance(lowercase_ , lowercase_ ) - 1
# We can't have the car causing an accident
A__ = min(next_highway[car_index] , lowercase_ )
if random() < probability:
# Randomly, a driver will slow down
A__ = max(next_highway[car_index] - 1 , 0 )
return next_highway
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> list:
"""simple docstring"""
A__ = len(highway[0] )
for i in range(lowercase_ ):
A__ = update(highway[i] , lowercase_ , lowercase_ )
A__ = [-1] * number_of_cells
for car_index in range(lowercase_ ):
A__ = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
A__ = (car_index + speed) % number_of_cells
# Commit the change of position
A__ = speed
highway.append(lowercase_ )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
import warnings
from ...utils import logging
from .image_processing_clip import CLIPImageProcessor
_lowerCamelCase : Dict = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Tuple , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[int]) ->None:
'''simple docstring'''
warnings.warn(
'''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use CLIPImageProcessor instead.''' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = [[0 for _ in range(lowercase_ )] for _ in range(m + 1 )]
for i in range(m + 1 ):
A__ = 1
for n in range(m + 1 ):
for k in range(1 , lowercase_ ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
_lowerCamelCase : str = int(input("""Enter a number: """).strip())
print(partition(n))
except ValueError:
print("""Please enter a number.""")
else:
try:
_lowerCamelCase : Any = int(sys.argv[1])
print(partition(n))
except ValueError:
print("""Please pass a number.""")
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->Optional[Any]:
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss''']):
A__ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = '''sgugger/tiny-distilbert-classification'''
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , only_pretrain_model=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , torchscript=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''')
def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
# set architectures equal to `None`
A__ = None
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config])
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''')
def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config])
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
A__ = '''sshleifer/tinier_bart'''
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config])
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result)
self.check_results_dict_not_empty(results.memory_inference_result)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config])
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = '''sshleifer/tinier_bart'''
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__ , configs=[config])
A__ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result)
self.check_results_dict_not_empty(results.memory_train_result)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , save_to_csv=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase__ , '''inf_time.csv''') , train_memory_csv_file=os.path.join(UpperCAmelCase__ , '''train_mem.csv''') , inference_memory_csv_file=os.path.join(UpperCAmelCase__ , '''inf_mem.csv''') , train_time_csv_file=os.path.join(UpperCAmelCase__ , '''train_time.csv''') , env_info_csv_file=os.path.join(UpperCAmelCase__ , '''env.csv''') , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''inf_time.csv''')).exists())
self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''train_time.csv''')).exists())
self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''inf_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''train_mem.csv''')).exists())
self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''env.csv''')).exists())
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(UpperCAmelCase__ : Tuple):
self.assertTrue(hasattr(UpperCAmelCase__ , '''sequential'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''cumulative'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''current'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''total'''))
with tempfile.TemporaryDirectory() as tmp_dir:
A__ = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase__ , inference=UpperCAmelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase__ , '''log.txt''') , log_print=UpperCAmelCase__ , trace_memory_line_by_line=UpperCAmelCase__ , multi_process=UpperCAmelCase__ , )
A__ = PyTorchBenchmark(UpperCAmelCase__)
A__ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary)
_check_summary_is_not_empty(result.train_summary)
self.assertTrue(Path(os.path.join(UpperCAmelCase__ , '''log.txt''')).exists())
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : int = {
"""salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''blip_2_vision_model'''
def __init__( self : Optional[Any] , UpperCAmelCase__ : Any=1_408 , UpperCAmelCase__ : Optional[int]=6_144 , UpperCAmelCase__ : List[str]=39 , UpperCAmelCase__ : str=16 , UpperCAmelCase__ : int=224 , UpperCAmelCase__ : List[str]=14 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.00001 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=1e-10 , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Union[str, Any] , ) ->Tuple:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
A__ = qkv_bias
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[int] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Tuple) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''') == "blip-2":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''blip_2_qformer'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[str]=30_522 , UpperCAmelCase__ : Union[str, Any]=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : str=12 , UpperCAmelCase__ : Any=3_072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=512 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Tuple=1e-12 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Union[str, Any]="absolute" , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : str=1_408 , **UpperCAmelCase__ : Optional[int] , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = cross_attention_frequency
A__ = encoder_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : str) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''') == "blip-2":
A__ = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''blip-2'''
UpperCAmelCase__ = True
def __init__( self : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=32 , **UpperCAmelCase__ : Tuple) ->List[str]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''')
if qformer_config is None:
A__ = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''')
if text_config is None:
A__ = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''')
A__ = BlipaVisionConfig(**UpperCAmelCase__)
A__ = BlipaQFormerConfig(**UpperCAmelCase__)
A__ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
A__ = CONFIG_MAPPING[text_model_type](**UpperCAmelCase__)
A__ = self.text_config.tie_word_embeddings
A__ = self.text_config.is_encoder_decoder
A__ = num_query_tokens
A__ = self.vision_config.hidden_size
A__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
A__ = 1.0
A__ = 0.02
@classmethod
def SCREAMING_SNAKE_CASE ( cls : int , UpperCAmelCase__ : BlipaVisionConfig , UpperCAmelCase__ : BlipaQFormerConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Dict , ) ->Union[str, Any]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase__ , )
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.qformer_config.to_dict()
A__ = self.text_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
_lowerCamelCase : List[str] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Union[str, Any]) ->Optional[int]:
'''simple docstring'''
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
requires_backends(self , '''vision''')
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict=None) ->Union[str, Any]:
'''simple docstring'''
A__ = {}
if top_k is not None:
A__ = top_k
return {}, {}, postprocess_params
def __call__( self : int , UpperCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase__ : Optional[int]) ->int:
'''simple docstring'''
return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = load_image(UpperCAmelCase__)
A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework)
return model_inputs
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Tuple) ->int:
'''simple docstring'''
A__ = self.model(**UpperCAmelCase__)
return model_outputs
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=5) ->List[str]:
'''simple docstring'''
if top_k > self.model.config.num_labels:
A__ = self.model.config.num_labels
if self.framework == "pt":
A__ = model_outputs.logits.softmax(-1)[0]
A__ , A__ = probs.topk(UpperCAmelCase__)
elif self.framework == "tf":
A__ = stable_softmax(model_outputs.logits , axis=-1)[0]
A__ = tf.math.top_k(UpperCAmelCase__ , k=UpperCAmelCase__)
A__ , A__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""")
A__ = scores.tolist()
A__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__)]
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
_lowerCamelCase : Optional[Any] = {
"""microsoft/swinv2-tiny-patch4-window8-256""": (
"""https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"""
),
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''swinv2'''
UpperCAmelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Union[str, Any] , UpperCAmelCase__ : int=224 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Any=96 , UpperCAmelCase__ : Union[str, Any]=[2, 2, 6, 2] , UpperCAmelCase__ : Union[str, Any]=[3, 6, 12, 24] , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Tuple=4.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Tuple="gelu" , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : Optional[Any]=32 , **UpperCAmelCase__ : int , ) ->Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = embed_dim
A__ = depths
A__ = len(UpperCAmelCase__)
A__ = num_heads
A__ = window_size
A__ = mlp_ratio
A__ = qkv_bias
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = drop_path_rate
A__ = hidden_act
A__ = use_absolute_embeddings
A__ = layer_norm_eps
A__ = initializer_range
A__ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1))
A__ = (0, 0, 0, 0)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : List[Any]) ->None:
'''simple docstring'''
warnings.warn(
'''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use PoolFormerImageProcessor instead.''' , UpperCAmelCase__ , )
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
import datasets
from .evaluate import evaluate
_lowerCamelCase : Any = """\
@inproceedings{Rajpurkar2016SQuAD10,
title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},
author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},
booktitle={EMNLP},
year={2016}
}
"""
_lowerCamelCase : int = """
This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by
crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,
from the corresponding reading passage, or the question might be unanswerable.
"""
_lowerCamelCase : Dict = """
Computes SQuAD scores (F1 and EM).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': the text of the answer
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the SQuAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
Examples:
>>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]
>>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]
>>> squad_metric = datasets.load_metric(\"squad\")
>>> results = squad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {'''id''': datasets.Value('''string'''), '''prediction_text''': datasets.Value('''string''')},
'''references''': {
'''id''': datasets.Value('''string'''),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string'''),
'''answer_start''': datasets.Value('''int32'''),
}),
},
}) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , )
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]) ->Tuple:
'''simple docstring'''
A__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
A__ = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
A__ = evaluate(dataset=UpperCAmelCase__ , predictions=UpperCAmelCase__)
return score
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : List[str] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""",
},
}
# TODO(PVP) - this should be removed in Transformers v5
_lowerCamelCase : Union[str, Any] = {
"""t5-small""": 512,
"""t5-base""": 512,
"""t5-large""": 512,
"""t5-3b""": 512,
"""t5-11b""": 512,
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = TaTokenizer
UpperCAmelCase__ = []
def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict="</s>" , UpperCAmelCase__ : str="<unk>" , UpperCAmelCase__ : Optional[int]="<pad>" , UpperCAmelCase__ : Optional[int]=100 , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : int , ) ->int:
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
A__ = [f"""<extra_id_{i}>""" for i in range(UpperCAmelCase__)]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
A__ = len(set(filter(lambda UpperCAmelCase__: bool('''extra_id_''' in str(UpperCAmelCase__)) , UpperCAmelCase__)))
if extra_tokens != extra_ids:
raise ValueError(
f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"""
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''')
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , extra_ids=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = vocab_file
A__ = False if not self.vocab_file else True
A__ = extra_ids
@staticmethod
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
A__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"""
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f""" {pretrained_model_name_or_path} automatically truncating your input to"""
f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"""
f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"""
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCAmelCase__ , )
return max_model_length
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''')
if not os.path.isdir(UpperCAmelCase__):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__):
copyfile(self.vocab_file , UpperCAmelCase__)
logger.info(f"""Copy vocab file to {out_vocab_file}""")
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
A__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos) * [0]
return len(token_ids_a + eos + token_ids_a + eos) * [0]
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return list(
set(filter(lambda UpperCAmelCase__: bool(re.search(R'''<extra_id_\d+>''' , UpperCAmelCase__)) is not None , self.additional_special_tokens)))
def SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCAmelCase__) for token in self.get_sentinel_tokens()]
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''luke'''
def __init__( self : Any , UpperCAmelCase__ : str=50_267 , UpperCAmelCase__ : Any=500_000 , UpperCAmelCase__ : Dict=768 , UpperCAmelCase__ : str=256 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Optional[Any]=3_072 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]=512 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=1 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Optional[int]=2 , **UpperCAmelCase__ : Any , ) ->List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = vocab_size
A__ = entity_vocab_size
A__ = hidden_size
A__ = entity_emb_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = initializer_range
A__ = layer_norm_eps
A__ = use_entity_aware_attention
A__ = classifier_dropout
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''image_processor''', '''tokenizer''']
UpperCAmelCase__ = '''LayoutLMv3ImageProcessor'''
UpperCAmelCase__ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''')
def __init__( self : Optional[int] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str) ->Tuple:
'''simple docstring'''
A__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase__ , )
A__ = kwargs.pop('''feature_extractor''')
A__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''')
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''')
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : List[str] , ) ->BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''')
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''')
# first, apply the image processor
A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [text] # add batch dimension (as the image processor always adds a batch dimension)
A__ = features['''words''']
A__ = self.tokenizer(
text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , )
# add pixel values
A__ = features.pop('''pixel_values''')
if return_overflowing_tokens is True:
A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping'''])
A__ = images
return encoded_inputs
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]) ->List[Any]:
'''simple docstring'''
A__ = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx])
if len(UpperCAmelCase__) != len(UpperCAmelCase__):
raise ValueError(
'''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'''
f""" {len(UpperCAmelCase__)} and {len(UpperCAmelCase__)}""")
return images_with_overflow
def SCREAMING_SNAKE_CASE ( self : int , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , )
return self.image_processor
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase__ : list[tuple[float, float]]) ->List[str]:
'''simple docstring'''
A__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
A__ = len(UpperCAmelCase__) - 1
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : float) ->list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
A__ = []
for i in range(len(self.list_of_points)):
# basis function for each i
output_values.append(
comb(self.degree , UpperCAmelCase__) * ((1 - t) ** (self.degree - i)) * (t**i))
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(UpperCAmelCase__) , 5) == 1
return output_values
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : float) ->tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
A__ = self.basis_function(UpperCAmelCase__)
A__ = 0.0
A__ = 0.0
for i in range(len(self.list_of_points)):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : float = 0.01) ->int:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
A__ = [] # x coordinates of points to plot
A__ = [] # y coordinates of points to plot
A__ = 0.0
while t <= 1:
A__ = self.bezier_curve_function(UpperCAmelCase__)
to_plot_x.append(value[0])
to_plot_y.append(value[1])
t += step_size
A__ = [i[0] for i in self.list_of_points]
A__ = [i[1] for i in self.list_of_points]
plt.plot(
UpperCAmelCase__ , UpperCAmelCase__ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree) , )
plt.scatter(UpperCAmelCase__ , UpperCAmelCase__ , color='''red''' , label='''Control Points''')
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> dict[str, float]:
"""simple docstring"""
A__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
A__ = BeautifulSoup(requests.get(lowercase_ ).text , '''html.parser''' )
A__ = soup.find_all('''td''' , attrs='''titleColumn''' )
A__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(lowercase_ , lowercase_ )
}
def SCREAMING_SNAKE_CASE ( lowercase_ = "IMDb_Top_250_Movies.csv" ) -> None:
"""simple docstring"""
A__ = get_imdb_top_aaa_movies()
with open(lowercase_ , '''w''' , newline='''''' ) as out_file:
A__ = csv.writer(lowercase_ )
writer.writerow(['''Movie title''', '''IMDb rating'''] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
_lowerCamelCase : List[str] = trt.Logger(trt.Logger.WARNING)
_lowerCamelCase : Dict = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
_lowerCamelCase : Optional[int] = logging.getLogger(__name__)
_lowerCamelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--onnx_model_path""",
default=None,
type=str,
required=True,
help="""Path to ONNX model: """,
)
parser.add_argument(
"""--output_dir""",
default=None,
type=str,
required=True,
help="""The output directory where the model checkpoints and predictions will be written.""",
)
# Other parameters
parser.add_argument(
"""--tokenizer_name""",
default="""""",
type=str,
required=True,
help="""Pretrained tokenizer name or path if not the same as model_name""",
)
parser.add_argument(
"""--version_2_with_negative""",
action="""store_true""",
help="""If true, the SQuAD examples contain some that do not have an answer.""",
)
parser.add_argument(
"""--null_score_diff_threshold""",
type=float,
default=0.0,
help="""If null_score - best_non_null is greater than the threshold predict null.""",
)
parser.add_argument(
"""--max_seq_length""",
default=384,
type=int,
help=(
"""The maximum total input sequence length after WordPiece tokenization. Sequences """
"""longer than this will be truncated, and sequences shorter than this will be padded."""
),
)
parser.add_argument(
"""--doc_stride""",
default=128,
type=int,
help="""When splitting up a long document into chunks, how much stride to take between chunks.""",
)
parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""")
parser.add_argument(
"""--n_best_size""",
default=20,
type=int,
help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""",
)
parser.add_argument(
"""--max_answer_length""",
default=30,
type=int,
help=(
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
),
)
parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""")
parser.add_argument(
"""--dataset_name""",
type=str,
default=None,
required=True,
help="""The name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--dataset_config_name""",
type=str,
default=None,
help="""The configuration name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data."""
)
parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""")
parser.add_argument(
"""--fp16""",
action="""store_true""",
help="""Whether to use 16-bit (mixed) precision instead of 32-bit""",
)
parser.add_argument(
"""--int8""",
action="""store_true""",
help="""Whether to use INT8""",
)
_lowerCamelCase : Tuple = parser.parse_args()
if args.tokenizer_name:
_lowerCamelCase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name."""
)
logger.info("""Training/evaluation parameters %s""", args)
_lowerCamelCase : List[Any] = args.per_device_eval_batch_size
_lowerCamelCase : Optional[Any] = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
_lowerCamelCase : List[str] = True
_lowerCamelCase : List[Any] = """temp_engine/bert-fp32.engine"""
if args.fpaa:
_lowerCamelCase : Optional[Any] = """temp_engine/bert-fp16.engine"""
if args.inta:
_lowerCamelCase : Any = """temp_engine/bert-int8.engine"""
# import ONNX file
if not os.path.exists("""temp_engine"""):
os.makedirs("""temp_engine""")
_lowerCamelCase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, """rb""") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
_lowerCamelCase : Optional[int] = [network.get_input(i) for i in range(network.num_inputs)]
_lowerCamelCase : Union[str, Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
_lowerCamelCase : Tuple = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
_lowerCamelCase : Optional[Any] = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
_lowerCamelCase : Union[str, Any] = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, """wb""") as f:
f.write(engine.serialize())
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = np.asarray(inputs['''input_ids'''] , dtype=np.intaa )
A__ = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa )
A__ = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase_ )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase_ )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase_ )
# start time
A__ = time.time()
# Run inference
context.execute_async(
bindings=[int(lowercase_ ) for d_inp in d_inputs] + [int(lowercase_ ), int(lowercase_ )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ )
cuda.memcpy_dtoh_async(lowercase_ , lowercase_ , lowercase_ )
# Synchronize the stream and take time
stream.synchronize()
# end time
A__ = time.time()
A__ = end_time - start_time
A__ = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
_lowerCamelCase : List[Any] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",
datefmt="""%m/%d/%Y %H:%M:%S""",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
_lowerCamelCase : Optional[int] = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("""Evaluation requires a dataset name""")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
_lowerCamelCase : int = raw_datasets["""validation"""].column_names
_lowerCamelCase : str = """question""" if """question""" in column_names else column_names[0]
_lowerCamelCase : Optional[int] = """context""" if """context""" in column_names else column_names[1]
_lowerCamelCase : Tuple = """answers""" if """answers""" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
_lowerCamelCase : Optional[int] = tokenizer.padding_side == """right"""
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'''
F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'''
)
_lowerCamelCase : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
A__ = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=lowercase_ , stride=args.doc_stride , return_overflowing_tokens=lowercase_ , return_offsets_mapping=lowercase_ , padding='''max_length''' , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
A__ = tokenized_examples.pop('''overflow_to_sample_mapping''' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
A__ = []
for i in range(len(tokenized_examples['''input_ids'''] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
A__ = tokenized_examples.sequence_ids(lowercase_ )
A__ = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
A__ = sample_mapping[i]
tokenized_examples["example_id"].append(examples['''id'''][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
A__ = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] )
]
return tokenized_examples
_lowerCamelCase : int = raw_datasets["""validation"""]
# Validation Feature Creation
_lowerCamelCase : Optional[Any] = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="""Running tokenizer on validation dataset""",
)
_lowerCamelCase : Tuple = default_data_collator
_lowerCamelCase : Union[str, Any] = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""])
_lowerCamelCase : Any = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_="eval" ) -> Tuple:
"""simple docstring"""
A__ = postprocess_qa_predictions(
examples=lowercase_ , features=lowercase_ , predictions=lowercase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase_ , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
A__ = [
{'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items()
]
else:
A__ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()]
A__ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=lowercase_ , label_ids=lowercase_ )
_lowerCamelCase : List[Any] = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""")
# Evaluation!
logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path)
with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
return trt.volume(engine.get_binding_shape(lowercase_ ) ) * engine.get_binding_dtype(lowercase_ ).itemsize
# Allocate device memory for inputs and outputs.
_lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
_lowerCamelCase : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
_lowerCamelCase : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
_lowerCamelCase : int = cuda.mem_alloc(h_outputa.nbytes)
_lowerCamelCase : List[Any] = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
_lowerCamelCase : int = cuda.Stream()
# Evaluation
logger.info("""***** Running Evaluation *****""")
logger.info(F''' Num examples = {len(eval_dataset)}''')
logger.info(F''' Batch size = {args.per_device_eval_batch_size}''')
_lowerCamelCase : Dict = 0.0
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[Any] = timeit.default_timer()
_lowerCamelCase : List[Any] = None
for step, batch in enumerate(eval_dataloader):
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
_lowerCamelCase , _lowerCamelCase : Optional[int] = outputs
_lowerCamelCase : Any = torch.tensor(start_logits)
_lowerCamelCase : Optional[Any] = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
_lowerCamelCase : Union[str, Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
_lowerCamelCase : Optional[int] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
_lowerCamelCase : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
_lowerCamelCase : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
_lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset))
_lowerCamelCase : Union[str, Any] = timeit.default_timer() - start_time
logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter))
logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000))
logger.info("""Total Number of Inference = %d""", niter)
_lowerCamelCase : Any = post_processing_function(eval_examples, eval_dataset, all_preds)
_lowerCamelCase : List[str] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F'''Evaluation metrics: {eval_metric}''')
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
assert column_title.isupper()
A__ = 0
A__ = len(lowercase_ ) - 1
A__ = 0
while index >= 0:
A__ = (ord(column_title[index] ) - 64) * pow(26 , lowercase_ )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : List[str]=99 , UpperCAmelCase__ : str=32 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Optional[int]=None , ) ->Optional[int]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Any:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length])
A__ = None
if self.use_token_type_ids:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
A__ = None
A__ = None
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
A__ = ids_tensor([self.batch_size] , self.num_choices)
A__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : str) ->Any:
'''simple docstring'''
A__ = LlamaModel(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)
A__ = model(UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , ) ->Dict:
'''simple docstring'''
A__ = True
A__ = LlamaModel(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , )
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , )
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , ) ->Any:
'''simple docstring'''
A__ = LlamaForCausalLM(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , ) ->Any:
'''simple docstring'''
A__ = True
A__ = True
A__ = LlamaForCausalLM(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
# first forward pass
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3) , config.vocab_size)
A__ = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens] , dim=-1)
A__ = torch.cat([input_mask, next_mask] , dim=-1)
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0]
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0]
# select random slice
A__ = ids_tensor((1,) , output_from_past.shape[-1]).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3))
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) = config_and_inputs
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
UpperCAmelCase__ = (LlamaForCausalLM,) if is_torch_available() else ()
UpperCAmelCase__ = (
{
'''feature-extraction''': LlamaModel,
'''text-classification''': LlamaForSequenceClassification,
'''text-generation''': LlamaForCausalLM,
'''zero-shot''': LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
A__ = LlamaModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ = type
self.model_tester.create_and_check_model(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = 3
A__ = input_dict['''input_ids''']
A__ = input_ids.ne(1).to(UpperCAmelCase__)
A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
A__ = LlamaForSequenceClassification(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = 3
A__ = '''single_label_classification'''
A__ = input_dict['''input_ids''']
A__ = input_ids.ne(1).to(UpperCAmelCase__)
A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
A__ = LlamaForSequenceClassification(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = 3
A__ = '''multi_label_classification'''
A__ = input_dict['''input_ids''']
A__ = input_ids.ne(1).to(UpperCAmelCase__)
A__ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
A__ = LlamaForSequenceClassification(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''')
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)])
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int]) ->List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = ids_tensor([1, 10] , config.vocab_size)
A__ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
A__ = LlamaModel(UpperCAmelCase__)
original_model.to(UpperCAmelCase__)
original_model.eval()
A__ = original_model(UpperCAmelCase__).last_hidden_state
A__ = original_model(UpperCAmelCase__).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
A__ = {'''type''': scaling_type, '''factor''': 10.0}
A__ = LlamaModel(UpperCAmelCase__)
scaled_model.to(UpperCAmelCase__)
scaled_model.eval()
A__ = scaled_model(UpperCAmelCase__).last_hidden_state
A__ = scaled_model(UpperCAmelCase__).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5))
else:
self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5))
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''')
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
'''simple docstring'''
A__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
A__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''')
A__ = model(torch.tensor([input_ids]))
# Expected mean on dim = -1
A__ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]])
torch.testing.assert_close(out.mean(-1) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2)
# slicing logits[0, 0, 0:30]
# fmt: off
A__ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,])
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5)
@unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''')
@slow
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
A__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''')
A__ = model(torch.tensor(UpperCAmelCase__))
# Expected mean on dim = -1
A__ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]])
torch.testing.assert_close(out.mean(-1) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2)
# slicing logits[0, 0, 0:30]
# fmt: off
A__ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273])
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5)
@unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''')
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Any:
'''simple docstring'''
A__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
A__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''')
A__ = model(torch.tensor(UpperCAmelCase__))
# Expected mean on dim = -1
A__ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]])
torch.testing.assert_close(out.mean(-1) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2)
# slicing logits[0, 0, 0:30]
# fmt: off
A__ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513])
# fmt: on
torch.testing.assert_close(out.mean(-1) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2)
@unittest.skip(
'''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''')
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
'''simple docstring'''
A__ = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
A__ = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''')
A__ = model(torch.tensor(UpperCAmelCase__))
A__ = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa)
torch.testing.assert_close(out.mean(-1) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2)
# fmt: off
A__ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312])
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5)
@unittest.skip('''Model is curently gated''')
@slow
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]:
'''simple docstring'''
A__ = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi'''
A__ = '''Simply put, the theory of relativity states that '''
A__ = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''')
A__ = tokenizer.encode(UpperCAmelCase__ , return_tensors='''pt''')
A__ = LlamaForCausalLM.from_pretrained(
'''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCAmelCase__)
# greedy generation outputs
A__ = model.generate(UpperCAmelCase__ , max_new_tokens=64 , top_p=UpperCAmelCase__ , temperature=1 , do_sample=UpperCAmelCase__)
A__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase__)
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError('''String lengths must match!''' )
A__ = 0
for chara, chara in zip(lowercase_ , lowercase_ ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
_lowerCamelCase : Tuple = pytest.mark.integration
_lowerCamelCase : Union[str, Any] = {"""comet"""}
_lowerCamelCase : Tuple = importlib.util.find_spec("""fairseq""") is not None
_lowerCamelCase : Union[str, Any] = {"""code_eval"""}
_lowerCamelCase : List[str] = os.name == """nt"""
_lowerCamelCase : Union[str, Any] = {"""bertscore""", """frugalscore""", """perplexity"""}
_lowerCamelCase : Union[str, Any] = importlib.util.find_spec("""transformers""") is not None
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
@wraps(lowercase_ )
def wrapper(self , lowercase_ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('''"test requires Fairseq"''' )
else:
test_case(self , lowercase_ )
return wrapper
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
@wraps(lowercase_ )
def wrapper(self , lowercase_ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('''"test requires transformers"''' )
else:
test_case(self , lowercase_ )
return wrapper
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
@wraps(lowercase_ )
def wrapper(self , lowercase_ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('''"test not supported on Windows"''' )
else:
test_case(self , lowercase_ )
return wrapper
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
"""simple docstring"""
A__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
@local
class UpperCamelCase_ ( parameterized.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = {}
UpperCAmelCase__ = None
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''')
@pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''')
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Tuple) ->Any:
'''simple docstring'''
A__ = '''[...]'''
A__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , UpperCAmelCase__)).module_path)
A__ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase__)
# check parameters
A__ = inspect.signature(metric._compute).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCAmelCase__ , metric_module.__name__):
with self.use_local_metrics():
try:
A__ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__)
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0)
self.assertGreater(results.attempted , 1)
@slow
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[str]) ->List[Any]:
'''simple docstring'''
A__ = '''[...]'''
A__ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , UpperCAmelCase__)).module_path)
# run doctest
with self.use_local_metrics():
A__ = doctest.testmod(UpperCAmelCase__ , verbose=UpperCAmelCase__ , raise_on_error=UpperCAmelCase__)
self.assertEqual(results.failed , 0)
self.assertGreater(results.attempted , 1)
@contextmanager
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any]) ->int:
'''simple docstring'''
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase__):
yield
else:
yield
@contextmanager
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
def load_local_metric(UpperCAmelCase__ : Dict , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : int):
return load_metric(os.path.join('''metrics''' , UpperCAmelCase__) , *UpperCAmelCase__ , **UpperCAmelCase__)
with patch('''datasets.load_metric''') as mock_load_metric:
A__ = load_local_metric
yield
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : List[str]) ->Optional[Any]:
'''simple docstring'''
def wrapper(UpperCAmelCase__ : Dict):
A__ = contextmanager(UpperCAmelCase__)
A__ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('''bleurt''' )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str) ->Any:
'''simple docstring'''
assert len(input_dict['''input_ids''']) == 2
return np.array([1.03, 1.04])
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor:
A__ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('''bertscore''' )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
import torch
def bert_cos_score_idf(lowercase_ , lowercase_ , *lowercase_ , **lowercase_ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(lowercase_ ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('''bert_score.scorer.get_model''' ), patch(
'''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf:
A__ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('''comet''' )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
def load_from_checkpoint(lowercase_ ):
class UpperCamelCase_ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : int) ->Tuple:
'''simple docstring'''
assert len(UpperCAmelCase__) == 2
A__ = [0.19, 0.92]
return scores, sum(UpperCAmelCase__) / len(UpperCAmelCase__)
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('''comet.download_model''' ) as mock_download_model:
A__ = None
with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint:
A__ = load_from_checkpoint
yield
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
"""simple docstring"""
A__ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) )
A__ = '''ERROR'''
A__ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"""
with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ):
metric.compute(predictions=[] , references=[] , scheme=lowercase_ )
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[float]]:
"""simple docstring"""
A__ = []
for data in source_data:
for i, el in enumerate(lowercase_ ):
if len(lowercase_ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(lowercase_ ) )
return data_lists
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]:
"""simple docstring"""
A__ = []
for dlist, weight in zip(lowercase_ , lowercase_ ):
A__ = min(lowercase_ )
A__ = max(lowercase_ )
A__ = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
A__ = f"""Invalid weight of {weight:f} provided"""
raise ValueError(lowercase_ )
score_lists.append(lowercase_ )
return score_lists
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(lowercase_ ):
A__ = final_scores[j] + ele
return final_scores
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[list[float]]:
"""simple docstring"""
A__ = get_data(lowercase_ )
A__ = calculate_each_score(lowercase_ , lowercase_ )
A__ = generate_final_scores(lowercase_ )
# append scores to source data
for i, ele in enumerate(lowercase_ ):
source_data[i].append(lowercase_ )
return source_data
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
UpperCAmelCase__ = Features({'''text''': Value('''string''' )} )
UpperCAmelCase__ = Features({'''labels''': ClassLabel} )
UpperCAmelCase__ = "text"
UpperCAmelCase__ = "labels"
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""")
if not isinstance(features[self.label_column] , UpperCAmelCase__):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""")
A__ = copy.deepcopy(self)
A__ = self.label_schema.copy()
A__ = features[self.label_column]
A__ = label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict[str, str]:
'''simple docstring'''
return {
self.text_column: "text",
self.label_column: "labels",
}
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = FileLock(str(tmpdir / '''foo.lock''' ) )
A__ = FileLock(str(tmpdir / '''foo.lock''' ) )
A__ = 0.01
with locka.acquire():
with pytest.raises(lowercase_ ):
A__ = time.time()
locka.acquire(lowercase_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = '''a''' * 1_000 + '''.lock'''
A__ = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(lowercase_ )
assert len(os.path.basename(locka._lock_file ) ) <= 255
A__ = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(lowercase_ ):
locka.acquire(0 )
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = 42
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__( self : Dict , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 20 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : str=77 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : str = "silu" , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = "linear" , UpperCAmelCase__ : Optional[str] = "prd" , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , ) ->List[str]:
'''simple docstring'''
super().__init__()
A__ = num_attention_heads
A__ = attention_head_dim
A__ = num_attention_heads * attention_head_dim
A__ = additional_embeddings
A__ = time_embed_dim or inner_dim
A__ = embedding_proj_dim or embedding_dim
A__ = clip_embed_dim or embedding_dim
A__ = Timesteps(UpperCAmelCase__ , UpperCAmelCase__ , 0)
A__ = TimestepEmbedding(UpperCAmelCase__ , UpperCAmelCase__ , out_dim=UpperCAmelCase__ , act_fn=UpperCAmelCase__)
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
if embedding_proj_norm_type is None:
A__ = None
elif embedding_proj_norm_type == "layer":
A__ = nn.LayerNorm(UpperCAmelCase__)
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""")
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
if encoder_hid_proj_type is None:
A__ = None
elif encoder_hid_proj_type == "linear":
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""")
A__ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCAmelCase__))
if added_emb_type == "prd":
A__ = nn.Parameter(torch.zeros(1 , 1 , UpperCAmelCase__))
elif added_emb_type is None:
A__ = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""")
A__ = nn.ModuleList(
[
BasicTransformerBlock(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , dropout=UpperCAmelCase__ , activation_fn='''gelu''' , attention_bias=UpperCAmelCase__ , )
for d in range(UpperCAmelCase__)
])
if norm_in_type == "layer":
A__ = nn.LayerNorm(UpperCAmelCase__)
elif norm_in_type is None:
A__ = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""")
A__ = nn.LayerNorm(UpperCAmelCase__)
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
A__ = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0)
causal_attention_mask.triu_(1)
A__ = causal_attention_mask[None, ...]
self.register_buffer('''causal_attention_mask''' , UpperCAmelCase__ , persistent=UpperCAmelCase__)
A__ = nn.Parameter(torch.zeros(1 , UpperCAmelCase__))
A__ = nn.Parameter(torch.zeros(1 , UpperCAmelCase__))
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def SCREAMING_SNAKE_CASE ( self : int) ->Dict[str, AttentionProcessor]:
'''simple docstring'''
A__ = {}
def fn_recursive_add_processors(UpperCAmelCase__ : str , UpperCAmelCase__ : torch.nn.Module , UpperCAmelCase__ : Dict[str, AttentionProcessor]):
if hasattr(UpperCAmelCase__ , '''set_processor'''):
A__ = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCAmelCase__ , UpperCAmelCase__)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
return processors
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]) ->Optional[Any]:
'''simple docstring'''
A__ = len(self.attn_processors.keys())
if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(UpperCAmelCase__) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(UpperCAmelCase__)} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""")
def fn_recursive_attn_processor(UpperCAmelCase__ : str , UpperCAmelCase__ : torch.nn.Module , UpperCAmelCase__ : List[str]):
if hasattr(UpperCAmelCase__ , '''set_processor'''):
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__):
module.set_processor(UpperCAmelCase__)
else:
module.set_processor(processor.pop(f"""{name}.processor"""))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCAmelCase__ , UpperCAmelCase__)
for name, module in self.named_children():
fn_recursive_attn_processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
self.set_attn_processor(AttnProcessor())
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[torch.Tensor, float, int] , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[torch.BoolTensor] = None , UpperCAmelCase__ : bool = True , ) ->Tuple:
'''simple docstring'''
A__ = hidden_states.shape[0]
A__ = timestep
if not torch.is_tensor(UpperCAmelCase__):
A__ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device)
elif torch.is_tensor(UpperCAmelCase__) and len(timesteps.shape) == 0:
A__ = timesteps[None].to(hidden_states.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
A__ = timesteps * torch.ones(UpperCAmelCase__ , dtype=timesteps.dtype , device=timesteps.device)
A__ = self.time_proj(UpperCAmelCase__)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
A__ = timesteps_projected.to(dtype=self.dtype)
A__ = self.time_embedding(UpperCAmelCase__)
if self.embedding_proj_norm is not None:
A__ = self.embedding_proj_norm(UpperCAmelCase__)
A__ = self.embedding_proj(UpperCAmelCase__)
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
A__ = self.encoder_hidden_states_proj(UpperCAmelCase__)
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''')
A__ = self.proj_in(UpperCAmelCase__)
A__ = self.positional_embedding.to(hidden_states.dtype)
A__ = []
A__ = 0
if encoder_hidden_states is not None:
additional_embeds.append(UpperCAmelCase__)
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape) == 2:
A__ = proj_embeddings[:, None, :]
if len(hidden_states.shape) == 2:
A__ = hidden_states[:, None, :]
A__ = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
A__ = self.prd_embedding.to(hidden_states.dtype).expand(UpperCAmelCase__ , -1 , -1)
additional_embeds.append(UpperCAmelCase__)
A__ = torch.cat(
UpperCAmelCase__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
A__ = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
A__ = F.pad(
UpperCAmelCase__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
A__ = hidden_states + positional_embeddings
if attention_mask is not None:
A__ = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
A__ = F.pad(UpperCAmelCase__ , (0, self.additional_embeddings) , value=0.0)
A__ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
A__ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0)
if self.norm_in is not None:
A__ = self.norm_in(UpperCAmelCase__)
for block in self.transformer_blocks:
A__ = block(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)
A__ = self.norm_out(UpperCAmelCase__)
if self.prd_embedding is not None:
A__ = hidden_states[:, -1]
else:
A__ = hidden_states[:, additional_embeddings_len:]
A__ = self.proj_to_clip_embeddings(UpperCAmelCase__)
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Any) ->Dict:
'''simple docstring'''
A__ = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase__ : Optional[int]=0.01 , UpperCAmelCase__ : Optional[Any]=1_000) ->Optional[int]:
'''simple docstring'''
A__ = p_stop
A__ = max_length
def __iter__( self : List[Any]) ->List[Any]:
'''simple docstring'''
A__ = 0
A__ = False
while not stop and count < self.max_length:
yield count
count += 1
A__ = random.random() < self.p_stop
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Any=True) ->Optional[Any]:
'''simple docstring'''
A__ = [
BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
for i in range(2)
]
A__ = [list(UpperCAmelCase__) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(UpperCAmelCase__) for shard in batch_sampler_shards] , [len(UpperCAmelCase__) for e in expected])
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
'''simple docstring'''
A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__)
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
# Check the shards when the dataset is very small.
A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__)
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size.
A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
# Check the shards when the dataset is very small.
A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
'''simple docstring'''
A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(24) , batch_size=3 , drop_last=UpperCAmelCase__)
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(21) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(22) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(20) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is very small.
A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(2) , batch_size=3 , drop_last=UpperCAmelCase__)
A__ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , even_batches=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple:
'''simple docstring'''
A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(24) , batch_size=4 , drop_last=UpperCAmelCase__)
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size.
A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(22) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(21) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
# Check the shards when the dataset is very small.
A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
A__ = BatchSampler(range(2) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase__ , UpperCAmelCase__ , split_batches=UpperCAmelCase__ , even_batches=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
'''simple docstring'''
A__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
A__ = [BatchSamplerShard(UpperCAmelCase__ , 2 , UpperCAmelCase__ , even_batches=UpperCAmelCase__) for i in range(2)]
self.assertEqual(len(batch_sampler_shards[0]) , 3)
self.assertEqual(len(batch_sampler_shards[1]) , 2)
self.assertListEqual(list(batch_sampler_shards[0]) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]])
self.assertListEqual(list(batch_sampler_shards[1]) , [[3, 4], [9, 10, 11]])
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[str]=False) ->Optional[Any]:
'''simple docstring'''
random.seed(UpperCAmelCase__)
A__ = list(UpperCAmelCase__)
A__ = [
IterableDatasetShard(
UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ , num_processes=UpperCAmelCase__ , process_index=UpperCAmelCase__ , split_batches=UpperCAmelCase__ , )
for i in range(UpperCAmelCase__)
]
A__ = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(UpperCAmelCase__)
iterable_dataset_lists.append(list(UpperCAmelCase__))
A__ = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
A__ = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__))
self.assertTrue(len(UpperCAmelCase__) % shard_batch_size == 0)
A__ = []
for idx in range(0 , len(UpperCAmelCase__) , UpperCAmelCase__):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(UpperCAmelCase__) < len(UpperCAmelCase__):
reference += reference
self.assertListEqual(UpperCAmelCase__ , reference[: len(UpperCAmelCase__)])
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ = 42
A__ = RandomIterableDataset()
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
# Edge case with a very small dataset
A__ = RandomIterableDataset(max_length=2)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
self.check_iterable_dataset_shards(UpperCAmelCase__ , UpperCAmelCase__ , batch_size=4 , drop_last=UpperCAmelCase__ , split_batches=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = BatchSampler(range(16) , batch_size=4 , drop_last=UpperCAmelCase__)
A__ = SkipBatchSampler(UpperCAmelCase__ , 2)
self.assertListEqual(list(UpperCAmelCase__) , [[8, 9, 10, 11], [12, 13, 14, 15]])
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
'''simple docstring'''
A__ = SkipDataLoader(list(range(16)) , batch_size=4 , skip_batches=2)
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]])
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = DataLoader(list(range(16)) , batch_size=4)
A__ = skip_first_batches(UpperCAmelCase__ , num_batches=2)
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]])
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
'''simple docstring'''
A__ = DataLoaderShard(list(range(16)) , batch_size=4)
for idx, _ in enumerate(UpperCAmelCase__):
self.assertEqual(dataloader.end_of_dataloader , idx == 3)
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCAmelCase__):
self.assertEqual(dataloader.end_of_dataloader , idx == 3)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
Accelerator()
A__ = DataLoaderDispatcher(range(16) , batch_size=4)
for idx, _ in enumerate(UpperCAmelCase__):
self.assertEqual(dataloader.end_of_dataloader , idx == 3)
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCAmelCase__):
self.assertEqual(dataloader.end_of_dataloader , idx == 3)
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def SCREAMING_SNAKE_CASE ( ) -> tuple[list[int], int]:
"""simple docstring"""
A__ = [randint(-1_000 , 1_000 ) for i in range(10 )]
A__ = randint(-5_000 , 5_000 )
return (arr, r)
_lowerCamelCase : Tuple = make_dataset()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, ...]:
"""simple docstring"""
for triplet in permutations(lowercase_ , 3 ):
if sum(lowercase_ ) == target:
return tuple(sorted(lowercase_ ) )
return (0, 0, 0)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, int, int]:
"""simple docstring"""
arr.sort()
A__ = len(lowercase_ )
for i in range(n - 1 ):
A__ , A__ = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def SCREAMING_SNAKE_CASE ( ) -> tuple[float, float]:
"""simple docstring"""
A__ = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
A__ = '''
triplet_sum1(*dataset)
'''
A__ = '''
triplet_sum2(*dataset)
'''
A__ = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10_000 )
A__ = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10_000 )
return (min(lowercase_ ), min(lowercase_ ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCamelCase : Optional[Any] = solution_times()
print(F'''The time for naive implementation is {times[0]}.''')
print(F'''The time for optimized implementation is {times[1]}.''')
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt"""}
_lowerCamelCase : List[Any] = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
_lowerCamelCase : List[str] = {
"""openbmb/cpm-ant-10b""": 1024,
}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = collections.OrderedDict()
with open(lowercase_ , '''r''' , encoding='''utf-8''' ) as reader:
A__ = reader.readlines()
for index, token in enumerate(lowercase_ ):
A__ = token.rstrip('''\n''' )
A__ = index
return vocab
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : Union[str, Any]=200) ->List[str]:
'''simple docstring'''
A__ = vocab
A__ = unk_token
A__ = max_input_chars_per_word
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[int]) ->Optional[int]:
'''simple docstring'''
A__ = list(UpperCAmelCase__)
if len(UpperCAmelCase__) > self.max_input_chars_per_word:
return [self.unk_token]
A__ = 0
A__ = []
while start < len(UpperCAmelCase__):
A__ = len(UpperCAmelCase__)
A__ = None
while start < end:
A__ = ''''''.join(chars[start:end])
if substr in self.vocab:
A__ = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token)
start += 1
else:
sub_tokens.append(UpperCAmelCase__)
A__ = end
return sub_tokens
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = False
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]="<d>" , UpperCAmelCase__ : Union[str, Any]="</d>" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Optional[int]="<pad>" , UpperCAmelCase__ : Dict="<unk>" , UpperCAmelCase__ : Optional[Any]="</n>" , UpperCAmelCase__ : List[Any]="</_>" , UpperCAmelCase__ : Optional[Any]="left" , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict:
'''simple docstring'''
requires_backends(self , ['''jieba'''])
super().__init__(
bod_token=UpperCAmelCase__ , eod_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , line_token=UpperCAmelCase__ , space_token=UpperCAmelCase__ , padding_side=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = bod_token
A__ = eod_token
A__ = load_vocab(UpperCAmelCase__)
A__ = self.encoder[space_token]
A__ = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
A__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase__: x[1]))
A__ = {v: k for k, v in self.encoder.items()}
A__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token)
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
return self.encoder[self.bod_token]
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
'''simple docstring'''
return self.encoder[self.eod_token]
@property
def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
'''simple docstring'''
return self.encoder["\n"]
@property
def SCREAMING_SNAKE_CASE ( self : int) ->int:
'''simple docstring'''
return len(self.encoder)
def SCREAMING_SNAKE_CASE ( self : Dict) ->str:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any) ->Union[str, Any]:
'''simple docstring'''
A__ = []
for x in jieba.cut(UpperCAmelCase__ , cut_all=UpperCAmelCase__):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCAmelCase__))
return output_tokens
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Dict) ->List[str]:
'''simple docstring'''
A__ = [i for i in token_ids if i >= 0]
A__ = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any]) ->Tuple:
'''simple docstring'''
return token in self.encoder
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[str]) ->str:
'''simple docstring'''
return "".join(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int) ->Union[str, Any]:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[str]) ->Any:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase__ , self.unk_token)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if os.path.isdir(UpperCAmelCase__):
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
else:
A__ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
A__ = 0
if " " in self.encoder:
A__ = self.encoder[''' ''']
del self.encoder[" "]
if "\n" in self.encoder:
A__ = self.encoder['''\n''']
del self.encoder["\n"]
A__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase__: x[1]))
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''')
A__ = token_index
writer.write(token + '''\n''')
index += 1
return (vocab_file,)
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] = None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__)
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__))
return [1] + ([0] * len(UpperCAmelCase__))
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = MBartConfig
UpperCAmelCase__ = {}
UpperCAmelCase__ = '''gelu'''
def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : str=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Union[str, Any]=37 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Any=20 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : int=1 , UpperCAmelCase__ : Union[str, Any]=0 , ) ->Any:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = eos_token_id
A__ = pad_token_id
A__ = bos_token_id
def SCREAMING_SNAKE_CASE ( self : Tuple) ->str:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size)
A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1)
A__ = tf.concat([input_ids, eos_tensor] , axis=1)
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
A__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
A__ = prepare_mbart_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
return config, inputs_dict
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = TFMBartModel(config=UpperCAmelCase__).get_decoder()
A__ = inputs_dict['''input_ids''']
A__ = input_ids[:1, :]
A__ = inputs_dict['''attention_mask'''][:1, :]
A__ = inputs_dict['''head_mask''']
A__ = 1
# first forward pass
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__)
A__ , A__ = outputs.to_tuple()
A__ = past_key_values[1]
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Union[str, Any]:
"""simple docstring"""
if attention_mask is None:
A__ = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
A__ = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
A__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
UpperCAmelCase__ = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
UpperCAmelCase__ = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->int:
'''simple docstring'''
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = TFMBartModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__)
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
UpperCAmelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
UpperCAmelCase__ = '''facebook/mbart-large-en-ro'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.model_name)
@cached_property
def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
'''simple docstring'''
A__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name)
return model
def SCREAMING_SNAKE_CASE ( self : List[Any] , **UpperCAmelCase__ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.translate_src_text(**UpperCAmelCase__)
self.assertListEqual(self.expected_text , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , **UpperCAmelCase__ : Dict) ->str:
'''simple docstring'''
A__ = self.tokenizer(self.src_text , **UpperCAmelCase__ , return_tensors='''tf''')
A__ = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2)
A__ = self.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__)
return generated_words
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
'''simple docstring'''
self._assert_generated_batch_equal_expected()
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
from __future__ import annotations
_lowerCamelCase : Optional[Any] = 1.60_21E-19 # units = C
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , ) -> tuple[str, float]:
"""simple docstring"""
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif conductivity < 0:
raise ValueError('''Conductivity cannot be negative''' )
elif electron_conc < 0:
raise ValueError('''Electron concentration cannot be negative''' )
elif mobility < 0:
raise ValueError('''mobility cannot be negative''' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''vqvae''']
def __init__( self : Optional[int] , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Mel , UpperCAmelCase__ : Union[DDIMScheduler, DDPMScheduler] , ) ->Dict:
'''simple docstring'''
super().__init__()
self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , mel=UpperCAmelCase__ , vqvae=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
return 50 if isinstance(self.scheduler , UpperCAmelCase__) else 1_000
@torch.no_grad()
def __call__( self : Tuple , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = None , UpperCAmelCase__ : np.ndarray = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = None , UpperCAmelCase__ : torch.Generator = None , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : torch.Generator = None , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : torch.Tensor = None , UpperCAmelCase__ : torch.Tensor = None , UpperCAmelCase__ : Union[str, Any]=True , ) ->Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
'''simple docstring'''
A__ = steps or self.get_default_steps()
self.scheduler.set_timesteps(UpperCAmelCase__)
A__ = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size) == int:
A__ = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
A__ = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=UpperCAmelCase__ , device=self.device , )
A__ = noise
A__ = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(UpperCAmelCase__ , UpperCAmelCase__)
A__ = self.mel.audio_slice_to_image(UpperCAmelCase__)
A__ = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape(
(input_image.height, input_image.width))
A__ = (input_image / 255) * 2 - 1
A__ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device)
if self.vqvae is not None:
A__ = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase__ , 0)).latent_dist.sample(
generator=UpperCAmelCase__)[0]
A__ = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
A__ = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , self.scheduler.timesteps[start_step - 1])
A__ = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
A__ = int(mask_start_secs * pixels_per_second)
A__ = int(mask_end_secs * pixels_per_second)
A__ = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , torch.tensor(self.scheduler.timesteps[start_step:]))
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])):
if isinstance(self.unet , UpperCAmelCase__):
A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)['''sample''']
else:
A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__)['''sample''']
if isinstance(self.scheduler , UpperCAmelCase__):
A__ = self.scheduler.step(
model_output=UpperCAmelCase__ , timestep=UpperCAmelCase__ , sample=UpperCAmelCase__ , eta=UpperCAmelCase__ , generator=UpperCAmelCase__ , )['''prev_sample''']
else:
A__ = self.scheduler.step(
model_output=UpperCAmelCase__ , timestep=UpperCAmelCase__ , sample=UpperCAmelCase__ , generator=UpperCAmelCase__ , )['''prev_sample''']
if mask is not None:
if mask_start > 0:
A__ = mask[:, step, :, :mask_start]
if mask_end > 0:
A__ = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
A__ = 1 / self.vqvae.config.scaling_factor * images
A__ = self.vqvae.decode(UpperCAmelCase__)['''sample''']
A__ = (images / 2 + 0.5).clamp(0 , 1)
A__ = images.cpu().permute(0 , 2 , 3 , 1).numpy()
A__ = (images * 255).round().astype('''uint8''')
A__ = list(
(Image.fromarray(_[:, :, 0]) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(UpperCAmelCase__ , mode='''RGB''').convert('''L''') for _ in images))
A__ = [self.mel.image_to_audio(UpperCAmelCase__) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase__)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase__))
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[Image.Image] , UpperCAmelCase__ : int = 50) ->np.ndarray:
'''simple docstring'''
assert isinstance(self.scheduler , UpperCAmelCase__)
self.scheduler.set_timesteps(UpperCAmelCase__)
A__ = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images])
A__ = (sample / 255) * 2 - 1
A__ = torch.Tensor(UpperCAmelCase__).to(self.device)
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))):
A__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
A__ = self.scheduler.alphas_cumprod[t]
A__ = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
A__ = 1 - alpha_prod_t
A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__)['''sample''']
A__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output
A__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
A__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ : torch.Tensor , UpperCAmelCase__ : torch.Tensor , UpperCAmelCase__ : float) ->torch.Tensor:
'''simple docstring'''
A__ = acos(torch.dot(torch.flatten(UpperCAmelCase__) , torch.flatten(UpperCAmelCase__)) / torch.norm(UpperCAmelCase__) / torch.norm(UpperCAmelCase__))
return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase__) + sin(alpha * theta) * xa / sin(UpperCAmelCase__)
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
import argparse
from collections import defaultdict
import yaml
_lowerCamelCase : List[str] = """docs/source/en/_toctree.yml"""
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = defaultdict(lowercase_ )
A__ = []
A__ = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} )
else:
new_doc_list.append(lowercase_ )
A__ = new_doc_list
A__ = [key for key, value in counts.items() if value > 1]
A__ = []
for duplicate_key in duplicates:
A__ = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} )
if len(lowercase_ ) > 1:
raise ValueError(
f"""{duplicate_key} is present several times in the documentation table of content at """
'''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '''
'''others.''' )
# Only add this once
new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] )
A__ = sorted(lowercase_ , key=lambda lowercase_ : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(lowercase_ ) > 1:
raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' )
overview_doc.extend(lowercase_ )
# Sort
return overview_doc
def SCREAMING_SNAKE_CASE ( lowercase_=False ) -> Tuple:
"""simple docstring"""
with open(lowercase_ , encoding='''utf-8''' ) as f:
A__ = yaml.safe_load(f.read() )
# Get to the API doc
A__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
A__ = content[api_idx]['''sections''']
# Then to the model doc
A__ = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
A__ = api_doc[scheduler_idx]['''sections''']
A__ = clean_doc_toc(lowercase_ )
A__ = False
if new_scheduler_doc != scheduler_doc:
A__ = True
if overwrite:
A__ = new_scheduler_doc
if diff:
if overwrite:
A__ = api_doc
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
def SCREAMING_SNAKE_CASE ( lowercase_=False ) -> Tuple:
"""simple docstring"""
with open(lowercase_ , encoding='''utf-8''' ) as f:
A__ = yaml.safe_load(f.read() )
# Get to the API doc
A__ = 0
while content[api_idx]["title"] != "API":
api_idx += 1
A__ = content[api_idx]['''sections''']
# Then to the model doc
A__ = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
A__ = False
A__ = api_doc[pipeline_idx]['''sections''']
A__ = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
A__ = pipeline_doc['''section''']
A__ = clean_doc_toc(lowercase_ )
if overwrite:
A__ = new_sub_pipeline_doc
new_pipeline_docs.append(lowercase_ )
# sort overall pipeline doc
A__ = clean_doc_toc(lowercase_ )
if new_pipeline_docs != pipeline_docs:
A__ = True
if overwrite:
A__ = new_pipeline_docs
if diff:
if overwrite:
A__ = api_doc
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(yaml.dump(lowercase_ , allow_unicode=lowercase_ ) )
else:
raise ValueError(
'''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
_lowerCamelCase : str = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
from collections.abc import Iterable
from typing import Any
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase__ : int | None = None) ->Union[str, Any]:
'''simple docstring'''
A__ = value
A__ = None # Added in order to delete a node easier
A__ = None
A__ = None
def __repr__( self : Optional[Any]) ->str:
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value)
return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1)
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase__ : Node | None = None) ->Optional[Any]:
'''simple docstring'''
A__ = root
def __str__( self : List[str]) ->str:
'''simple docstring'''
return str(self.root)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node | None) ->None:
'''simple docstring'''
if new_children is not None: # reset its kids
A__ = node.parent
if node.parent is not None: # reset its parent
if self.is_right(UpperCAmelCase__): # If it is the right children
A__ = new_children
else:
A__ = new_children
else:
A__ = new_children
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Node) ->bool:
'''simple docstring'''
if node.parent and node.parent.right:
return node == node.parent.right
return False
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->bool:
'''simple docstring'''
return self.root is None
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->None:
'''simple docstring'''
A__ = Node(UpperCAmelCase__) # create a new Node
if self.empty(): # if Tree is empty
A__ = new_node # set its root
else: # Tree is not empty
A__ = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
A__ = new_node # We insert the new node in a leaf
break
else:
A__ = parent_node.left
else:
if parent_node.right is None:
A__ = new_node
break
else:
A__ = parent_node.right
A__ = parent_node
def SCREAMING_SNAKE_CASE ( self : Optional[int] , *UpperCAmelCase__ : Optional[Any]) ->None:
'''simple docstring'''
for value in values:
self.__insert(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : List[str]) ->Node | None:
'''simple docstring'''
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''')
else:
A__ = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
A__ = node.left if value < node.value else node.right
return node
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Node | None = None) ->Node | None:
'''simple docstring'''
if node is None:
if self.root is None:
return None
A__ = self.root
if not self.empty():
while node.right is not None:
A__ = node.right
return node
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Node | None = None) ->Node | None:
'''simple docstring'''
if node is None:
A__ = self.root
if self.root is None:
return None
if not self.empty():
A__ = self.root
while node.left is not None:
A__ = node.left
return node
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : int) ->None:
'''simple docstring'''
A__ = self.search(UpperCAmelCase__) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(UpperCAmelCase__ , UpperCAmelCase__)
elif node.left is None: # Has only right children
self.__reassign_nodes(UpperCAmelCase__ , node.right)
elif node.right is None: # Has only left children
self.__reassign_nodes(UpperCAmelCase__ , node.left)
else:
A__ = self.get_max(
node.left) # Gets the max value of the left branch
self.remove(tmp_node.value) # type: ignore
A__ = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Node | None) ->Iterable:
'''simple docstring'''
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any=None) ->Any:
'''simple docstring'''
if traversal_function is None:
return self.preorder_traverse(self.root)
else:
return traversal_function(self.root)
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : list , UpperCAmelCase__ : Node | None) ->None:
'''simple docstring'''
if node:
self.inorder(UpperCAmelCase__ , node.left)
arr.append(node.value)
self.inorder(UpperCAmelCase__ , node.right)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Node) ->int:
'''simple docstring'''
A__ = []
self.inorder(UpperCAmelCase__ , UpperCAmelCase__) # append all values to list using inorder traversal
return arr[k - 1]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[Node]:
"""simple docstring"""
A__ = []
if curr_node is not None:
A__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
A__ = (8, 3, 6, 1, 10, 14, 13, 4, 7)
A__ = BinarySearchTree()
for i in testlist:
t.insert(lowercase_ )
# Prints all the elements of the list in order traversal
print(lowercase_ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''' , t.get_max().value ) # type: ignore
print('''Min Value: ''' , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(lowercase_ )
print(lowercase_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
from __future__ import annotations
from fractions import Fraction
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool:
"""simple docstring"""
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[str]:
"""simple docstring"""
A__ = []
A__ = 11
A__ = int('''1''' + '''0''' * digit_len )
for num in range(lowercase_ , lowercase_ ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(lowercase_ , lowercase_ ):
solutions.append(f"""{num}/{den}""" )
den += 1
num += 1
A__ = 10
return solutions
def SCREAMING_SNAKE_CASE ( lowercase_ = 2 ) -> int:
"""simple docstring"""
A__ = 1.0
for fraction in fraction_list(lowercase_ ):
A__ = Fraction(lowercase_ )
result *= frac.denominator / frac.numerator
return int(lowercase_ )
if __name__ == "__main__":
print(solution())
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__( self : int , *,
UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__()
A__ = nn.Parameter(torch.zeros(UpperCAmelCase__))
# parameters for additional clip time embeddings
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
# parameters for encoder hidden states
A__ = clip_extra_context_tokens
A__ = nn.Linear(
UpperCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim)
A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__)
A__ = nn.LayerNorm(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : int , *, UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any]) ->Any:
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
A__ = image_embeddings.shape[0]
A__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0)
A__ = classifier_free_guidance_embeddings.expand(
UpperCAmelCase__ , -1)
A__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0)
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
A__ = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
A__ = self.embedding_proj(UpperCAmelCase__)
A__ = self.clip_image_embeddings_project_to_time_embeddings(UpperCAmelCase__)
A__ = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
A__ = self.clip_extra_context_tokens_proj(UpperCAmelCase__)
A__ = clip_extra_context_tokens.reshape(UpperCAmelCase__ , -1 , self.clip_extra_context_tokens)
A__ = clip_extra_context_tokens.permute(0 , 2 , 1)
A__ = self.encoder_hidden_states_proj(UpperCAmelCase__)
A__ = self.text_encoder_hidden_states_norm(UpperCAmelCase__)
A__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1)
return text_encoder_hidden_states, additive_clip_time_embeddings
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.