code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple) ->Any:
'''simple docstring'''
A__ = name
A__ = val
def __str__( self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
return f"""{self.__class__.__name__}({self.name}, {self.val})"""
def __lt__( self : List[Any] , UpperCAmelCase__ : List[Any]) ->Union[str, Any]:
'''simple docstring'''
return self.val < other.val
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase__ : str) ->int:
'''simple docstring'''
A__ = {}
A__ = {}
A__ = self.build_heap(UpperCAmelCase__)
def __getitem__( self : str , UpperCAmelCase__ : List[str]) ->int:
'''simple docstring'''
return self.get_value(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[Any]) ->List[Any]:
'''simple docstring'''
return (idx - 1) // 2
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->int:
'''simple docstring'''
return idx * 2 + 1
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Optional[Any]) ->str:
'''simple docstring'''
return idx * 2 + 2
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[Any]) ->List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : int) ->Union[str, Any]:
'''simple docstring'''
A__ = len(UpperCAmelCase__) - 1
A__ = self.get_parent_idx(UpperCAmelCase__)
for idx, i in enumerate(UpperCAmelCase__):
A__ = idx
A__ = i.val
for i in range(UpperCAmelCase__ , -1 , -1):
self.sift_down(UpperCAmelCase__ , UpperCAmelCase__)
return array
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
while True:
A__ = self.get_left_child_idx(UpperCAmelCase__) # noqa: E741
A__ = self.get_right_child_idx(UpperCAmelCase__)
A__ = idx
if l < len(UpperCAmelCase__) and array[l] < array[idx]:
A__ = l
if r < len(UpperCAmelCase__) and array[r] < array[smallest]:
A__ = r
if smallest != idx:
A__ , A__ = array[smallest], array[idx]
(
(
A__
) , (
A__
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
A__ = smallest
else:
break
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = self.get_parent_idx(UpperCAmelCase__)
while p >= 0 and self.heap[p] > self.heap[idx]:
A__ , A__ = self.heap[idx], self.heap[p]
A__ , A__ = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
A__ = p
A__ = self.get_parent_idx(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
return self.heap[0]
def SCREAMING_SNAKE_CASE ( self : int) ->int:
'''simple docstring'''
A__ , A__ = self.heap[-1], self.heap[0]
A__ , A__ = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
A__ = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap)
return x
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int) ->str:
'''simple docstring'''
self.heap.append(UpperCAmelCase__)
A__ = len(self.heap) - 1
A__ = node.val
self.sift_up(len(self.heap) - 1)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
'''simple docstring'''
return len(self.heap) == 0
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]) ->str:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
A__ = new_value
A__ = new_value
self.sift_up(self.idx_of_element[node])
_lowerCamelCase : Optional[Any] = Node("""R""", -1)
_lowerCamelCase : int = Node("""B""", 6)
_lowerCamelCase : Dict = Node("""A""", 3)
_lowerCamelCase : Union[str, Any] = Node("""X""", 1)
_lowerCamelCase : Any = Node("""E""", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
_lowerCamelCase : Dict = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("""Min Heap - before decrease key""")
for i in my_min_heap.heap:
print(i)
print("""Min Heap - After decrease key of node [B -> -17]""")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
_lowerCamelCase : str = ["""gpt2"""]
_lowerCamelCase : str = """gpt2"""
if is_tf_available():
class UpperCamelCase_ ( tf.Module ):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__()
A__ = tokenizer
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
A__ = TFGPTaLMHeadModel.from_config(UpperCAmelCase__)
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text'''),))
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->Optional[int]:
'''simple docstring'''
A__ = self.tokenizer(UpperCAmelCase__)
A__ = tokenized['''input_ids'''].to_tensor()
A__ = tf.cast(input_ids_dense > 0 , tf.intaa)
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
A__ = self.model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__)['''logits''']
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
super().setUp()
A__ = [GPTaTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in (TOKENIZER_CHECKPOINTS)]
A__ = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers) == len(self.tf_tokenizers)
A__ = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
A__ = list(zip(self.test_sentences , self.test_sentences[::-1]))
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers):
for test_inputs in self.test_sentences:
A__ = tokenizer([test_inputs] , return_tensors='''tf''')
A__ = tf_tokenizer([test_inputs])
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
A__ = python_outputs[key].numpy()
A__ = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape))
self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase__ , tf.intaa) == tf_outputs_values))
@slow
def SCREAMING_SNAKE_CASE ( self : int) ->int:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
A__ = tf.function(UpperCAmelCase__)
for test_inputs in self.test_sentences:
A__ = tf.constant(UpperCAmelCase__)
A__ = compiled_tokenizer(UpperCAmelCase__)
A__ = tf_tokenizer(UpperCAmelCase__)
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key]))
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
A__ = ModelToSave(tokenizer=UpperCAmelCase__)
A__ = tf.convert_to_tensor([self.test_sentences[0]])
A__ = model.serving(UpperCAmelCase__) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
A__ = Path(UpperCAmelCase__) / '''saved.model'''
tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={'''serving_default''': model.serving})
A__ = tf.saved_model.load(UpperCAmelCase__)
A__ = loaded_model.signatures['''serving_default'''](UpperCAmelCase__)['''output_0''']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output))
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
A__ = tf.convert_to_tensor([self.test_sentences[0]])
A__ = tf_tokenizer(UpperCAmelCase__) # Build model with some sample inputs
A__ = tf_tokenizer.get_config()
A__ = TFGPTaTokenizer.from_config(UpperCAmelCase__)
A__ = model_from_config(UpperCAmelCase__)
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key]))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
A__ = 123_123
for max_length in [3, 5, 1_024]:
A__ = tf.convert_to_tensor([self.test_sentences[0]])
A__ = tf_tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__)
A__ = out['''input_ids'''].numpy().shape[1]
assert out_length == max_length
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
from __future__ import annotations
from typing import Any
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None:
"""simple docstring"""
create_state_space_tree(lowercase_ , [] , 0 )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None:
"""simple docstring"""
if index == len(lowercase_ ):
print(lowercase_ )
return
create_state_space_tree(lowercase_ , lowercase_ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(lowercase_ , lowercase_ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
_lowerCamelCase : list[Any] = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(["""A""", """B""", """C"""])
generate_all_subsequences(seq)
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCamelCase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = XGLMTokenizer
UpperCAmelCase__ = XGLMTokenizerFast
UpperCAmelCase__ = True
UpperCAmelCase__ = True
def SCREAMING_SNAKE_CASE ( self : str) ->Dict:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = '''<pad>'''
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<s>''')
self.assertEqual(vocab_keys[1] , '''<pad>''')
self.assertEqual(len(UpperCAmelCase__) , 1_008)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_008)
def SCREAMING_SNAKE_CASE ( self : Dict) ->str:
'''simple docstring'''
A__ = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__)
A__ = tokenizer.tokenize('''This is a test''')
self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__)
self.assertListEqual(
UpperCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__)
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
'''simple docstring'''
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(UpperCAmelCase__ , f.name)
A__ = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase__)
A__ = pickle.dumps(UpperCAmelCase__)
pickle.loads(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = '''I was born in 92000, and this is falsé.'''
A__ = tokenizer.tokenize(UpperCAmelCase__)
A__ = rust_tokenizer.tokenize(UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__)
A__ = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(UpperCAmelCase__)
A__ = rust_tokenizer.encode(UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
'''simple docstring'''
A__ = '''Hello World!'''
A__ = [2, 31_227, 4_447, 35]
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : int) ->int:
'''simple docstring'''
A__ = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
A__ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict:
'''simple docstring'''
A__ = {
'''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='''facebook/xglm-564M''' , padding=UpperCAmelCase__ , )
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_lowerCamelCase : List[str] = """\
"""
_lowerCamelCase : List[Any] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
_lowerCamelCase : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string'''),
}) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Any]=None) ->int:
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
A__ = '''cuda'''
else:
A__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
A__ = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__)
A__ = model.to(UpperCAmelCase__)
A__ = AutoTokenizer.from_pretrained(UpperCAmelCase__)
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
A__ = list(tokenizer.special_tokens_map_extended.values())
# check that the model already has at least one special token defined
assert (
len(UpperCAmelCase__) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]})
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
A__ = model.config.max_length - 1
else:
A__ = model.config.max_length
A__ = tokenizer(
UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors='''pt''' , return_attention_mask=UpperCAmelCase__ , ).to(UpperCAmelCase__)
A__ = encodings['''input_ids''']
A__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
A__ = []
A__ = CrossEntropyLoss(reduction='''none''')
for start_index in logging.tqdm(range(0 , len(UpperCAmelCase__) , UpperCAmelCase__)):
A__ = min(start_index + batch_size , len(UpperCAmelCase__))
A__ = encoded_texts[start_index:end_index]
A__ = attn_masks[start_index:end_index]
if add_start_token:
A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(UpperCAmelCase__)
A__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1)
A__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(UpperCAmelCase__), attn_mask] , dim=1)
A__ = encoded_batch
with torch.no_grad():
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__).logits
A__ = out_logits[..., :-1, :].contiguous()
A__ = labels[..., 1:].contiguous()
A__ = attn_mask[..., 1:].contiguous()
A__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2) , UpperCAmelCase__) * shift_attention_mask_batch).sum(1)
/ shift_attention_mask_batch.sum(1))
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCAmelCase__)}
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[str]:
"""simple docstring"""
if partitions <= 0:
raise ValueError('''partitions must be a positive number!''' )
if partitions > number_of_bytes:
raise ValueError('''partitions can not > number_of_bytes!''' )
A__ = number_of_bytes // partitions
A__ = []
for i in range(lowercase_ ):
A__ = i * bytes_per_partition + 1
A__ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f"""{start_bytes}-{end_bytes}""" )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=13 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=37 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : List[Any]=16 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=None , ) ->Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length])
A__ = None
A__ = None
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
A__ = ids_tensor([self.batch_size] , self.num_choices)
A__ = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
A__ = DistilBertModel(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , UpperCAmelCase__)
A__ = model(UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any) ->int:
'''simple docstring'''
A__ = DistilBertForMaskedLM(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any) ->List[str]:
'''simple docstring'''
A__ = DistilBertForQuestionAnswering(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Union[str, Any]:
'''simple docstring'''
A__ = self.num_labels
A__ = DistilBertForSequenceClassification(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
A__ = self.num_labels
A__ = DistilBertForTokenClassification(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = self.num_choices
A__ = DistilBertForMultipleChoice(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
A__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
A__ = model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs
A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
UpperCAmelCase__ = (
{
'''feature-extraction''': DistilBertModel,
'''fill-mask''': DistilBertForMaskedLM,
'''question-answering''': DistilBertForQuestionAnswering,
'''text-classification''': DistilBertForSequenceClassification,
'''token-classification''': DistilBertForTokenClassification,
'''zero-shot''': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
def SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
'''simple docstring'''
A__ = DistilBertModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = DistilBertModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
A__ = True
A__ = model_class(config=UpperCAmelCase__)
A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)
A__ = torch.jit.trace(
UpperCAmelCase__ , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu''')))
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , '''traced_model.pt'''))
A__ = torch.jit.load(os.path.join(UpperCAmelCase__ , '''traced_model.pt''') , map_location=UpperCAmelCase__)
loaded(inputs_dict['''input_ids'''].to(UpperCAmelCase__) , inputs_dict['''attention_mask'''].to(UpperCAmelCase__))
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
A__ = DistilBertModel.from_pretrained('''distilbert-base-uncased''')
A__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]])
A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
with torch.no_grad():
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)[0]
A__ = torch.Size((1, 11, 768))
self.assertEqual(output.shape , UpperCAmelCase__)
A__ = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]])
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1e-4))
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {"""vocab_file""": """spiece.model"""}
_lowerCamelCase : Any = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
_lowerCamelCase : Any = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
_lowerCamelCase : Optional[int] = """▁"""
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="[CLS]" , UpperCAmelCase__ : int="[SEP]" , UpperCAmelCase__ : int="<unk>" , UpperCAmelCase__ : Tuple="[SEP]" , UpperCAmelCase__ : List[str]="<pad>" , UpperCAmelCase__ : List[str]="[CLS]" , UpperCAmelCase__ : Union[str, Any]="[MASK]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Any , ) ->None:
'''simple docstring'''
A__ = (
AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ , normalized=UpperCAmelCase__)
if isinstance(UpperCAmelCase__ , UpperCAmelCase__)
else mask_token
)
A__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , )
A__ = do_lower_case
A__ = remove_space
A__ = keep_accents
A__ = vocab_file
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
return len(self.sp_model)
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]:
'''simple docstring'''
A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Optional[int]) ->Dict:
'''simple docstring'''
A__ = self.__dict__.copy()
A__ = None
return state
def __setstate__( self : List[Any] , UpperCAmelCase__ : List[Any]) ->int:
'''simple docstring'''
A__ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
A__ = {}
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int) ->int:
'''simple docstring'''
if self.remove_space:
A__ = ''' '''.join(inputs.strip().split())
else:
A__ = inputs
A__ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''')
if not self.keep_accents:
A__ = unicodedata.normalize('''NFKD''' , UpperCAmelCase__)
A__ = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__)])
if self.do_lower_case:
A__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
A__ = self.preprocess_text(UpperCAmelCase__)
A__ = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__)
A__ = []
for piece in pieces:
if len(UpperCAmelCase__) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit():
A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , ''''''))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
A__ = cur_pieces[1:]
else:
A__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(UpperCAmelCase__)
else:
new_pieces.append(UpperCAmelCase__)
return new_pieces
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int) ->str:
'''simple docstring'''
return self.sp_model.PieceToId(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[Any]) ->int:
'''simple docstring'''
return self.sp_model.IdToPiece(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Dict) ->List[Any]:
'''simple docstring'''
A__ = []
A__ = ''''''
A__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase__) + token
A__ = True
A__ = []
else:
current_sub_tokens.append(UpperCAmelCase__)
A__ = False
out_string += self.sp_model.decode(UpperCAmelCase__)
return out_string.strip()
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__)
if token_ids_a is not None:
return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) + [1]
return [1] + ([0] * len(UpperCAmelCase__)) + [1]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase__):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase__)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase__ , '''wb''') as fi:
A__ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase__)
return (out_vocab_file,)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline
UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
UpperCAmelCase__ = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
UpperCAmelCase__ = False
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
'''simple docstring'''
return 32
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
return 32
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any:
'''simple docstring'''
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
return 100
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
torch.manual_seed(0)
A__ = {
'''in_channels''': 8,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image_hint''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
A__ = UNetaDConditionModel(**UpperCAmelCase__)
return model
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]:
'''simple docstring'''
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0)
A__ = VQModel(**self.dummy_movq_kwargs)
return model
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
A__ = self.dummy_unet
A__ = self.dummy_movq
A__ = {
'''num_train_timesteps''': 1_000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.00085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
A__ = DDIMScheduler(**UpperCAmelCase__)
A__ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=0) ->Any:
'''simple docstring'''
A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__)
A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to(
UpperCAmelCase__)
# create init_image
A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__)
A__ = image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((256, 256))
# create hint
A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__)
if str(UpperCAmelCase__).startswith('''mps'''):
A__ = torch.manual_seed(UpperCAmelCase__)
else:
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__)
A__ = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''hint''': hint,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = '''cpu'''
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**UpperCAmelCase__)
A__ = pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__))
A__ = output.images
A__ = pipe(
**self.get_dummy_inputs(UpperCAmelCase__) , return_dict=UpperCAmelCase__ , )[0]
A__ = image[0, -3:, -3:, -1]
A__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A__ = np.array(
[0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''')
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''')
A__ = init_image.resize((512, 512))
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/hint_image_cat.png''')
A__ = torch.from_numpy(np.array(UpperCAmelCase__)).float() / 255.0
A__ = hint.permute(2 , 0 , 1).unsqueeze(0)
A__ = '''A robot, 4k photo'''
A__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa)
pipe_prior.to(UpperCAmelCase__)
A__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa)
A__ = pipeline.to(UpperCAmelCase__)
pipeline.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = torch.Generator(device='''cpu''').manual_seed(0)
A__ , A__ = pipe_prior(
UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.85 , generator=UpperCAmelCase__ , negative_prompt='''''' , ).to_tuple()
A__ = pipeline(
image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , )
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__)
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
_lowerCamelCase : Optional[int] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json"""
),
"""google/realm-orqa-nq-openqa""": (
"""https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-nq-reader""": (
"""https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-wq-openqa""": (
"""https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json"""
),
"""google/realm-orqa-wq-reader""": (
"""https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : List[str] = {
"""google/realm-cc-news-pretrained-embedder""": 512,
"""google/realm-cc-news-pretrained-encoder""": 512,
"""google/realm-cc-news-pretrained-scorer""": 512,
"""google/realm-cc-news-pretrained-openqa""": 512,
"""google/realm-orqa-nq-openqa""": 512,
"""google/realm-orqa-nq-reader""": 512,
"""google/realm-orqa-wq-openqa""": 512,
"""google/realm-orqa-wq-reader""": 512,
}
_lowerCamelCase : Dict = {
"""google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True},
"""google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-nq-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-nq-reader""": {"""do_lower_case""": True},
"""google/realm-orqa-wq-openqa""": {"""do_lower_case""": True},
"""google/realm-orqa-wq-reader""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = RealmTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Any="[UNK]" , UpperCAmelCase__ : List[str]="[SEP]" , UpperCAmelCase__ : Tuple="[PAD]" , UpperCAmelCase__ : str="[CLS]" , UpperCAmelCase__ : Dict="[MASK]" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(
UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get('''lowercase''' , UpperCAmelCase__) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCAmelCase__) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase__) != tokenize_chinese_chars
):
A__ = getattr(UpperCAmelCase__ , normalizer_state.pop('''type'''))
A__ = do_lower_case
A__ = strip_accents
A__ = tokenize_chinese_chars
A__ = normalizer_class(**UpperCAmelCase__)
A__ = do_lower_case
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : int) ->str:
'''simple docstring'''
A__ = PaddingStrategy.MAX_LENGTH
A__ = text
A__ = kwargs.pop('''text_pair''' , UpperCAmelCase__)
A__ = kwargs.pop('''return_tensors''' , UpperCAmelCase__)
A__ = {
'''input_ids''': [],
'''attention_mask''': [],
'''token_type_ids''': [],
}
for idx, candidate_text in enumerate(UpperCAmelCase__):
if batch_text_pair is not None:
A__ = batch_text_pair[idx]
else:
A__ = None
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = encoded_candidates.get('''input_ids''')
A__ = encoded_candidates.get('''attention_mask''')
A__ = encoded_candidates.get('''token_type_ids''')
if encoded_input_ids is not None:
output_data["input_ids"].append(UpperCAmelCase__)
if encoded_attention_mask is not None:
output_data["attention_mask"].append(UpperCAmelCase__)
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(UpperCAmelCase__)
A__ = {key: item for key, item in output_data.items() if len(UpperCAmelCase__) != 0}
return BatchEncoding(UpperCAmelCase__ , tensor_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=None) ->str:
'''simple docstring'''
A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__)
return tuple(UpperCAmelCase__)
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
_lowerCamelCase : Any = None
_lowerCamelCase : str = {
"""7B""": 11008,
"""13B""": 13824,
"""30B""": 17920,
"""65B""": 22016,
"""70B""": 28672,
}
_lowerCamelCase : int = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1 , lowercase_=256 ) -> Optional[Any]:
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
with open(lowercase_ , '''r''' ) as f:
return json.load(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
with open(lowercase_ , '''w''' ) as f:
json.dump(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=True ) -> Tuple:
"""simple docstring"""
os.makedirs(lowercase_ , exist_ok=lowercase_ )
A__ = os.path.join(lowercase_ , '''tmp''' )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
A__ = read_json(os.path.join(lowercase_ , '''params.json''' ) )
A__ = NUM_SHARDS[model_size]
A__ = params['''n_layers''']
A__ = params['''n_heads''']
A__ = n_heads // num_shards
A__ = params['''dim''']
A__ = dim // n_heads
A__ = 1_00_00.0
A__ = 1.0 / (base ** (torch.arange(0 , lowercase_ , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
A__ = params['''n_kv_heads'''] # for GQA / MQA
A__ = n_heads_per_shard // num_key_value_heads
A__ = dim // num_key_value_heads
else: # compatibility with other checkpoints
A__ = n_heads
A__ = n_heads_per_shard
A__ = dim
# permute for sliced rotary
def permute(lowercase_ , lowercase_=n_heads , lowercase_=dim , lowercase_=dim ):
return w.view(lowercase_ , dima // n_heads // 2 , 2 , lowercase_ ).transpose(1 , 2 ).reshape(lowercase_ , lowercase_ )
print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
A__ = torch.load(os.path.join(lowercase_ , '''consolidated.00.pth''' ) , map_location='''cpu''' )
else:
# Sharded
A__ = [
torch.load(os.path.join(lowercase_ , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' )
for i in range(lowercase_ )
]
A__ = 0
A__ = {'''weight_map''': {}}
for layer_i in range(lowercase_ ):
A__ = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
A__ = {
f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wq.weight"""] ),
f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[f"""layers.{layer_i}.attention.wk.weight"""] ),
f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""],
f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""],
f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""],
f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""],
f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""],
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""],
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
A__ = {
f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.attention_norm.weight"""
].clone(),
f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
f"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
A__ = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(lowercase_ , lowercase_ , lowercase_ )
for i in range(lowercase_ )
] , dim=0 , ).reshape(lowercase_ , lowercase_ ) )
A__ = permute(
torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view(
lowercase_ , lowercase_ , lowercase_ )
for i in range(lowercase_ )
] , dim=0 , ).reshape(lowercase_ , lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , )
A__ = torch.cat(
[
loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view(
lowercase_ , lowercase_ , lowercase_ )
for i in range(lowercase_ )
] , dim=0 , ).reshape(lowercase_ , lowercase_ )
A__ = torch.cat(
[loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(lowercase_ )] , dim=1 )
A__ = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(lowercase_ )] , dim=0 )
A__ = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(lowercase_ )] , dim=1 )
A__ = torch.cat(
[loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(lowercase_ )] , dim=0 )
A__ = inv_freq
for k, v in state_dict.items():
A__ = filename
param_count += v.numel()
torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) )
A__ = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
A__ = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
A__ = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(lowercase_ )] , dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowercase_ )] , dim=0 ),
}
for k, v in state_dict.items():
A__ = filename
param_count += v.numel()
torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) )
# Write configs
A__ = {'''total_size''': param_count * 2}
write_json(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin.index.json''' ) )
A__ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
A__ = params['''multiple_of'''] if '''multiple_of''' in params else 256
A__ = LlamaConfig(
hidden_size=lowercase_ , intermediate_size=compute_intermediate_size(lowercase_ , lowercase_ , lowercase_ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=lowercase_ , )
config.save_pretrained(lowercase_ )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
A__ = LlamaForCausalLM.from_pretrained(lowercase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowercase_ )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(lowercase_ , safe_serialization=lowercase_ )
shutil.rmtree(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
A__ = tokenizer_class(lowercase_ )
tokenizer.save_pretrained(lowercase_ )
def SCREAMING_SNAKE_CASE ( ) -> Dict:
"""simple docstring"""
A__ = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , )
parser.add_argument(
'''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , )
parser.add_argument(
'''--output_dir''' , help='''Location to write HF model and tokenizer''' , )
parser.add_argument('''--safe_serialization''' , type=lowercase_ , help='''Whether or not to save using `safetensors`.''' )
A__ = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
A__ = os.path.join(args.input_dir , '''tokenizer.model''' )
write_tokenizer(args.output_dir , lowercase_ )
if __name__ == "__main__":
main()
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
_lowerCamelCase : Union[str, Any] = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase_ , torch.Tensor ):
return image
elif isinstance(lowercase_ , PIL.Image.Image ):
A__ = [image]
A__ = [trans(img.convert('''RGB''' ) ) for img in image]
A__ = torch.stack(lowercase_ )
return image
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict) ->Optional[Any]:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
A__ = DDIMScheduler.from_config(scheduler.config)
self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str) ->Dict:
'''simple docstring'''
if strength < 0 or strength > 1:
raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""")
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]) ->int:
'''simple docstring'''
A__ = min(int(num_inference_steps * strength) , UpperCAmelCase__)
A__ = max(num_inference_steps - init_timestep , 0)
A__ = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=None) ->Any:
'''simple docstring'''
if not isinstance(UpperCAmelCase__ , (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase__)}""")
A__ = image.to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__)
if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(UpperCAmelCase__) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(UpperCAmelCase__)}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""")
A__ = init_latents.shape
A__ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__)
# get latents
print('''add noise to latents at timestep''' , UpperCAmelCase__)
A__ = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
A__ = init_latents
return latents
@torch.no_grad()
def __call__( self : Tuple , UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , UpperCAmelCase__ : float = 0.8 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
self.check_inputs(UpperCAmelCase__)
# 2. Preprocess image
A__ = preprocess(UpperCAmelCase__)
# 3. set timesteps
self.scheduler.set_timesteps(UpperCAmelCase__ , device=self.device)
A__ , A__ = self.get_timesteps(UpperCAmelCase__ , UpperCAmelCase__ , self.device)
A__ = timesteps[:1].repeat(UpperCAmelCase__)
# 4. Prepare latent variables
A__ = self.prepare_latents(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , self.unet.dtype , self.device , UpperCAmelCase__)
A__ = latents
# 5. Denoising loop
for t in self.progress_bar(UpperCAmelCase__):
# 1. predict noise model_output
A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
A__ = self.scheduler.step(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , eta=UpperCAmelCase__ , use_clipped_model_output=UpperCAmelCase__ , generator=UpperCAmelCase__ , ).prev_sample
A__ = (image / 2 + 0.5).clamp(0 , 1)
A__ = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
A__ = self.numpy_to_pil(UpperCAmelCase__)
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=UpperCAmelCase__)
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
# TODO Update this
_lowerCamelCase : Union[str, Any] = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''esm'''
def __init__( self : str , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Dict=3_072 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=1_026 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : Optional[Any]="absolute" , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : List[Any] , ) ->Tuple:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = emb_layer_norm_before
A__ = token_dropout
A__ = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''')
A__ = EsmFoldConfig()
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = EsmFoldConfig(**UpperCAmelCase__)
A__ = esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''')
A__ = get_default_vocab_list()
else:
A__ = vocab_list
else:
A__ = None
A__ = None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''')
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = super().to_dict()
if isinstance(self.esmfold_config , UpperCAmelCase__):
A__ = self.esmfold_config.to_dict()
return output
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = 128
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
if self.trunk is None:
A__ = TrunkConfig()
elif isinstance(self.trunk , UpperCAmelCase__):
A__ = TrunkConfig(**self.trunk)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
A__ = asdict(self)
A__ = self.trunk.to_dict()
return output
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 48
UpperCAmelCase__ = 1024
UpperCAmelCase__ = 128
UpperCAmelCase__ = 32
UpperCAmelCase__ = 32
UpperCAmelCase__ = 32
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
UpperCAmelCase__ = 4
UpperCAmelCase__ = 128
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
'''simple docstring'''
if self.structure_module is None:
A__ = StructureModuleConfig()
elif isinstance(self.structure_module , UpperCAmelCase__):
A__ = StructureModuleConfig(**self.structure_module)
if self.max_recycles <= 0:
raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""")
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""")
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""")
A__ = self.sequence_state_dim // self.sequence_head_width
A__ = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""")
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""")
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""")
if self.dropout >= 0.4:
raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""")
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
A__ = asdict(self)
A__ = self.structure_module.to_dict()
return output
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 384
UpperCAmelCase__ = 128
UpperCAmelCase__ = 16
UpperCAmelCase__ = 128
UpperCAmelCase__ = 12
UpperCAmelCase__ = 4
UpperCAmelCase__ = 8
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 1
UpperCAmelCase__ = 2
UpperCAmelCase__ = 7
UpperCAmelCase__ = 10
UpperCAmelCase__ = 1E-8
UpperCAmelCase__ = 1E5
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
return asdict(self)
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
"""simple docstring"""
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from maths.prime_factors import prime_factors
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ):
A__ = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase_ )
if number < 1:
raise ValueError('''Input must be a positive integer''' )
return -1 if len(prime_factors(lowercase_ ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_lowerCamelCase : Any = 16
_lowerCamelCase : Any = 32
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> Tuple:
"""simple docstring"""
A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' )
A__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowercase_ ):
# max_length=None => use the model max length (it's actually the default)
A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
A__ = datasets.map(
lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowercase_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
A__ = 16
elif accelerator.mixed_precision != "no":
A__ = 8
else:
A__ = None
return tokenizer.pad(
lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
A__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
A__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_lowerCamelCase : Union[str, Any] = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase_ ) == "1":
A__ = 2
# Initialize accelerator
A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A__ = config['''lr''']
A__ = int(config['''num_epochs'''] )
A__ = int(config['''seed'''] )
A__ = int(config['''batch_size'''] )
A__ = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=lowercase_ )
def inner_training_loop(lowercase_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(lowercase_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
A__ = model.to(accelerator.device )
# Instantiate optimizer
A__ = AdamW(params=model.parameters() , lr=lowercase_ )
A__ , A__ = get_dataloaders(lowercase_ , lowercase_ )
# Instantiate scheduler
A__ = get_linear_schedule_with_warmup(
optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A__ , A__ , A__ , A__ , A__ = accelerator.prepare(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
# Now we train the model
for epoch in range(lowercase_ ):
model.train()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
A__ = model(**lowercase_ )
A__ = outputs.loss
accelerator.backward(lowercase_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowercase_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A__ = model(**lowercase_ )
A__ = outputs.logits.argmax(dim=-1 )
A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=lowercase_ , references=lowercase_ , )
A__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , lowercase_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
"""simple docstring"""
A__ = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
A__ = parser.parse_args()
A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(lowercase_ , lowercase_ )
if __name__ == "__main__":
main()
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : List[Any] = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Tuple = {
"""roberta-base""": 512,
"""roberta-large""": 512,
"""roberta-large-mnli""": 512,
"""distilroberta-base""": 512,
"""roberta-base-openai-detector""": 512,
"""roberta-large-openai-detector""": 512,
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = RobertaTokenizer
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[int]="replace" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : List[str]="</s>" , UpperCAmelCase__ : Optional[int]="<s>" , UpperCAmelCase__ : Dict="<unk>" , UpperCAmelCase__ : List[str]="<pad>" , UpperCAmelCase__ : Dict="<mask>" , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Tuple , ) ->int:
'''simple docstring'''
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space:
A__ = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type'''))
A__ = add_prefix_space
A__ = pre_tok_class(**UpperCAmelCase__)
A__ = add_prefix_space
A__ = '''post_processor'''
A__ = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__)
if tokenizer_component_instance:
A__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
A__ = tuple(state['''sep'''])
if "cls" in state:
A__ = tuple(state['''cls'''])
A__ = False
if state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space:
A__ = add_prefix_space
A__ = True
if state.get('''trim_offsets''' , UpperCAmelCase__) != trim_offsets:
A__ = trim_offsets
A__ = True
if changes_to_apply:
A__ = getattr(UpperCAmelCase__ , state.pop('''type'''))
A__ = component_class(**UpperCAmelCase__)
setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''')
return None
return str(self._mask_token)
@mask_token.setter
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else value
A__ = value
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple) ->BatchEncoding:
'''simple docstring'''
A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__)
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : str) ->BatchEncoding:
'''simple docstring'''
A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__)
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__)
return tuple(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=None) ->List[str]:
'''simple docstring'''
A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''')
A__ = AutoTokenizer.from_pretrained('''google/mt5-small''')
A__ = tokenizer('''Hello there''' , return_tensors='''tf''').input_ids
A__ = tokenizer('''Hi I am''' , return_tensors='''tf''').input_ids
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__).loss
A__ = -tf.math.reduce_mean(UpperCAmelCase__).numpy()
A__ = -21.228168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
_lowerCamelCase : Any = logging.getLogger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase__ : Optional[Any]=-1) ->Tuple:
'''simple docstring'''
A__ = label_idx
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[Split, str]) ->List[InputExample]:
'''simple docstring'''
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = mode.value
A__ = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""")
A__ = 1
A__ = []
with open(UpperCAmelCase__ , encoding='''utf-8''') as f:
A__ = []
A__ = []
for line in f:
if line.startswith('''-DOCSTART-''') or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__))
guid_index += 1
A__ = []
A__ = []
else:
A__ = line.split(''' ''')
words.append(splits[0])
if len(UpperCAmelCase__) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , ''''''))
else:
# Examples could have no label for mode = "test"
labels.append('''O''')
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__))
return examples
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List) ->Optional[Any]:
'''simple docstring'''
A__ = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''') or line == "" or line == "\n":
writer.write(UpperCAmelCase__)
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
A__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0) + '''\n'''
writer.write(UpperCAmelCase__)
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0])
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
if path:
with open(UpperCAmelCase__ , '''r''') as f:
A__ = f.read().splitlines()
if "O" not in labels:
A__ = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Union[str, Any]) ->int:
'''simple docstring'''
super().__init__(label_idx=-2)
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
if path:
with open(UpperCAmelCase__ , '''r''') as f:
A__ = f.read().splitlines()
if "O" not in labels:
A__ = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[Split, str]) ->List[InputExample]:
'''simple docstring'''
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = mode.value
A__ = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""")
A__ = 1
A__ = []
with open(UpperCAmelCase__ , encoding='''utf-8''') as f:
for sentence in parse_incr(UpperCAmelCase__):
A__ = []
A__ = []
for token in sentence:
words.append(token['''form'''])
labels.append(token['''upos'''])
assert len(UpperCAmelCase__) == len(UpperCAmelCase__)
if words:
examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__))
guid_index += 1
return examples
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List) ->Dict:
'''simple docstring'''
A__ = 0
for sentence in parse_incr(UpperCAmelCase__):
A__ = preds_list[example_id]
A__ = ''''''
for token in sentence:
out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0)}) """
out += "\n"
writer.write(UpperCAmelCase__)
example_id += 1
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
if path:
with open(UpperCAmelCase__ , '''r''') as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''facebook/bart-large-mnli'''
UpperCAmelCase__ = (
'''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '''
'''should be the text to classify, and `labels`, which should be the list of labels to use for classification. '''
'''It returns the most likely label in the list of provided `labels` for the input text.'''
)
UpperCAmelCase__ = '''text_classifier'''
UpperCAmelCase__ = AutoTokenizer
UpperCAmelCase__ = AutoModelForSequenceClassification
UpperCAmelCase__ = ['''text''', ['''text''']]
UpperCAmelCase__ = ['''text''']
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
super().setup()
A__ = self.model.config
A__ = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail'''):
A__ = int(UpperCAmelCase__)
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''')
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ = labels
return self.pre_processor(
[text] * len(UpperCAmelCase__) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , )
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Tuple) ->Optional[int]:
'''simple docstring'''
A__ = outputs.logits
A__ = torch.argmax(logits[:, 2]).item()
return self._labels[label_id]
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]) ->List[str]:
'''simple docstring'''
super().__init__()
self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__)
@torch.no_grad()
def __call__( self : List[Any] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : bool = True , ) ->Union[AudioPipelineOutput, Tuple]:
'''simple docstring'''
if audio_length_in_s is None:
A__ = self.unet.config.sample_size / self.unet.config.sample_rate
A__ = audio_length_in_s * self.unet.config.sample_rate
A__ = 2 ** len(self.unet.up_blocks)
if sample_size < 3 * down_scale_factor:
raise ValueError(
f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to"""
f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""")
A__ = int(UpperCAmelCase__)
if sample_size % down_scale_factor != 0:
A__ = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"""
f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"""
''' process.''')
A__ = int(UpperCAmelCase__)
A__ = next(iter(self.unet.parameters())).dtype
A__ = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(UpperCAmelCase__) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(UpperCAmelCase__)}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""")
A__ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__)
# set step values
self.scheduler.set_timesteps(UpperCAmelCase__ , device=audio.device)
A__ = self.scheduler.timesteps.to(UpperCAmelCase__)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__).sample
# 2. compute previous image: x_t -> t_t-1
A__ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample
A__ = audio.clamp(-1 , 1).float().cpu().numpy()
A__ = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=UpperCAmelCase__)
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int:
"""simple docstring"""
A__ = [1] * (length + 1)
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length]
if __name__ == "__main__":
print(F'''{solution() = }''')
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : str = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_lowerCamelCase : List[str] = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""),
("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""),
("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""),
("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""),
("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""),
("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""),
("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""),
("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""),
("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""),
("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""),
]
)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = state_dict.pop(lowercase_ )
A__ = val
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
A__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' )
A__ = value
else:
A__ = value
return new_state_dict
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Dict:
"""simple docstring"""
A__ = ''''''
if is_panoptic:
A__ = '''conditional_detr.'''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[:256, :]
A__ = in_proj_bias[:256]
A__ = in_proj_weight[256:512, :]
A__ = in_proj_bias[256:512]
A__ = in_proj_weight[-256:, :]
A__ = in_proj_bias[-256:]
def SCREAMING_SNAKE_CASE ( ) -> List[Any]:
"""simple docstring"""
A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
"""simple docstring"""
A__ = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
A__ = '''resnet101'''
if "dc5" in model_name:
A__ = True
A__ = '''panoptic''' in model_name
if is_panoptic:
A__ = 250
else:
A__ = 91
A__ = '''huggingface/label-files'''
A__ = '''coco-detection-id2label.json'''
A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
A__ = {int(lowercase_ ): v for k, v in idalabel.items()}
A__ = idalabel
A__ = {v: k for k, v in idalabel.items()}
# load image processor
A__ = '''coco_panoptic''' if is_panoptic else '''coco_detection'''
A__ = ConditionalDetrImageProcessor(format=lowercase_ )
# prepare image
A__ = prepare_img()
A__ = image_processor(images=lowercase_ , return_tensors='''pt''' )
A__ = encoding['''pixel_values''']
logger.info(f"""Converting model {model_name}...""" )
# load original model from torch hub
A__ = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase_ , pretrained=lowercase_ ).eval()
A__ = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
A__ = '''conditional_detr.''' + src
rename_key(lowercase_ , lowercase_ , lowercase_ )
A__ = rename_backbone_keys(lowercase_ )
# query, key and value matrices need special treatment
read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
A__ = '''conditional_detr.model.''' if is_panoptic else '''model.'''
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('''conditional_detr''' )
and not key.startswith('''class_labels_classifier''' )
and not key.startswith('''bbox_predictor''' )
):
A__ = state_dict.pop(lowercase_ )
A__ = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
A__ = state_dict.pop(lowercase_ )
A__ = val
elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ):
continue
else:
A__ = state_dict.pop(lowercase_ )
A__ = val
else:
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
A__ = state_dict.pop(lowercase_ )
A__ = val
# finally, create HuggingFace model and load state dict
A__ = ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ )
model.load_state_dict(lowercase_ )
model.eval()
model.push_to_hub(repo_id=lowercase_ , organization='''DepuMeng''' , commit_message='''Add model''' )
# verify our conversion
A__ = conditional_detr(lowercase_ )
A__ = model(lowercase_ )
assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 )
# Save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
model.save_pretrained(lowercase_ )
image_processor.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_name""",
default="""conditional_detr_resnet50""",
type=str,
help="""Name of the CONDITIONAL_DETR model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
_lowerCamelCase : Optional[Any] = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = 42
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__( self : Tuple , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase__ : Tuple[int] = (64,) , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "silu" , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : float = 0.18215 , UpperCAmelCase__ : str = "group" , ) ->Optional[int]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
A__ = Encoder(
in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , down_block_types=UpperCAmelCase__ , block_out_channels=UpperCAmelCase__ , layers_per_block=UpperCAmelCase__ , act_fn=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , double_z=UpperCAmelCase__ , )
A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , 1)
A__ = VectorQuantizer(UpperCAmelCase__ , UpperCAmelCase__ , beta=0.25 , remap=UpperCAmelCase__ , sane_index_shape=UpperCAmelCase__)
A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , 1)
# pass init params to Decoder
A__ = Decoder(
in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , up_block_types=UpperCAmelCase__ , block_out_channels=UpperCAmelCase__ , layers_per_block=UpperCAmelCase__ , act_fn=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , norm_type=UpperCAmelCase__ , )
@apply_forward_hook
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True) ->VQEncoderOutput:
'''simple docstring'''
A__ = self.encoder(UpperCAmelCase__)
A__ = self.quant_conv(UpperCAmelCase__)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=UpperCAmelCase__)
@apply_forward_hook
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True) ->Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
if not force_not_quantize:
A__ , A__ , A__ = self.quantize(UpperCAmelCase__)
else:
A__ = h
A__ = self.post_quant_conv(UpperCAmelCase__)
A__ = self.decoder(UpperCAmelCase__ , quant if self.config.norm_type == '''spatial''' else None)
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True) ->Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
A__ = sample
A__ = self.encode(UpperCAmelCase__).latents
A__ = self.decode(UpperCAmelCase__).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCAmelCase__)
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]=13 , UpperCAmelCase__ : List[Any]=64 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=32 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : int=10 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Tuple=[1, 16, 4, 4] , UpperCAmelCase__ : Any=None , ) ->Tuple:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = scope
A__ = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
A__ = (self.image_size // 32) ** 2
A__ = num_patches + 1
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]:
'''simple docstring'''
A__ = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
'''hidden_sizes''': [4, 8, 16, 32],
'''num_groups''': 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase__ , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = ViTHybridModel(config=UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]) ->Tuple:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = ViTHybridForImageClassification(UpperCAmelCase__)
model.to(UpperCAmelCase__)
model.eval()
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : Any) ->Any:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
UpperCAmelCase__ = (
{'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
'''simple docstring'''
A__ = ViTHybridModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : str) ->int:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
A__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear))
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = _config_zero_init(UpperCAmelCase__)
for model_class in self.all_model_classes:
A__ = model_class(config=UpperCAmelCase__)
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
A__ = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = ViTHybridModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( ) -> List[str]:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
A__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(
UpperCAmelCase__)
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__)
# forward pass
with torch.no_grad():
A__ = model(**UpperCAmelCase__)
# verify the logits
A__ = torch.Size((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = torch.tensor([-1.9090, -0.4993, -0.2389]).to(UpperCAmelCase__)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
@require_accelerate
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
A__ = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''')
A__ = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''')
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''')
A__ = model(**UpperCAmelCase__)
A__ = outputs.logits
# model predicts one of the 1000 ImageNet classes
A__ = logits.argmax(-1).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
_lowerCamelCase : Union[str, Any] = (720, 1280) # Height, Width
_lowerCamelCase : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it.
_lowerCamelCase : str = 1 / 100
_lowerCamelCase : List[str] = """"""
_lowerCamelCase : List[str] = """"""
_lowerCamelCase : Optional[Any] = """"""
_lowerCamelCase : Dict = 250
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
A__ , A__ = get_dataset(lowercase_ , lowercase_ )
for index in range(lowercase_ ):
A__ = random.sample(range(len(lowercase_ ) ) , 4 )
A__ , A__ , A__ = update_image_and_anno(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , filter_scale=lowercase_ , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
A__ = random_chars(32 )
A__ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
A__ = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"""
cva.imwrite(f"""{file_root}.jpg""" , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" )
A__ = []
for anno in new_annos:
A__ = anno[3] - anno[1]
A__ = anno[4] - anno[2]
A__ = anno[1] + width / 2
A__ = anno[2] + height / 2
A__ = f"""{anno[0]} {x_center} {y_center} {width} {height}"""
annos_list.append(lowercase_ )
with open(f"""{file_root}.txt""" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[list, list]:
"""simple docstring"""
A__ = []
A__ = []
for label_file in glob.glob(os.path.join(lowercase_ , '''*.txt''' ) ):
A__ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(lowercase_ ) as in_file:
A__ = in_file.readlines()
A__ = os.path.join(lowercase_ , f"""{label_name}.jpg""" )
A__ = []
for obj_list in obj_lists:
A__ = obj_list.rstrip('''\n''' ).split(''' ''' )
A__ = float(obj[1] ) - float(obj[3] ) / 2
A__ = float(obj[2] ) - float(obj[4] ) / 2
A__ = float(obj[1] ) + float(obj[3] ) / 2
A__ = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(lowercase_ )
labels.append(lowercase_ )
return img_paths, labels
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.0 , ) -> tuple[list, list, str]:
"""simple docstring"""
A__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
A__ = int(scale_x * output_size[1] )
A__ = int(scale_y * output_size[0] )
A__ = []
A__ = []
for i, index in enumerate(lowercase_ ):
A__ = all_img_list[index]
path_list.append(lowercase_ )
A__ = all_annos[index]
A__ = cva.imread(lowercase_ )
if i == 0: # top-left
A__ = cva.resize(lowercase_ , (divid_point_x, divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = bbox[1] * scale_x
A__ = bbox[2] * scale_y
A__ = bbox[3] * scale_x
A__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
A__ = cva.resize(lowercase_ , (output_size[1] - divid_point_x, divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = scale_x + bbox[1] * (1 - scale_x)
A__ = bbox[2] * scale_y
A__ = scale_x + bbox[3] * (1 - scale_x)
A__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
A__ = cva.resize(lowercase_ , (divid_point_x, output_size[0] - divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = bbox[1] * scale_x
A__ = scale_y + bbox[2] * (1 - scale_y)
A__ = bbox[3] * scale_x
A__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
A__ = cva.resize(
lowercase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
A__ = img
for bbox in img_annos:
A__ = scale_x + bbox[1] * (1 - scale_x)
A__ = scale_y + bbox[2] * (1 - scale_y)
A__ = scale_x + bbox[3] * (1 - scale_x)
A__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
A__ = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
A__ = ascii_lowercase + digits
return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) )
if __name__ == "__main__":
main()
print("""DONE ✅""")
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import OPTConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> List[str]:
"""simple docstring"""
if attention_mask is None:
A__ = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta )
return {"input_ids": input_ids, "attention_mask": attention_mask}
@require_tf
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = OPTConfig
UpperCAmelCase__ = {}
UpperCAmelCase__ = '''gelu'''
def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Optional[int]=99 , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Dict=20 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : int=16 , UpperCAmelCase__ : List[Any]=16 , ) ->Optional[int]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = eos_token_id
A__ = pad_token_id
A__ = bos_token_id
A__ = embed_dim
A__ = word_embed_proj_dim
A__ = False
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size)
A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1)
A__ = tf.concat([input_ids, eos_tensor] , axis=1)
A__ = self.config_cls(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase__ , **self.config_updates , )
A__ = prepare_opt_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__)
return config, inputs_dict
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int) ->Optional[Any]:
'''simple docstring'''
A__ = TFOPTModel(config=UpperCAmelCase__)
A__ = inputs_dict['''input_ids''']
A__ = input_ids[:1, :]
A__ = inputs_dict['''attention_mask'''][:1, :]
A__ = 1
# first forward pass
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__)
A__ , A__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3) , config.vocab_size)
A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta)
# append to next input_ids and
A__ = tf.concat([input_ids, next_tokens] , axis=-1)
A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1)
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)[0]
A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__)[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1])
# select random slice
A__ = int(ids_tensor((1,) , output_from_past.shape[-1]))
A__ = output_from_no_past[:, -3:, random_slice_idx]
A__ = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-3)
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else ()
UpperCAmelCase__ = (TFOPTForCausalLM,) if is_tf_available() else ()
UpperCAmelCase__ = (
{'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = 10
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = TFOPTModelTester(self)
A__ = ConfigTester(self , config_class=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
def _get_word_embedding_weight(UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]):
if hasattr(UpperCAmelCase__ , '''weight'''):
return embedding_layer.weight
else:
# Here we build the word embeddings weights if not exists.
# And then we retry to get the attribute once built.
model.build()
if hasattr(UpperCAmelCase__ , '''weight'''):
return embedding_layer.weight
else:
return None
for model_class in self.all_model_classes:
for size in [config.vocab_size - 10, config.vocab_size + 10]:
# build the embeddings
A__ = model_class(config=UpperCAmelCase__)
A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_input_embeddings())
A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_output_embeddings())
# reshape the embeddings
model.resize_token_embeddings(UpperCAmelCase__)
A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_input_embeddings())
A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_output_embeddings())
# check that the resized embeddings size matches the desired size.
A__ = size if size is not None else config.vocab_size
self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase__)
# check that weights remain the same after resizing
A__ = True
for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()):
if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0:
A__ = False
self.assertTrue(UpperCAmelCase__)
if old_output_embeddings is not None and new_output_embeddings is not None:
self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase__)
A__ = True
for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()):
if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0:
A__ = False
self.assertTrue(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
return tf.constant(lowercase_ , dtype=tf.intaa )
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = 99
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ = tf.ones((4, 1) , dtype=tf.intaa) * 2
A__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1)
A__ = input_ids.shape[0]
A__ = OPTConfig(
vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
@require_sentencepiece
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE ( self : Any) ->Dict:
'''simple docstring'''
A__ = TFOPTModel.from_pretrained('''facebook/opt-350m''')
A__ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]])
A__ = tf.not_equal(UpperCAmelCase__ , model.config.pad_token_id)
with tf.GradientTape():
A__ = model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__).last_hidden_state
A__ = (1, 11, 512)
self.assertEqual(output.shape , UpperCAmelCase__)
A__ = tf.constant(
[[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]])
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=4e-3))
A__ = tf.function(UpperCAmelCase__ , jit_compile=UpperCAmelCase__)
A__ = xla_generate(UpperCAmelCase__ , UpperCAmelCase__)[0]
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=4e-2))
@require_tf
@slow
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
super().setUp()
A__ = '''facebook/opt-350m'''
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
A__ = TFOPTForCausalLM.from_pretrained(self.path_model)
A__ = GPTaTokenizer.from_pretrained(self.path_model)
A__ = [
'''Today is a beautiful day and I want to''',
'''In the city of''',
'''Paris is the capital of France and''',
'''Computers and mobile phones have taken''',
]
# verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False
A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__)
A__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1)
A__ = tf.constant(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
])
self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-4))
A__ = tf.function(UpperCAmelCase__ , jit_compile=UpperCAmelCase__)
A__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1)
self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-4))
@require_tf
@slow
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
'''simple docstring'''
return [
"Today is a beautiful day and I want",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
A__ = '''facebook/opt-125m'''
A__ = [
'''Today is a beautiful day and I want to''',
'''In the city of New York, the city''',
'''Paris is the capital of France and the capital''',
'''Computers and mobile phones have taken over the''',
]
A__ = []
A__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__)
A__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__)
for prompt in self.prompts:
A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''').input_ids
A__ = model.generate(UpperCAmelCase__ , max_length=10)
A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__)
predicted_outputs += generated_string
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ = '''facebook/opt-350m'''
A__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__)
A__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__)
A__ = '''left'''
# use different length sentences to test batching
A__ = [
'''Hello, my dog is a little''',
'''Today, I''',
]
A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__)
A__ = inputs['''input_ids''']
A__ = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs['''attention_mask'''])
A__ = tokenizer(sentences[0] , return_tensors='''tf''').input_ids
A__ = model.generate(input_ids=UpperCAmelCase__)
A__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum(
tf.cast(inputs['''attention_mask'''][-1] , tf.intaa))
A__ = tokenizer(sentences[1] , return_tensors='''tf''').input_ids
A__ = model.generate(input_ids=UpperCAmelCase__ , max_length=model.config.max_length - num_paddings)
A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__)
A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__)
A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__)
A__ = [
'''Hello, my dog is a little bit of a dork.\nI\'m a little bit''',
'''Today, I was in the middle of a conversation with a friend about the''',
]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence])
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
A__ = '''facebook/opt-350m'''
A__ = [
'''Today is a beautiful day and I want to''',
'''In the city of San Francisco, the city''',
'''Paris is the capital of France and the capital''',
'''Computers and mobile phones have taken over the''',
]
A__ = []
A__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__)
A__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__)
for prompt in self.prompts:
A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''').input_ids
A__ = model.generate(UpperCAmelCase__ , max_length=10)
A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__)
predicted_outputs += generated_string
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''yolos'''
def __init__( self : Any , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Optional[int]=3_072 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Dict=1e-12 , UpperCAmelCase__ : List[str]=[512, 864] , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[Any]=100 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Optional[Any]=0.1 , **UpperCAmelCase__ : int , ) ->List[str]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = layer_norm_eps
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = qkv_bias
A__ = num_detection_tokens
A__ = use_mid_position_embeddings
A__ = auxiliary_loss
# Hungarian matcher
A__ = class_cost
A__ = bbox_cost
A__ = giou_cost
# Loss coefficients
A__ = bbox_loss_coefficient
A__ = giou_loss_coefficient
A__ = eos_coefficient
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = version.parse('''1.11''' )
@property
def SCREAMING_SNAKE_CASE ( self : str) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
])
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float:
'''simple docstring'''
return 1e-4
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
return 12
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
import heapq
import sys
import numpy as np
_lowerCamelCase : int = tuple[int, int]
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : List[Any]) ->Optional[int]:
'''simple docstring'''
A__ = []
A__ = set()
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''')
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
return len(self.elements) == 0
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->Optional[Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item))
self.set.add(UpperCAmelCase__)
else:
# update
# print("update", item)
A__ = []
((A__) , (A__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pri, x))
((A__) , (A__)) = heapq.heappop(self.elements)
temp.append((priority, item))
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
if item in self.set:
self.set.remove(UpperCAmelCase__)
A__ = []
((A__) , (A__)) = heapq.heappop(self.elements)
while x != item:
temp.append((pro, x))
((A__) , (A__)) = heapq.heappop(self.elements)
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy))
def SCREAMING_SNAKE_CASE ( self : List[str]) ->int:
'''simple docstring'''
return self.elements[0][1]
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
((A__) , (A__)) = heapq.heappop(self.elements)
self.set.remove(UpperCAmelCase__)
return (priority, item)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = np.array(lowercase_ )
A__ = np.array(lowercase_ )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
"""simple docstring"""
return consistent_heuristic(lowercase_ , lowercase_ ) // t
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple:
"""simple docstring"""
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ )
return ans
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = np.chararray((n, n) )
for i in range(lowercase_ ):
for j in range(lowercase_ ):
A__ = '''*'''
for i in range(lowercase_ ):
for j in range(lowercase_ ):
if (j, (n - 1) - i) in blocks:
A__ = '''#'''
A__ = '''-'''
A__ = back_pointer[goal]
while x != start:
((A__) , (A__)) = x
# print(x)
A__ = '''-'''
A__ = back_pointer[x]
A__ = '''-'''
for i in range(lowercase_ ):
for j in range(lowercase_ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
A__ = back_pointer[goal]
while x != start:
print(lowercase_ , end=''' ''' )
A__ = back_pointer[x]
print(lowercase_ )
sys.exit()
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]:
"""simple docstring"""
for itera in range(lowercase_ ):
open_list[itera].remove_element(lowercase_ )
# print("s", s)
# print("j", j)
((A__) , (A__)) = s
A__ = (x - 1, y)
A__ = (x + 1, y)
A__ = (x, y + 1)
A__ = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(lowercase_ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(lowercase_ )
A__ = -1
A__ = float('''inf''' )
if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1:
A__ = g_function[s] + 1
A__ = s
if neighbours not in close_list_anchor:
open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) )
if neighbours not in close_list_inad:
for var in range(1 , lowercase_ ):
if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key(
lowercase_ , 0 , lowercase_ , lowercase_ ):
open_list[j].put(
lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
"""simple docstring"""
A__ = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
_lowerCamelCase : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
_lowerCamelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
_lowerCamelCase : Dict = make_common_ground()
_lowerCamelCase : List[Any] = blocks_blk
# hyper parameters
_lowerCamelCase : Optional[Any] = 1
_lowerCamelCase : Any = 1
_lowerCamelCase : List[Any] = 20
_lowerCamelCase : str = 3 # one consistent and two other inconsistent
# start and end destination
_lowerCamelCase : Union[str, Any] = (0, 0)
_lowerCamelCase : Any = (n - 1, n - 1)
_lowerCamelCase : Optional[int] = 1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any:
"""simple docstring"""
A__ = {start: 0, goal: float('''inf''' )}
A__ = {start: -1, goal: -1}
A__ = []
A__ = set()
for i in range(lowercase_ ):
open_list.append(PriorityQueue() )
open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) )
A__ = []
A__ = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , lowercase_ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(lowercase_ , lowercase_ , lowercase_ )
else:
A__ , A__ = open_list[i].top_show()
visited.add(lowercase_ )
expand_state(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
close_list_inad.append(lowercase_ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(lowercase_ , lowercase_ , lowercase_ )
else:
A__ = open_list[0].top_show()
visited.add(lowercase_ )
expand_state(
lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , )
close_list_anchor.append(lowercase_ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(lowercase_ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
_lowerCamelCase : str = logging.get_logger(__name__)
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]:
"""simple docstring"""
if "xprophetnet" in prophetnet_checkpoint_path:
A__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ )
A__ , A__ = XLMProphetNetForConditionalGeneration.from_pretrained(
lowercase_ , output_loading_info=lowercase_ )
else:
A__ = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ )
A__ , A__ = ProphetNetForConditionalGeneration.from_pretrained(
lowercase_ , output_loading_info=lowercase_ )
A__ = ['''key_proj''', '''value_proj''', '''query_proj''']
A__ = {
'''self_attn''': '''ngram_self_attn''',
'''cross_attn''': '''encoder_attn''',
'''cross_attn_layer_norm''': '''encoder_attn_layer_norm''',
'''feed_forward_layer_norm''': '''final_layer_norm''',
'''feed_forward''': '''''',
'''intermediate''': '''fc1''',
'''output''': '''fc2''',
'''key_proj''': '''k_proj''',
'''query_proj''': '''q_proj''',
'''value_proj''': '''v_proj''',
'''word_embeddings''': '''embed_tokens''',
'''embeddings_layer_norm''': '''emb_layer_norm''',
'''relative_pos_embeddings''': '''relative_linear''',
'''ngram_embeddings''': '''ngram_input_embed''',
'''position_embeddings''': '''embed_positions''',
}
for key in loading_info["missing_keys"]:
A__ = key.split('''.''' )
if attributes[0] == "lm_head":
A__ = prophet
A__ = prophet_old
else:
A__ = prophet.prophetnet
A__ = prophet_old.model
A__ = False
for attribute in attributes:
if attribute in mapping:
A__ = mapping[attribute]
if not hasattr(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0:
A__ = attribute
elif hasattr(lowercase_ , lowercase_ ):
A__ = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
A__ = old_model.weight
logger.info(f"""{attribute} is initialized.""" )
A__ = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
A__ = old_model.bias
logger.info(f"""{attribute} is initialized""" )
A__ = True
break
elif attribute in special_keys and hasattr(lowercase_ , '''in_proj_weight''' ):
A__ = old_model.in_proj_weight.shape[0] // 3
A__ = getattr(lowercase_ , lowercase_ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
A__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
A__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
A__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
A__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
A__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
A__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
A__ = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
A__ = nn.Parameter(old_model.embed_positions.weight[:512, :] )
A__ = True
break
if attribute.isdigit():
A__ = model[int(lowercase_ )]
A__ = old_model[int(lowercase_ )]
else:
A__ = getattr(lowercase_ , lowercase_ )
if old_attribute == "":
A__ = old_model
else:
if not hasattr(lowercase_ , lowercase_ ):
raise ValueError(f"""{old_model} does not have {old_attribute}""" )
A__ = getattr(lowercase_ , lowercase_ )
if not is_key_init:
raise ValueError(f"""{key} was not correctly initialized!""" )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
prophet.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
_lowerCamelCase : str = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
_lowerCamelCase : str = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
_lowerCamelCase : str = TaTokenizerFast
_lowerCamelCase : int = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[int] = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Any = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Any = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
_lowerCamelCase : Union[str, Any] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : str , UpperCAmelCase__ : int) ->str:
'''simple docstring'''
A__ = [[] for _ in range(UpperCAmelCase__)]
A__ = size
def __getitem__( self : List[Any] , UpperCAmelCase__ : int) ->Iterator[Edge]:
'''simple docstring'''
return iter(self._graph[vertex])
@property
def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]:
'''simple docstring'''
return self._size
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->Optional[Any]:
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''')
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''')
self._graph[from_vertex].append(Edge(UpperCAmelCase__ , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->int | None:
'''simple docstring'''
A__ = deque([start_vertex])
A__ = [None] * self.size
A__ = 0
while queue:
A__ = queue.popleft()
A__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
A__ = current_distance + edge.weight
A__ = distances[edge.destination_vertex]
if (
isinstance(UpperCAmelCase__ , UpperCAmelCase__)
and new_distance >= dest_vertex_distance
):
continue
A__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex)
else:
queue.append(edge.destination_vertex)
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''')
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
from graphs.minimum_spanning_tree_kruskal import kruskal
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
"""simple docstring"""
A__ = 9
A__ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
A__ = kruskal(lowercase_ , lowercase_ )
A__ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(lowercase_ ) == sorted(lowercase_ )
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_lowerCamelCase : Tuple = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Optional[Any]:
"""simple docstring"""
if attention_mask is None:
A__ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
A__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
A__ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=99 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Dict=0.02 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = eos_token_id
A__ = pad_token_id
A__ = bos_token_id
A__ = initializer_range
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
A__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
A__ = shift_tokens_right(UpperCAmelCase__ , 1 , 2)
A__ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , )
A__ = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
return config, inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
A__ , A__ = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]) ->int:
'''simple docstring'''
A__ = 20
A__ = model_class_name(UpperCAmelCase__)
A__ = model.encode(inputs_dict['''input_ids'''])
A__ , A__ = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
A__ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__)
A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''')
A__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A__ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , )
A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''')
A__ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , )
A__ = model.decode(UpperCAmelCase__ , UpperCAmelCase__)
A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""")
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]) ->int:
'''simple docstring'''
A__ = 20
A__ = model_class_name(UpperCAmelCase__)
A__ = model.encode(inputs_dict['''input_ids'''])
A__ , A__ = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
A__ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
A__ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__)
A__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A__ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , )
A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''')
A__ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , )
A__ = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__)
A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""")
@require_flax
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = 99
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
'''simple docstring'''
A__ = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
A__ = input_ids.shape[0]
A__ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
A__ , A__ , A__ = self._get_config_and_data()
A__ = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__)
A__ = lm_model(input_ids=UpperCAmelCase__)
A__ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
A__ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
A__ = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__)
A__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
A__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
A__ = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__)
A__ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]:
'''simple docstring'''
A__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
A__ = shift_tokens_right(UpperCAmelCase__ , 1 , 2)
A__ = np.equal(UpperCAmelCase__ , 1).astype(np.floataa).sum()
A__ = np.equal(UpperCAmelCase__ , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(UpperCAmelCase__ , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = True
UpperCAmelCase__ = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple:
'''simple docstring'''
A__ = FlaxBlenderbotSmallModelTester(self)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)
A__ = model_class(UpperCAmelCase__)
@jax.jit
def encode_jitted(UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : str):
return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__)
with self.subTest('''JIT Enabled'''):
A__ = encode_jitted(**UpperCAmelCase__).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
A__ = encode_jitted(**UpperCAmelCase__).to_tuple()
self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__))
for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
A__ = model_class(UpperCAmelCase__)
A__ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''])
A__ = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any):
return model.decode(
decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , )
with self.subTest('''JIT Enabled'''):
A__ = decode_jitted(**UpperCAmelCase__).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
A__ = decode_jitted(**UpperCAmelCase__).to_tuple()
self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__))
for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
A__ = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''')
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
A__ = np.ones((1, 1)) * model.config.eos_token_id
A__ = model(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
_lowerCamelCase : Dict = pd.read_csv(
"""https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"""
"""position_salaries.csv"""
)
_lowerCamelCase : Any = dataset.iloc[:, 1:2].values
_lowerCamelCase : List[Any] = dataset.iloc[:, 2].values
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = train_test_split(X, y, test_size=0.2, random_state=0)
_lowerCamelCase : List[Any] = PolynomialFeatures(degree=4)
_lowerCamelCase : Optional[Any] = poly_reg.fit_transform(X)
_lowerCamelCase : Tuple = LinearRegression()
pol_reg.fit(X_poly, y)
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
"""simple docstring"""
plt.scatter(lowercase_ , lowercase_ , color='''red''' )
plt.plot(lowercase_ , pol_reg.predict(poly_reg.fit_transform(lowercase_ ) ) , color='''blue''' )
plt.title('''Truth or Bluff (Linear Regression)''' )
plt.xlabel('''Position level''' )
plt.ylabel('''Salary''' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = XCLIPTextConfig()
# derive patch size from model name
A__ = model_name.find('''patch''' )
A__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] )
A__ = XCLIPVisionConfig(patch_size=lowercase_ , num_frames=lowercase_ )
if "large" in model_name:
A__ = 768
A__ = 3_072
A__ = 12
A__ = 1_024
A__ = 4_096
A__ = 16
A__ = 24
A__ = 768
A__ = 3_072
if model_name == "xclip-large-patch14-16-frames":
A__ = 336
A__ = XCLIPConfig.from_text_vision_configs(lowercase_ , lowercase_ )
if "large" in model_name:
A__ = 768
return config
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
if name == "token_embedding.weight":
A__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' )
if name == "positional_embedding":
A__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' )
if "ln_1" in name:
A__ = name.replace('''ln_1''' , '''layer_norm1''' )
if "ln_2" in name:
A__ = name.replace('''ln_2''' , '''layer_norm2''' )
if "c_fc" in name:
A__ = name.replace('''c_fc''' , '''fc1''' )
if "c_proj" in name:
A__ = name.replace('''c_proj''' , '''fc2''' )
if name.startswith('''transformer.resblocks''' ):
A__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' )
if "attn.out_proj" in name and "message" not in name:
A__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' )
if "ln_final" in name:
A__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' )
# visual encoder
if name == "visual.class_embedding":
A__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' )
if name == "visual.positional_embedding":
A__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' )
if name.startswith('''visual.transformer.resblocks''' ):
A__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' )
if "visual.conv1" in name:
A__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' )
if "visual.ln_pre" in name:
A__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' )
if "visual.ln_post" in name:
A__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' )
if "visual.proj" in name:
A__ = name.replace('''visual.proj''' , '''visual_projection.weight''' )
if "text_projection" in name:
A__ = name.replace('''text_projection''' , '''text_projection.weight''' )
# things on top
if "prompts_visual_proj" in name:
A__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' )
if "prompts_visual_ln" in name:
A__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' )
# mit
if name == "mit.positional_embedding":
A__ = name.replace('''positional''' , '''position''' )
if name.startswith('''mit.resblocks''' ):
A__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' )
# prompts generator
if name.startswith('''prompts_generator.norm''' ):
A__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' )
return name
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
A__ = orig_state_dict.pop(lowercase_ )
if "attn.in_proj" in key:
A__ = key.split('''.''' )
if key.startswith('''visual''' ):
A__ = key_split[3]
A__ = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
A__ = val[
:dim, :
]
A__ = val[
dim : dim * 2, :
]
A__ = val[
-dim:, :
]
else:
A__ = val[
:dim
]
A__ = val[
dim : dim * 2
]
A__ = val[
-dim:
]
else:
if "weight" in key:
A__ = val[
:dim, :
]
A__ = val[
dim : dim * 2, :
]
A__ = val[
-dim:, :
]
else:
A__ = val[:dim]
A__ = val[
dim : dim * 2
]
A__ = val[-dim:]
elif key.startswith('''mit''' ):
A__ = key_split[2]
A__ = config.vision_config.mit_hidden_size
if "weight" in key:
A__ = val[:dim, :]
A__ = val[dim : dim * 2, :]
A__ = val[-dim:, :]
else:
A__ = val[:dim]
A__ = val[dim : dim * 2]
A__ = val[-dim:]
else:
A__ = key_split[2]
A__ = config.text_config.hidden_size
if "weight" in key:
A__ = val[:dim, :]
A__ = val[
dim : dim * 2, :
]
A__ = val[-dim:, :]
else:
A__ = val[:dim]
A__ = val[
dim : dim * 2
]
A__ = val[-dim:]
else:
A__ = rename_key(lowercase_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
A__ = val.T
A__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
if num_frames == 8:
A__ = '''eating_spaghetti_8_frames.npy'''
elif num_frames == 16:
A__ = '''eating_spaghetti.npy'''
elif num_frames == 32:
A__ = '''eating_spaghetti_32_frames.npy'''
A__ = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowercase_ , repo_type='''dataset''' , )
A__ = np.load(lowercase_ )
return list(lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> str:
"""simple docstring"""
A__ = {
# fully supervised kinetics-400 checkpoints
'''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''',
'''xclip-base-patch32-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'''
),
'''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''',
'''xclip-base-patch16-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'''
),
'''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb''',
'''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f''',
# fully supervised kinetics-600 checkpoints
'''xclip-base-patch16-kinetics-600''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'''
),
'''xclip-base-patch16-kinetics-600-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'''
),
'''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be''',
# few shot
'''xclip-base-patch16-hmdb-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'''
),
'''xclip-base-patch16-hmdb-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'''
),
'''xclip-base-patch16-hmdb-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'''
),
'''xclip-base-patch16-hmdb-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'''
),
'''xclip-base-patch16-ucf-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'''
),
'''xclip-base-patch16-ucf-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'''
),
'''xclip-base-patch16-ucf-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'''
),
'''xclip-base-patch16-ucf-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'''
),
# zero shot
'''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''',
}
A__ = model_to_url[model_name]
A__ = 8
if "16-frames" in model_name:
A__ = 16
elif "shot" in model_name:
A__ = 32
A__ = get_xclip_config(lowercase_ , lowercase_ )
A__ = XCLIPModel(lowercase_ )
model.eval()
if "drive" in checkpoint_url:
A__ = '''pytorch_model.bin'''
gdown.cached_download(lowercase_ , lowercase_ , quiet=lowercase_ )
A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model''']
else:
A__ = torch.hub.load_state_dict_from_url(lowercase_ )['''model''']
A__ = convert_state_dict(lowercase_ , lowercase_ )
A__ = XCLIPModel(lowercase_ )
A__ , A__ = model.load_state_dict(lowercase_ , strict=lowercase_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
A__ = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224
A__ = VideoMAEImageProcessor(size=lowercase_ )
A__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' )
A__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' )
A__ = XCLIPProcessor(image_processor=lowercase_ , tokenizer=lowercase_ )
A__ = prepare_video(lowercase_ )
A__ = processor(
text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowercase_ , return_tensors='''pt''' , padding=lowercase_ )
print('''Shape of pixel values:''' , inputs.pixel_values.shape )
with torch.no_grad():
A__ = model(**lowercase_ )
# Verify outputs
A__ = outputs.logits_per_video
A__ = logits_per_video.softmax(dim=1 )
print('''Probs:''' , lowercase_ )
# kinetics-400
if model_name == "xclip-base-patch32":
A__ = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] )
elif model_name == "xclip-base-patch32-16-frames":
A__ = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] )
elif model_name == "xclip-base-patch16":
A__ = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] )
elif model_name == "xclip-base-patch16-16-frames":
A__ = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] )
elif model_name == "xclip-large-patch14":
A__ = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] )
elif model_name == "xclip-large-patch14-16-frames":
A__ = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
A__ = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
A__ = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
A__ = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
A__ = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
A__ = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
A__ = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
A__ = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
A__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
A__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
A__ = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
A__ = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
A__ = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] )
else:
raise ValueError(f"""Model name {model_name} not supported""" )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase_ )
if push_to_hub:
print('''Pushing model, processor and slow tokenizer files to the hub...''' )
model.push_to_hub(lowercase_ , organization='''nielsr''' )
processor.push_to_hub(lowercase_ , organization='''nielsr''' )
slow_tokenizer.push_to_hub(lowercase_ , organization='''nielsr''' )
if __name__ == "__main__":
_lowerCamelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_lowerCamelCase : List[str] = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : List[Any]=56 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=99 , UpperCAmelCase__ : Tuple=32 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : Optional[Any]="gelu_new" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : str=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[str]="block_sparse" , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Union[str, Any]=3 , ) ->Union[str, Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_attention_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_choices
A__ = rescale_embeddings
A__ = attention_type
A__ = use_bias
A__ = block_size
A__ = num_random_blocks
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
A__ = None
if self.use_attention_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length])
A__ = None
if self.use_token_type_ids:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
A__ = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''attention_mask''': attention_mask,
}
return config, inputs_dict
@require_flax
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = FlaxBigBirdModelTester(self)
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
A__ = model_class_name.from_pretrained('''google/bigbird-roberta-base''')
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__)
A__ = model_class(UpperCAmelCase__)
@jax.jit
def model_jitted(UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : Tuple):
return model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , **UpperCAmelCase__)
with self.subTest('''JIT Enabled'''):
A__ = model_jitted(**UpperCAmelCase__).to_tuple()
with self.subTest('''JIT Disabled'''):
with jax.disable_jit():
A__ = model_jitted(**UpperCAmelCase__).to_tuple()
self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__))
for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__):
self.assertEqual(jitted_output.shape , output.shape)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]="outputs" , UpperCAmelCase__ : Optional[int]=None) ->List[str]:
'''simple docstring'''
if name.startswith('''outputs.attentions'''):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowerCamelCase : Union[str, Any] = {
"""configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""],
"""tokenization_cpmant""": ["""CpmAntTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CpmAntForCausalLM""",
"""CpmAntModel""",
"""CpmAntPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {
"""facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''detr'''
UpperCAmelCase__ = ['''past_key_values''']
UpperCAmelCase__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : Dict , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : List[str]=100 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : Any=2_048 , UpperCAmelCase__ : str=8 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Any=2_048 , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[Any]="relu" , UpperCAmelCase__ : int=256 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Optional[int]=1.0 , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Optional[int]="sine" , UpperCAmelCase__ : Union[str, Any]="resnet50" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : str=0.1 , **UpperCAmelCase__ : str , ) ->List[Any]:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''')
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''')
A__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''])
elif isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = backbone_config.get('''model_type''')
A__ = CONFIG_MAPPING[backbone_model_type]
A__ = config_class.from_dict(UpperCAmelCase__)
# set timm attributes to None
A__ , A__ , A__ = None, None, None
A__ = use_timm_backbone
A__ = backbone_config
A__ = num_channels
A__ = num_queries
A__ = d_model
A__ = encoder_ffn_dim
A__ = encoder_layers
A__ = encoder_attention_heads
A__ = decoder_ffn_dim
A__ = decoder_layers
A__ = decoder_attention_heads
A__ = dropout
A__ = attention_dropout
A__ = activation_dropout
A__ = activation_function
A__ = init_std
A__ = init_xavier_std
A__ = encoder_layerdrop
A__ = decoder_layerdrop
A__ = encoder_layers
A__ = auxiliary_loss
A__ = position_embedding_type
A__ = backbone
A__ = use_pretrained_backbone
A__ = dilation
# Hungarian matcher
A__ = class_cost
A__ = bbox_cost
A__ = giou_cost
# Loss coefficients
A__ = mask_loss_coefficient
A__ = dice_loss_coefficient
A__ = bbox_loss_coefficient
A__ = giou_loss_coefficient
A__ = eos_coefficient
super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
return self.d_model
@classmethod
def SCREAMING_SNAKE_CASE ( cls : int , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[Any]) ->str:
'''simple docstring'''
return cls(backbone_config=UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Dict[str, any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
A__ = self.backbone_config.to_dict()
A__ = self.__class__.model_type
return output
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = version.parse('''1.11''' )
@property
def SCREAMING_SNAKE_CASE ( self : str) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
])
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float:
'''simple docstring'''
return 1e-5
@property
def SCREAMING_SNAKE_CASE ( self : str) ->int:
'''simple docstring'''
return 12
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = False ) -> list[float]:
"""simple docstring"""
if radian_mode:
return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )]
return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )]
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 10**-1 ) -> bool:
"""simple docstring"""
A__ = cross(lowercase_ , lowercase_ )
A__ = sum(lowercase_ )
return abs(lowercase_ ) < eps
if __name__ == "__main__":
# Test to check if it works
_lowerCamelCase : Optional[Any] = array(
[
polar_force(718.4, 180 - 30),
polar_force(879.54, 45),
polar_force(100, -90),
]
)
_lowerCamelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
_lowerCamelCase : Union[str, Any] = array(
[
polar_force(30 * 9.81, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
_lowerCamelCase : Dict = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
_lowerCamelCase : Dict = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
_lowerCamelCase : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
from collections import Counter
from timeit import timeit
def SCREAMING_SNAKE_CASE ( lowercase_ = "" , ) -> bool:
"""simple docstring"""
return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2
def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> bool:
"""simple docstring"""
if len(lowercase_ ) == 0:
return True
A__ = input_str.replace(''' ''' , '''''' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
A__ = {}
for character in lower_case_input_str:
A__ = character_freq_dict.get(lowercase_ , 0 ) + 1
A__ = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> None:
"""simple docstring"""
print('''\nFor string = ''' , lowercase_ , ''':''' )
print(
'''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(lowercase_ ) , '''\ttime =''' , timeit(
'''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , )
print(
'''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(lowercase_ ) , '''\ttime =''' , timeit(
'''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , )
if __name__ == "__main__":
_lowerCamelCase : Union[str, Any] = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
_lowerCamelCase : str = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
_lowerCamelCase : Tuple = {
"""configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""],
"""processing_speech_to_text""": ["""Speech2TextProcessor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Dict = ["""Speech2TextTokenizer"""]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[int] = ["""Speech2TextFeatureExtractor"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Dict = [
"""TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFSpeech2TextForConditionalGeneration""",
"""TFSpeech2TextModel""",
"""TFSpeech2TextPreTrainedModel""",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Speech2TextForConditionalGeneration""",
"""Speech2TextModel""",
"""Speech2TextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 42
UpperCAmelCase__ = None
UpperCAmelCase__ = None
_lowerCamelCase : int = namedtuple("""CoinsDistribResult""", """moves excess""")
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
if root is None:
return 0
# Validation
def count_nodes(lowercase_ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowercase_ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowercase_ ) != count_coins(lowercase_ ):
raise ValueError('''The nodes number should be same as the number of coins''' )
# Main calculation
def get_distrib(lowercase_ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
A__ , A__ = get_distrib(node.left )
A__ , A__ = get_distrib(node.right )
A__ = 1 - left_distrib_excess
A__ = 1 - right_distrib_excess
A__ = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowercase_ )
+ abs(lowercase_ )
)
A__ = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowercase_ , lowercase_ )
return get_distrib(lowercase_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
import operator as op
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = []
A__ = lambda lowercase_ , lowercase_ : int(x / y ) # noqa: E731 integer division operation
A__ = {
'''^''': op.pow,
'''*''': op.mul,
'''/''': div,
'''+''': op.add,
'''-''': op.sub,
} # operators & their respective operation
# print table header
print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' )
print('''-''' * (30 + len(lowercase_ )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(lowercase_ ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' )
else:
A__ = stack.pop() # pop stack
# output in tabular format
print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' )
A__ = stack.pop() # pop stack
# output in tabular format
print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' )
stack.append(
str(opr[x](int(lowercase_ ) , int(lowercase_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' , )
return int(stack[0] )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """)
print("""\n\tResult = """, solve(Postfix))
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
_lowerCamelCase : List[Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""")
_lowerCamelCase : Dict = (
subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split()
)
_lowerCamelCase : Any = """|""".join(sys.argv[1:])
_lowerCamelCase : int = re.compile(rF'''^({joined_dirs}).*?\.py$''')
_lowerCamelCase : Any = [x for x in modified_files if regex.match(x)]
print(""" """.join(relevant_modified_files), end="""""")
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCamelCase : Union[str, Any] = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
_lowerCamelCase : str = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''mask2former'''
UpperCAmelCase__ = ['''swin''']
UpperCAmelCase__ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Dict] = None , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 1_024 , UpperCAmelCase__ : str = "relu" , UpperCAmelCase__ : int = 6 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 2_048 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 255 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 2.0 , UpperCAmelCase__ : float = 5.0 , UpperCAmelCase__ : float = 5.0 , UpperCAmelCase__ : int = 12_544 , UpperCAmelCase__ : float = 3.0 , UpperCAmelCase__ : float = 0.75 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : List[int] = [4, 8, 16, 32] , UpperCAmelCase__ : bool = None , **UpperCAmelCase__ : Union[str, Any] , ) ->Optional[Any]:
'''simple docstring'''
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''')
A__ = CONFIG_MAPPING['''swin'''](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = backbone_config.pop('''model_type''')
A__ = CONFIG_MAPPING[backbone_model_type]
A__ = config_class.from_dict(UpperCAmelCase__)
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported)}""")
A__ = backbone_config
A__ = feature_size
A__ = mask_feature_size
A__ = hidden_dim
A__ = encoder_feedforward_dim
A__ = activation_function
A__ = encoder_layers
A__ = decoder_layers
A__ = num_attention_heads
A__ = dropout
A__ = dim_feedforward
A__ = pre_norm
A__ = enforce_input_projection
A__ = common_stride
A__ = ignore_value
A__ = num_queries
A__ = no_object_weight
A__ = class_weight
A__ = mask_weight
A__ = dice_weight
A__ = train_num_points
A__ = oversample_ratio
A__ = importance_sample_ratio
A__ = init_std
A__ = init_xavier_std
A__ = use_auxiliary_loss
A__ = feature_strides
A__ = output_auxiliary_logits
A__ = decoder_layers
super().__init__(**UpperCAmelCase__)
@classmethod
def SCREAMING_SNAKE_CASE ( cls : List[Any] , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : List[Any]) ->str:
'''simple docstring'''
return cls(
backbone_config=UpperCAmelCase__ , **UpperCAmelCase__ , )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict[str, any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.backbone_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : Union[str, Any] = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''nat'''
UpperCAmelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Dict=[3, 4, 6, 5] , UpperCAmelCase__ : Dict=[2, 4, 8, 16] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : List[Any]=3.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=1e-5 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Any , ) ->str:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = patch_size
A__ = num_channels
A__ = embed_dim
A__ = depths
A__ = len(UpperCAmelCase__)
A__ = num_heads
A__ = kernel_size
A__ = mlp_ratio
A__ = qkv_bias
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = drop_path_rate
A__ = hidden_act
A__ = layer_norm_eps
A__ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1))
A__ = layer_scale_init_value
A__ = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__) + 1)]
A__ , A__ = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names)
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
if num <= 0:
raise ValueError('''Input must be a positive integer''' )
A__ = [True] * (num + 1)
A__ = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , lowercase_ ):
A__ = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase : int = int(input("""Enter a positive integer: """).strip())
print(prime_sieve_eratosthenes(user_num))
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Optional[int] , *UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : Optional[Any]) ->Any:
'''simple docstring'''
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__)
A__ = eval_examples
A__ = post_process_function
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[Dataset] = None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[List[str]] = None , UpperCAmelCase__ : str = "eval" , **UpperCAmelCase__ : List[str] , ) ->Dict[str, float]:
'''simple docstring'''
A__ = gen_kwargs.copy()
A__ = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length
)
A__ = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams
)
A__ = gen_kwargs
A__ = self.eval_dataset if eval_dataset is None else eval_dataset
A__ = self.get_eval_dataloader(UpperCAmelCase__)
A__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
A__ = self.compute_metrics
A__ = None
A__ = time.time()
A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
A__ = eval_loop(
UpperCAmelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , )
finally:
A__ = compute_metrics
A__ = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
A__ = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
A__ = self.compute_metrics(UpperCAmelCase__)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"""{metric_key_prefix}_"""):
A__ = metrics.pop(UpperCAmelCase__)
metrics.update(output.metrics)
else:
A__ = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCAmelCase__)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__)
return metrics
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str = "test" , **UpperCAmelCase__ : int) ->int:
'''simple docstring'''
A__ = gen_kwargs.copy()
A__ = self.get_test_dataloader(UpperCAmelCase__)
# Temporarily disable metric computation, we will do it in the loop here.
A__ = self.compute_metrics
A__ = None
A__ = time.time()
A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
A__ = eval_loop(
UpperCAmelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , )
finally:
A__ = compute_metrics
A__ = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , ))
if self.post_process_function is None or self.compute_metrics is None:
return output
A__ = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , '''predict''')
A__ = self.compute_metrics(UpperCAmelCase__)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"""{metric_key_prefix}_"""):
A__ = metrics.pop(UpperCAmelCase__)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
_lowerCamelCase : Optional[Any] = """
Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.
In March 2021, Hugging Face raised $40 million in a Series B funding round.[3]
On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]
"""
class UpperCamelCase_ ( unittest.TestCase , UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : str) ->Dict:
'''simple docstring'''
A__ = load_tool('''text-question-answering''')
self.tool.setup()
A__ = load_tool('''text-question-answering''' , remote=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''')
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''')
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = self.remote_tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''')
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = self.tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''')
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = self.remote_tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''')
self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''')
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
from __future__ import annotations
_lowerCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
_lowerCamelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = []
A__ = len(lowercase_ )
for i in range(lowercase_ ):
A__ = -1
for j in range(i + 1 , lowercase_ ):
if arr[i] < arr[j]:
A__ = arr[j]
break
result.append(lowercase_ )
return result
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = []
for i, outer in enumerate(lowercase_ ):
A__ = -1
for inner in arr[i + 1 :]:
if outer < inner:
A__ = inner
break
result.append(lowercase_ )
return result
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]:
"""simple docstring"""
A__ = len(lowercase_ )
A__ = []
A__ = [-1] * arr_size
for index in reversed(range(lowercase_ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
A__ = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
_lowerCamelCase : int = (
"""from __main__ import arr, next_greatest_element_slow, """
"""next_greatest_element_fast, next_greatest_element"""
)
print(
"""next_greatest_element_slow():""",
timeit("""next_greatest_element_slow(arr)""", setup=setup),
)
print(
"""next_greatest_element_fast():""",
timeit("""next_greatest_element_fast(arr)""", setup=setup),
)
print(
""" next_greatest_element():""",
timeit("""next_greatest_element(arr)""", setup=setup),
)
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : List[str] = """▁"""
_lowerCamelCase : List[Any] = {"""vocab_file""": """spiece.model"""}
_lowerCamelCase : List[str] = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
_lowerCamelCase : Optional[int] = {
"""google/reformer-crime-and-punishment""": 524288,
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]="</s>" , UpperCAmelCase__ : Optional[Any]="<unk>" , UpperCAmelCase__ : List[str]=[] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None:
'''simple docstring'''
A__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , )
A__ = vocab_file
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]:
'''simple docstring'''
return self.sp_model.get_piece_size()
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]:
'''simple docstring'''
A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Any) ->Dict:
'''simple docstring'''
A__ = self.__dict__.copy()
A__ = None
return state
def __setstate__( self : int , UpperCAmelCase__ : List[str]) ->Dict:
'''simple docstring'''
A__ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
A__ = {}
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any) ->int:
'''simple docstring'''
return self.sp_model.piece_to_id(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->Tuple:
'''simple docstring'''
if index < self.sp_model.get_piece_size():
A__ = self.sp_model.IdToPiece(UpperCAmelCase__)
return token
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Dict) ->Tuple:
'''simple docstring'''
A__ = []
A__ = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(UpperCAmelCase__) + token
A__ = []
else:
current_sub_tokens.append(UpperCAmelCase__)
out_string += self.sp_model.decode(UpperCAmelCase__)
return out_string.strip()
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase__):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase__)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase__ , '''wb''') as fi:
A__ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase__)
return (out_vocab_file,)
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 1 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = BarthezTokenizer
UpperCAmelCase__ = BarthezTokenizerFast
UpperCAmelCase__ = True
UpperCAmelCase__ = True
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
super().setUp()
A__ = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''')
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase__)
A__ = tokenizer
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = '''<pad>'''
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<s>''')
self.assertEqual(vocab_keys[1] , '''<pad>''')
self.assertEqual(vocab_keys[-1] , '''<mask>''')
self.assertEqual(len(UpperCAmelCase__) , 101_122)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101_122)
@require_torch
def SCREAMING_SNAKE_CASE ( self : List[str]) ->str:
'''simple docstring'''
A__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
A__ = [0, 57, 3_018, 70_307, 91, 2]
A__ = self.tokenizer(
UpperCAmelCase__ , max_length=len(UpperCAmelCase__) , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors='''pt''')
self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
A__ = batch.input_ids.tolist()[0]
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = '''I was born in 92000, and this is falsé.'''
A__ = tokenizer.tokenize(UpperCAmelCase__)
A__ = rust_tokenizer.tokenize(UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__)
A__ = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(UpperCAmelCase__)
A__ = rust_tokenizer.encode(UpperCAmelCase__)
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
A__ = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=UpperCAmelCase__ , )
| 14 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 1 |
from sklearn.metrics import fa_score
import datasets
_lowerCamelCase : Dict = """
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
"""
_lowerCamelCase : Any = """
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{'f1': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results['f1'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric(\"f1\")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results['f1'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")
>>> print(round(results['f1'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'f1': array([0.8, 0. , 0. ])}
"""
_lowerCamelCase : List[Any] = """
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''')),
'''references''': datasets.Sequence(datasets.Value('''int32''')),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32'''),
'''references''': datasets.Value('''int32'''),
}) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , )
def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : Optional[int]="binary" , UpperCAmelCase__ : str=None) ->Optional[Any]:
'''simple docstring'''
A__ = fa_score(
UpperCAmelCase__ , UpperCAmelCase__ , labels=UpperCAmelCase__ , pos_label=UpperCAmelCase__ , average=UpperCAmelCase__ , sample_weight=UpperCAmelCase__)
return {"f1": float(UpperCAmelCase__) if score.size == 1 else score}
| 14 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
_lowerCamelCase : Dict = logging.get_logger(__name__)
_lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
# See all MVP models at https://huggingface.co/models?filter=mvp
_lowerCamelCase : Any = {
"""vocab_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""",
},
"""added_tokens.json""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""",
},
"""merges_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""",
},
}
_lowerCamelCase : Optional[int] = {
"""RUCAIBox/mvp""": 1024,
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = MvpTokenizer
def __init__( self : Any , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]="replace" , UpperCAmelCase__ : str="<s>" , UpperCAmelCase__ : Union[str, Any]="</s>" , UpperCAmelCase__ : Dict="</s>" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : List[Any]="<pad>" , UpperCAmelCase__ : Dict="<mask>" , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=True , **UpperCAmelCase__ : Tuple , ) ->int:
'''simple docstring'''
super().__init__(
UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space:
A__ = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type'''))
A__ = add_prefix_space
A__ = pre_tok_class(**UpperCAmelCase__)
A__ = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
A__ = '''post_processor'''
A__ = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__)
if tokenizer_component_instance:
A__ = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
A__ = tuple(state['''sep'''])
if "cls" in state:
A__ = tuple(state['''cls'''])
A__ = False
if state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space:
A__ = add_prefix_space
A__ = True
if state.get('''trim_offsets''' , UpperCAmelCase__) != trim_offsets:
A__ = trim_offsets
A__ = True
if changes_to_apply:
A__ = getattr(UpperCAmelCase__ , state.pop('''type'''))
A__ = component_class(**UpperCAmelCase__)
setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Dict) ->str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''')
return None
return str(self._mask_token)
@mask_token.setter
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int]) ->List[str]:
'''simple docstring'''
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else value
A__ = value
def SCREAMING_SNAKE_CASE ( self : List[Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[int]) ->BatchEncoding:
'''simple docstring'''
A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''')
return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict) ->BatchEncoding:
'''simple docstring'''
A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
'''to use it with pretokenized inputs.''')
return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__)
return tuple(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=None) ->List[Any]:
'''simple docstring'''
A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]:
'''simple docstring'''
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 14 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 1 |
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = ['''image_processor''', '''tokenizer''']
UpperCAmelCase__ = '''AutoImageProcessor'''
UpperCAmelCase__ = '''AutoTokenizer'''
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Optional[int]) ->Dict:
'''simple docstring'''
A__ = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , UpperCAmelCase__ , )
A__ = kwargs.pop('''feature_extractor''')
A__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''')
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''')
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
A__ = self.image_processor
A__ = False
def __call__( self : str , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[Any]) ->Any:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*UpperCAmelCase__ , **UpperCAmelCase__)
A__ = kwargs.pop('''images''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
if len(UpperCAmelCase__) > 0:
A__ = args[0]
A__ = args[1:]
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''')
if images is not None:
A__ = self.image_processor(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
if text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
if text is None:
return inputs
elif images is None:
return encodings
else:
A__ = encodings['''input_ids''']
return inputs
def SCREAMING_SNAKE_CASE ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any]) ->str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Any) ->int:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
@contextmanager
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your images inputs, or in a separate call.''')
A__ = True
A__ = self.tokenizer
yield
A__ = self.image_processor
A__ = False
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : int=None) ->List[Any]:
'''simple docstring'''
if added_vocab is None:
A__ = self.tokenizer.get_added_vocab()
A__ = {}
while tokens:
A__ = re.search(R'''<s_(.*?)>''' , UpperCAmelCase__ , re.IGNORECASE)
if start_token is None:
break
A__ = start_token.group(1)
A__ = re.search(Rf"""</s_{key}>""" , UpperCAmelCase__ , re.IGNORECASE)
A__ = start_token.group()
if end_token is None:
A__ = tokens.replace(UpperCAmelCase__ , '''''')
else:
A__ = end_token.group()
A__ = re.escape(UpperCAmelCase__)
A__ = re.escape(UpperCAmelCase__)
A__ = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCAmelCase__ , re.IGNORECASE)
if content is not None:
A__ = content.group(1).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
A__ = self.tokenajson(UpperCAmelCase__ , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__)
if value:
if len(UpperCAmelCase__) == 1:
A__ = value[0]
A__ = value
else: # leaf nodes
A__ = []
for leaf in content.split(R'''<sep/>'''):
A__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
A__ = leaf[1:-2] # for categorical special tokens
output[key].append(UpperCAmelCase__)
if len(output[key]) == 1:
A__ = output[key][0]
A__ = tokens[tokens.find(UpperCAmelCase__) + len(UpperCAmelCase__) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__)
if len(UpperCAmelCase__):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE ( self : Dict) ->Any:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , )
return self.image_processor
| 14 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : Optional[Any] = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""},
"""merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""},
}
_lowerCamelCase : Optional[Any] = {
"""ctrl""": 256,
}
_lowerCamelCase : Tuple = {
"""Pregnancy""": 168629,
"""Christianity""": 7675,
"""Explain""": 106423,
"""Fitness""": 63440,
"""Saving""": 63163,
"""Ask""": 27171,
"""Ass""": 95985,
"""Joke""": 163509,
"""Questions""": 45622,
"""Thoughts""": 49605,
"""Retail""": 52342,
"""Feminism""": 164338,
"""Writing""": 11992,
"""Atheism""": 192263,
"""Netflix""": 48616,
"""Computing""": 39639,
"""Opinion""": 43213,
"""Alone""": 44967,
"""Funny""": 58917,
"""Gaming""": 40358,
"""Human""": 4088,
"""India""": 1331,
"""Joker""": 77138,
"""Diet""": 36206,
"""Legal""": 11859,
"""Norman""": 4939,
"""Tip""": 72689,
"""Weight""": 52343,
"""Movies""": 46273,
"""Running""": 23425,
"""Science""": 2090,
"""Horror""": 37793,
"""Confession""": 60572,
"""Finance""": 12250,
"""Politics""": 16360,
"""Scary""": 191985,
"""Support""": 12654,
"""Technologies""": 32516,
"""Teenage""": 66160,
"""Event""": 32769,
"""Learned""": 67460,
"""Notion""": 182770,
"""Wikipedia""": 37583,
"""Books""": 6665,
"""Extract""": 76050,
"""Confessions""": 102701,
"""Conspiracy""": 75932,
"""Links""": 63674,
"""Narcissus""": 150425,
"""Relationship""": 54766,
"""Relationships""": 134796,
"""Reviews""": 41671,
"""News""": 4256,
"""Translation""": 26820,
"""multilingual""": 128406,
}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = set()
A__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ = char
A__ = set(lowercase_ )
return pairs
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTROL_CODES
def __init__( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]="<unk>" , **UpperCAmelCase__ : List[Any]) ->List[str]:
'''simple docstring'''
super().__init__(unk_token=UpperCAmelCase__ , **UpperCAmelCase__)
with open(UpperCAmelCase__ , encoding='''utf-8''') as vocab_handle:
A__ = json.load(UpperCAmelCase__)
A__ = {v: k for k, v in self.encoder.items()}
with open(UpperCAmelCase__ , encoding='''utf-8''') as merges_handle:
A__ = merges_handle.read().split('''\n''')[1:-1]
A__ = [tuple(merge.split()) for merge in merges]
A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__))))
A__ = {}
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]:
'''simple docstring'''
return len(self.encoder)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[Any]) ->Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ = tuple(UpperCAmelCase__)
A__ = tuple(list(word[:-1]) + [word[-1] + '''</w>'''])
A__ = get_pairs(UpperCAmelCase__)
if not pairs:
return token
while True:
A__ = min(UpperCAmelCase__ , key=lambda UpperCAmelCase__: self.bpe_ranks.get(UpperCAmelCase__ , float('''inf''')))
if bigram not in self.bpe_ranks:
break
A__ , A__ = bigram
A__ = []
A__ = 0
while i < len(UpperCAmelCase__):
try:
A__ = word.index(UpperCAmelCase__ , UpperCAmelCase__)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
A__ = j
if word[i] == first and i < len(UpperCAmelCase__) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
A__ = tuple(UpperCAmelCase__)
A__ = new_word
if len(UpperCAmelCase__) == 1:
break
else:
A__ = get_pairs(UpperCAmelCase__)
A__ = '''@@ '''.join(UpperCAmelCase__)
A__ = word[:-4]
A__ = word
return word
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Any) ->Optional[int]:
'''simple docstring'''
A__ = []
A__ = re.findall(R'''\S+\n?''' , UpperCAmelCase__)
for token in words:
split_tokens.extend(list(self.bpe(UpperCAmelCase__).split(''' ''')))
return split_tokens
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str]) ->Any:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token))
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->int:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase__ , self.unk_token)
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
A__ = ''' '''.join(UpperCAmelCase__).replace('''@@ ''' , '''''').strip()
return out_string
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase__):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''])
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__) + '''\n''')
A__ = 0
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as writer:
writer.write('''#version: 0.2\n''')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__: kv[1]):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''')
A__ = token_index
writer.write(''' '''.join(UpperCAmelCase__) + '''\n''')
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 1 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = checkpoint
A__ = {}
A__ = vae_state_dict['''encoder.conv_in.weight''']
A__ = vae_state_dict['''encoder.conv_in.bias''']
A__ = vae_state_dict['''encoder.conv_out.weight''']
A__ = vae_state_dict['''encoder.conv_out.bias''']
A__ = vae_state_dict['''encoder.norm_out.weight''']
A__ = vae_state_dict['''encoder.norm_out.bias''']
A__ = vae_state_dict['''decoder.conv_in.weight''']
A__ = vae_state_dict['''decoder.conv_in.bias''']
A__ = vae_state_dict['''decoder.conv_out.weight''']
A__ = vae_state_dict['''decoder.conv_out.bias''']
A__ = vae_state_dict['''decoder.norm_out.weight''']
A__ = vae_state_dict['''decoder.norm_out.bias''']
A__ = vae_state_dict['''quant_conv.weight''']
A__ = vae_state_dict['''quant_conv.bias''']
A__ = vae_state_dict['''post_quant_conv.weight''']
A__ = vae_state_dict['''post_quant_conv.bias''']
# Retrieves the keys for the encoder down blocks only
A__ = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} )
A__ = {
layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowercase_ )
}
# Retrieves the keys for the decoder up blocks only
A__ = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} )
A__ = {
layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowercase_ )
}
for i in range(lowercase_ ):
A__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key]
if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
A__ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.weight""" )
A__ = vae_state_dict.pop(
f"""encoder.down.{i}.downsample.conv.bias""" )
A__ = renew_vae_resnet_paths(lowercase_ )
A__ = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ )
A__ = [key for key in vae_state_dict if '''encoder.mid.block''' in key]
A__ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
A__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key]
A__ = renew_vae_resnet_paths(lowercase_ )
A__ = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ )
A__ = [key for key in vae_state_dict if '''encoder.mid.attn''' in key]
A__ = renew_vae_attention_paths(lowercase_ )
A__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ )
conv_attn_to_linear(lowercase_ )
for i in range(lowercase_ ):
A__ = num_up_blocks - 1 - i
A__ = [
key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key
]
if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
A__ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.weight"""
]
A__ = vae_state_dict[
f"""decoder.up.{block_id}.upsample.conv.bias"""
]
A__ = renew_vae_resnet_paths(lowercase_ )
A__ = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ )
A__ = [key for key in vae_state_dict if '''decoder.mid.block''' in key]
A__ = 2
for i in range(1 , num_mid_res_blocks + 1 ):
A__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key]
A__ = renew_vae_resnet_paths(lowercase_ )
A__ = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ )
A__ = [key for key in vae_state_dict if '''decoder.mid.attn''' in key]
A__ = renew_vae_attention_paths(lowercase_ )
A__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ )
conv_attn_to_linear(lowercase_ )
return new_checkpoint
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , ) -> int:
"""simple docstring"""
A__ = requests.get(
''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' )
A__ = io.BytesIO(r.content )
A__ = OmegaConf.load(lowercase_ )
A__ = 512
A__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if checkpoint_path.endswith('''safetensors''' ):
from safetensors import safe_open
A__ = {}
with safe_open(lowercase_ , framework='''pt''' , device='''cpu''' ) as f:
for key in f.keys():
A__ = f.get_tensor(lowercase_ )
else:
A__ = torch.load(lowercase_ , map_location=lowercase_ )['''state_dict''']
# Convert the VAE model.
A__ = create_vae_diffusers_config(lowercase_ , image_size=lowercase_ )
A__ = custom_convert_ldm_vae_checkpoint(lowercase_ , lowercase_ )
A__ = AutoencoderKL(**lowercase_ )
vae.load_state_dict(lowercase_ )
vae.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
_lowerCamelCase : Optional[int] = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 14 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 1 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
if not (isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ )):
raise ValueError('''longest_common_substring() takes two strings for inputs''' )
A__ = len(lowercase_ )
A__ = len(lowercase_ )
A__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
A__ = 0
A__ = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
A__ = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
A__ = i
A__ = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : int = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=False , lowercase_=False ) -> Optional[Any]:
"""simple docstring"""
A__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
A__ = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" )
A__ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
A__ = in_proj_weight[
: config.hidden_size, :
]
A__ = in_proj_bias[: config.hidden_size]
A__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ = in_proj_weight[
-config.hidden_size :, :
]
A__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
A__ = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = dct.pop(lowercase_ )
A__ = val
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
A__ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase_ )
A__ = False
A__ = False
A__ = False
A__ = False
if "vqa" in checkpoint_url:
A__ = True
A__ = 3_129
A__ = '''huggingface/label-files'''
A__ = '''vqa2-id2label.json'''
A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) )
A__ = {int(lowercase_ ): v for k, v in idalabel.items()}
A__ = idalabel
A__ = {v: k for k, v in idalabel.items()}
A__ = ViltForQuestionAnswering(lowercase_ )
elif "nlvr" in checkpoint_url:
A__ = True
A__ = 2
A__ = {0: '''False''', 1: '''True'''}
A__ = {v: k for k, v in config.idalabel.items()}
A__ = 3
A__ = ViltForImagesAndTextClassification(lowercase_ )
elif "irtr" in checkpoint_url:
A__ = True
A__ = ViltForImageAndTextRetrieval(lowercase_ )
elif "mlm_itm" in checkpoint_url:
A__ = True
A__ = ViltForMaskedLM(lowercase_ )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''state_dict''']
A__ = create_rename_keys(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
for src, dest in rename_keys:
rename_key(lowercase_ , lowercase_ , lowercase_ )
read_in_q_k_v(lowercase_ , lowercase_ )
if mlm_model or irtr_model:
A__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(lowercase_ , lowercase_ )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A__ , A__ = model.load_state_dict(lowercase_ , strict=lowercase_ )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(lowercase_ )
# Define processor
A__ = ViltImageProcessor(size=384 )
A__ = BertTokenizer.from_pretrained('''bert-base-uncased''' )
A__ = ViltProcessor(lowercase_ , lowercase_ )
# Forward pass on example inputs (image + text)
if nlvr_model:
A__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=lowercase_ ).raw )
A__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=lowercase_ ).raw )
A__ = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' )
A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' )
A__ = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
A__ = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=lowercase_ ).raw )
if mlm_model:
A__ = '''a bunch of [MASK] laying on a [MASK].'''
else:
A__ = '''How many cats are there?'''
A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' )
A__ = model(**lowercase_ )
# Verify outputs
if mlm_model:
A__ = torch.Size([1, 11, 30_522] )
A__ = torch.tensor([-12.50_61, -12.51_23, -12.51_74] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 )
# verify masked token prediction equals "cats"
A__ = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A__ = torch.Size([1, 3_129] )
A__ = torch.tensor([-15.94_95, -18.14_72, -10.30_41] )
assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 )
# verify vqa prediction equals "2"
A__ = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A__ = torch.Size([1, 2] )
A__ = torch.tensor([-2.87_21, 2.12_91] )
assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
print(f"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
_lowerCamelCase : Optional[Any] = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 14 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 1 |
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = StableDiffusionControlNetImgaImgPipeline
UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} )
UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE ( self : List[str]) ->str:
'''simple docstring'''
torch.manual_seed(0)
A__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0)
A__ = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0)
A__ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
torch.manual_seed(0)
A__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0)
A__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
A__ = CLIPTextModel(UpperCAmelCase__)
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
A__ = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=0) ->Tuple:
'''simple docstring'''
if str(UpperCAmelCase__).startswith('''mps'''):
A__ = torch.manual_seed(UpperCAmelCase__)
else:
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__)
A__ = 2
A__ = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__) , )
A__ = floats_tensor(control_image.shape , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__)
A__ = image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64))
A__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = StableDiffusionControlNetImgaImgPipeline
UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCAmelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0)
A__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
torch.manual_seed(0)
def init_weights(UpperCAmelCase__ : Any):
if isinstance(UpperCAmelCase__ , torch.nn.Convad):
torch.nn.init.normal(m.weight)
m.bias.data.fill_(1.0)
A__ = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(UpperCAmelCase__)
torch.manual_seed(0)
A__ = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(UpperCAmelCase__)
torch.manual_seed(0)
A__ = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , )
torch.manual_seed(0)
A__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0)
A__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
A__ = CLIPTextModel(UpperCAmelCase__)
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
A__ = MultiControlNetModel([controlneta, controlneta])
A__ = {
'''unet''': unet,
'''controlnet''': controlnet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=0) ->Dict:
'''simple docstring'''
if str(UpperCAmelCase__).startswith('''mps'''):
A__ = torch.manual_seed(UpperCAmelCase__)
else:
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__)
A__ = 2
A__ = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__) , ),
]
A__ = floats_tensor(control_image[0].shape , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__)
A__ = image.cpu().permute(0 , 2 , 3 , 1)[0]
A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64))
A__ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
'''image''': image,
'''control_image''': control_image,
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Any) ->Any:
'''simple docstring'''
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**UpperCAmelCase__)
pipe.to(UpperCAmelCase__)
A__ = 10.0
A__ = 4
A__ = self.get_dummy_inputs(UpperCAmelCase__)
A__ = steps
A__ = scale
A__ = pipe(**UpperCAmelCase__)[0]
A__ = self.get_dummy_inputs(UpperCAmelCase__)
A__ = steps
A__ = scale
A__ = pipe(**UpperCAmelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2)[0]
A__ = self.get_dummy_inputs(UpperCAmelCase__)
A__ = steps
A__ = scale
A__ = pipe(**UpperCAmelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7])[0]
A__ = self.get_dummy_inputs(UpperCAmelCase__)
A__ = steps
A__ = scale
A__ = pipe(**UpperCAmelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8])[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a)) > 1e-3
assert np.sum(np.abs(output_a - output_a)) > 1e-3
assert np.sum(np.abs(output_a - output_a)) > 1e-3
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
def SCREAMING_SNAKE_CASE ( self : Any) ->int:
'''simple docstring'''
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**UpperCAmelCase__)
pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(UpperCAmelCase__)
except NotImplementedError:
pass
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''')
A__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCAmelCase__ , controlnet=UpperCAmelCase__)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = torch.Generator(device='''cpu''').manual_seed(0)
A__ = '''evil space-punk bird'''
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''').resize((512, 512))
A__ = load_image(
'''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''').resize((512, 512))
A__ = pipe(
UpperCAmelCase__ , UpperCAmelCase__ , control_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , )
A__ = output.images[0]
assert image.shape == (512, 512, 3)
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''')
assert np.abs(expected_image - image).max() < 9e-2
| 14 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCamelCase : Optional[int] = {
"""return_dict""": False,
"""output_hidden_states""": True,
"""output_attentions""": True,
"""torchscript""": True,
"""torch_dtype""": """float16""",
"""use_bfloat16""": True,
"""tf_legacy_loss""": True,
"""pruned_heads""": {"""a""": 1},
"""tie_word_embeddings""": False,
"""is_decoder""": True,
"""cross_attention_hidden_size""": 128,
"""add_cross_attention""": True,
"""tie_encoder_decoder""": True,
"""max_length""": 50,
"""min_length""": 3,
"""do_sample""": True,
"""early_stopping""": True,
"""num_beams""": 3,
"""num_beam_groups""": 3,
"""diversity_penalty""": 0.5,
"""temperature""": 2.0,
"""top_k""": 10,
"""top_p""": 0.7,
"""typical_p""": 0.2,
"""repetition_penalty""": 0.8,
"""length_penalty""": 0.8,
"""no_repeat_ngram_size""": 5,
"""encoder_no_repeat_ngram_size""": 5,
"""bad_words_ids""": [1, 2, 3],
"""num_return_sequences""": 3,
"""chunk_size_feed_forward""": 5,
"""output_scores""": True,
"""return_dict_in_generate""": True,
"""forced_bos_token_id""": 2,
"""forced_eos_token_id""": 3,
"""remove_invalid_values""": True,
"""architectures""": ["""BertModel"""],
"""finetuning_task""": """translation""",
"""id2label""": {0: """label"""},
"""label2id""": {"""label""": """0"""},
"""tokenizer_class""": """BertTokenizerFast""",
"""prefix""": """prefix""",
"""bos_token_id""": 6,
"""pad_token_id""": 7,
"""eos_token_id""": 8,
"""sep_token_id""": 9,
"""decoder_start_token_id""": 10,
"""exponential_decay_length_penalty""": (5, 1.01),
"""suppress_tokens""": [0, 1],
"""begin_suppress_tokens""": 2,
"""task_specific_params""": {"""translation""": """some_params"""},
"""problem_type""": """regression""",
}
@is_staging_test
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Tuple) ->Union[str, Any]:
'''simple docstring'''
A__ = TOKEN
HfFolder.save_token(UpperCAmelCase__)
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Optional[int]) ->Optional[int]:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-config''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''')
except HTTPError:
pass
def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]:
'''simple docstring'''
A__ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''test-config''' , use_auth_token=self._token)
A__ = BertConfig.from_pretrained(f"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__))
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase__ , repo_id='''test-config''' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token)
A__ = BertConfig.from_pretrained(f"""{USER}/test-config""")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
'''simple docstring'''
A__ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37)
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token)
A__ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__))
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token)
A__ = BertConfig.from_pretrained('''valid_org/test-config-org''')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__))
def SCREAMING_SNAKE_CASE ( self : str) ->Dict:
'''simple docstring'''
CustomConfig.register_for_auto_class()
A__ = CustomConfig(attribute=42)
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''})
A__ = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCAmelCase__)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''')
self.assertEqual(new_config.attribute , 42)
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
A__ = c.n_embd + 1 # int
A__ = c.resid_pdrop + 1.0 # float
A__ = not c.scale_attn_weights # bool
A__ = c.summary_type + '''foo''' # str
c.update_from_string(
f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""")
self.assertEqual(UpperCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''')
self.assertEqual(UpperCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''')
self.assertEqual(UpperCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''')
self.assertEqual(UpperCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''')
def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]:
'''simple docstring'''
A__ = PretrainedConfig()
A__ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
UpperCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''])
A__ = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase__ , UpperCAmelCase__)]
if len(UpperCAmelCase__) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
f""" {", ".join(UpperCAmelCase__)}.""")
def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
# config is in subfolder, the following should not work without specifying the subfolder
A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''')
A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''')
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
A__ = mock.Mock()
A__ = 500
A__ = {}
A__ = HTTPError
A__ = {}
# Download this model to make sure it's in the cache.
A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase__) as mock_head:
A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''')
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE ( self : str) ->Tuple:
'''simple docstring'''
A__ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = AutoConfig.from_pretrained('''bert-base-cased''')
A__ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(UpperCAmelCase__)
A__ = 2
json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase__ , '''config.4.0.0.json''') , '''w'''))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
self.assertEqual(new_configuration.hidden_size , 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
A__ = ['''config.42.0.0.json''']
A__ = 768
configuration.save_pretrained(UpperCAmelCase__)
shutil.move(os.path.join(UpperCAmelCase__ , '''config.4.0.0.json''') , os.path.join(UpperCAmelCase__ , '''config.42.0.0.json'''))
A__ = AutoConfig.from_pretrained(UpperCAmelCase__)
self.assertEqual(new_configuration.hidden_size , 768)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
A__ = '''v4.0.0'''
A__ , A__ = new_transformers.models.auto.AutoConfig.from_pretrained(
UpperCAmelCase__ , return_unused_kwargs=UpperCAmelCase__)
self.assertEqual(new_configuration.hidden_size , 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(UpperCAmelCase__ , {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
A__ = '''v3.0.0'''
A__ = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase__)
self.assertEqual(old_configuration.hidden_size , 768)
| 14 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : str = "▁" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[str, AddedToken] = "<unk>" , UpperCAmelCase__ : Union[str, AddedToken] = "</s>" , UpperCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) ->Optional[Any]:
'''simple docstring'''
A__ = {
'''pad''': {'''id''': 0, '''token''': pad_token},
'''eos''': {'''id''': 1, '''token''': eos_token},
'''unk''': {'''id''': 2, '''token''': unk_token},
}
A__ = [None] * len(self.special_tokens)
for token_dict in self.special_tokens.values():
A__ = token_dict['''token''']
A__ = Tokenizer(Unigram())
A__ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(''' {2,}''') , ''' '''),
normalizers.Lowercase(),
])
A__ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__),
pre_tokenizers.Digits(individual_digits=UpperCAmelCase__),
pre_tokenizers.Punctuation(),
])
A__ = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__)
A__ = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , )
A__ = {
'''model''': '''SentencePieceUnigram''',
'''replacement''': replacement,
'''add_prefix_space''': add_prefix_space,
}
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 8_000 , UpperCAmelCase__ : bool = True , ) ->Tuple:
'''simple docstring'''
A__ = trainers.UnigramTrainer(
vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__)
self.add_unk_id()
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCAmelCase__ : int = 8_000 , UpperCAmelCase__ : bool = True , ) ->List[Any]:
'''simple docstring'''
A__ = trainers.UnigramTrainer(
vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , )
self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__)
self.add_unk_id()
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ = json.loads(self._tokenizer.to_str())
A__ = self.special_tokens['''unk''']['''id''']
A__ = Tokenizer.from_str(json.dumps(UpperCAmelCase__))
| 14 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 1 |
import argparse
import os
import re
_lowerCamelCase : List[str] = """src/transformers"""
# Pattern that looks at the indentation in a line.
_lowerCamelCase : Optional[Any] = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
_lowerCamelCase : Tuple = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
_lowerCamelCase : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
_lowerCamelCase : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
_lowerCamelCase : Any = re.compile(r"""\[([^\]]+)\]""")
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = _re_indent.search(lowercase_ )
return "" if search is None else search.groups()[0]
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_="" , lowercase_=None , lowercase_=None ) -> List[str]:
"""simple docstring"""
A__ = 0
A__ = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowercase_ ):
index += 1
A__ = ['''\n'''.join(lines[:index] )]
else:
A__ = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
A__ = [lines[index]]
index += 1
while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowercase_ ) )
if index < len(lowercase_ ) - 1:
A__ = [lines[index + 1]]
index += 1
else:
A__ = []
else:
blocks.append('''\n'''.join(lowercase_ ) )
A__ = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowercase_ ) > 0:
blocks.append('''\n'''.join(lowercase_ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowercase_ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
def _inner(lowercase_ ):
return key(lowercase_ ).lower().replace('''_''' , '''''' )
return _inner
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None ) -> int:
"""simple docstring"""
def noop(lowercase_ ):
return x
if key is None:
A__ = noop
# Constants are all uppercase, they go first.
A__ = [obj for obj in objects if key(lowercase_ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
A__ = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()]
# Functions begin with a lowercase, they go last.
A__ = [obj for obj in objects if not key(lowercase_ )[0].isupper()]
A__ = ignore_underscore(lowercase_ )
return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple:
"""simple docstring"""
def _replace(lowercase_ ):
A__ = match.groups()[0]
if "," not in imports:
return f"""[{imports}]"""
A__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
A__ = keys[:-1]
return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) + "]"
A__ = import_statement.split('''\n''' )
if len(lowercase_ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
A__ = 2 if lines[1].strip() == '''[''' else 1
A__ = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
A__ = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] )
A__ = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowercase_ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
A__ = _re_bracket_content.sub(_replace , lines[1] )
else:
A__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
A__ = keys[:-1]
A__ = get_indent(lines[1] ) + ''', '''.join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] )
return "\n".join(lowercase_ )
else:
# Finally we have to deal with imports fitting on one line
A__ = _re_bracket_content.sub(_replace , lowercase_ )
return import_statement
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=True ) -> Dict:
"""simple docstring"""
with open(lowercase_ , encoding='''utf-8''' ) as f:
A__ = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
A__ = split_code_in_indented_blocks(
lowercase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowercase_ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
A__ = main_blocks[block_idx]
A__ = block.split('''\n''' )
# Get to the start of the imports.
A__ = 0
while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
A__ = len(lowercase_ )
else:
line_idx += 1
if line_idx >= len(lowercase_ ):
continue
# Ignore beginning and last line: they don't contain anything.
A__ = '''\n'''.join(block_lines[line_idx:-1] )
A__ = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
A__ = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ )
# We have two categories of import key: list or _import_structure[key].append/extend
A__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
A__ = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
A__ = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None]
A__ = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
A__ = 0
A__ = []
for i in range(len(lowercase_ ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
A__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(lowercase_ )
count += 1
# And we put our main block back together with its first and last line.
A__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(lowercase_ ):
if check_only:
return True
else:
print(f"""Overwriting {file}.""" )
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(lowercase_ ) )
def SCREAMING_SNAKE_CASE ( lowercase_=True ) -> int:
"""simple docstring"""
A__ = []
for root, _, files in os.walk(lowercase_ ):
if "__init__.py" in files:
A__ = sort_imports(os.path.join(lowercase_ , '''__init__.py''' ) , check_only=lowercase_ )
if result:
A__ = [os.path.join(lowercase_ , '''__init__.py''' )]
if len(lowercase_ ) > 0:
raise ValueError(f"""Would overwrite {len(lowercase_ )} files, run `make style`.""" )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
_lowerCamelCase : Optional[Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 14 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
_lowerCamelCase : Dict = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""")
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = SpeechTaTokenizer
UpperCAmelCase__ = False
UpperCAmelCase__ = True
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ = SpeechTaTokenizer(UpperCAmelCase__)
A__ = AddedToken('''<mask>''' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__)
A__ = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token})
tokenizer.add_tokens(['''<ctc_blank>'''])
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[Any]) ->List[Any]:
'''simple docstring'''
A__ = '''this is a test'''
A__ = '''this is a test'''
return input_text, output_text
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Any=20 , UpperCAmelCase__ : int=5) ->Any:
'''simple docstring'''
A__ , A__ = self.get_input_output_texts(UpperCAmelCase__)
A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__)
A__ = tokenizer.decode(UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__)
return text, ids
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
A__ = '''<pad>'''
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '''<s>''')
self.assertEqual(vocab_keys[1] , '''<pad>''')
self.assertEqual(vocab_keys[-4] , '''œ''')
self.assertEqual(vocab_keys[-2] , '''<mask>''')
self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''')
self.assertEqual(len(UpperCAmelCase__) , 81)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 79)
def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.get_tokenizers(do_lower_case=UpperCAmelCase__)
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}"""):
A__ = tokenizer.vocab_size
A__ = len(UpperCAmelCase__)
self.assertNotEqual(UpperCAmelCase__ , 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A__ = tokenizer.add_tokens(UpperCAmelCase__)
A__ = tokenizer.vocab_size
A__ = len(UpperCAmelCase__)
self.assertNotEqual(UpperCAmelCase__ , 0)
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
self.assertEqual(UpperCAmelCase__ , len(UpperCAmelCase__))
self.assertEqual(UpperCAmelCase__ , all_size + len(UpperCAmelCase__))
A__ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=UpperCAmelCase__)
self.assertGreaterEqual(len(UpperCAmelCase__) , 4)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
A__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A__ = tokenizer.add_special_tokens(UpperCAmelCase__)
A__ = tokenizer.vocab_size
A__ = len(UpperCAmelCase__)
self.assertNotEqual(UpperCAmelCase__ , 0)
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__)
self.assertEqual(UpperCAmelCase__ , len(UpperCAmelCase__))
self.assertEqual(UpperCAmelCase__ , all_size_a + len(UpperCAmelCase__))
A__ = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=UpperCAmelCase__)
self.assertGreaterEqual(len(UpperCAmelCase__) , 6)
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[0] , tokens[1])
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1)
self.assertGreater(tokens[-3] , tokens[-4])
self.assertEqual(tokens[0] , tokenizer.eos_token_id)
self.assertEqual(tokens[-3] , tokenizer.pad_token_id)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
'''simple docstring'''
A__ = self.get_tokenizer()
A__ = tokenizer.tokenize('''This is a test''')
# fmt: off
self.assertListEqual(UpperCAmelCase__ , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''])
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''')
self.assertListEqual(
UpperCAmelCase__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''])
A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__)
# fmt: off
self.assertListEqual(UpperCAmelCase__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26])
# fmt: on
A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__)
self.assertListEqual(
UpperCAmelCase__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''])
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]:
'''simple docstring'''
A__ = [
'''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides '''
'''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural '''
'''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained '''
'''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''',
'''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly '''
'''conditioning on both left and right context in all layers.''',
'''The quick brown fox jumps over the lazy dog.''',
]
# fmt: off
A__ = {
'''input_ids''': [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=UpperCAmelCase__ , )
| 14 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , UpperCAmelCase__ , )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = RobertaConfig
UpperCAmelCase__ = '''roberta'''
def __init__( self : Any , UpperCAmelCase__ : List[str]) ->Dict:
'''simple docstring'''
super().__init__(UpperCAmelCase__)
A__ = RobertaEmbeddings(UpperCAmelCase__)
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , UpperCAmelCase__ , )
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = RobertaConfig
UpperCAmelCase__ = '''roberta'''
def __init__( self : Optional[Any] , UpperCAmelCase__ : Tuple) ->Dict:
'''simple docstring'''
super().__init__(UpperCAmelCase__)
A__ = config.num_labels
A__ = config.num_hidden_layers
A__ = DeeRobertaModel(UpperCAmelCase__)
A__ = nn.Dropout(config.hidden_dropout_prob)
A__ = nn.Linear(config.hidden_size , self.config.num_labels)
@add_start_docstrings_to_model_forward(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=-1 , UpperCAmelCase__ : Optional[int]=False , ) ->Optional[int]:
'''simple docstring'''
A__ = self.num_layers
try:
A__ = self.roberta(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , )
A__ = outputs[1]
A__ = self.dropout(UpperCAmelCase__)
A__ = self.classifier(UpperCAmelCase__)
A__ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
A__ = e.message
A__ = e.exit_layer
A__ = outputs[0]
if not self.training:
A__ = entropy(UpperCAmelCase__)
A__ = []
A__ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
A__ = MSELoss()
A__ = loss_fct(logits.view(-1) , labels.view(-1))
else:
A__ = CrossEntropyLoss()
A__ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
# work with highway exits
A__ = []
for highway_exit in outputs[-1]:
A__ = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCAmelCase__)
highway_entropy.append(highway_exit[2])
if self.num_labels == 1:
# We are doing regression
A__ = MSELoss()
A__ = loss_fct(highway_logits.view(-1) , labels.view(-1))
else:
A__ = CrossEntropyLoss()
A__ = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1))
highway_losses.append(UpperCAmelCase__)
if train_highway:
A__ = (sum(highway_losses[:-1]),) + outputs
# exclude the final highway, of course
else:
A__ = (loss,) + outputs
if not self.training:
A__ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
A__ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 14 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 1 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
_lowerCamelCase : List[Any] = """bert-base-cased"""
_lowerCamelCase : Any = """fp16"""
_lowerCamelCase : Tuple = """bf16"""
_lowerCamelCase : List[str] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
'''simple docstring'''
super().setUp()
A__ = dict(
ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , )
def SCREAMING_SNAKE_CASE ( self : str) ->List[str]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(UpperCAmelCase__):
A__ = self.dist_env.copy()
A__ = f"""{i + 1}"""
A__ = strategy
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(UpperCAmelCase__):
A__ = self.dist_env.copy()
A__ = prefetch_policy
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch)
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1))
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(UpperCAmelCase__):
A__ = self.dist_env.copy()
A__ = state_dict_type
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1))
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu)
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only)
def SCREAMING_SNAKE_CASE ( self : str) ->int:
'''simple docstring'''
A__ = AutoModel.from_pretrained(UpperCAmelCase__)
for policy in FSDP_AUTO_WRAP_POLICY:
A__ = self.dist_env.copy()
A__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
A__ = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
A__ = '''2000'''
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__)
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy)
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy)
A__ = self.dist_env.copy()
A__ = '''TRANSFORMER_BASED_WRAP'''
A__ = '''T5Layer'''
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
with self.assertRaises(UpperCAmelCase__) as cm:
fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__)
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception))
A__ = self.dist_env.copy()
A__ = '''SIZE_BASED_WRAP'''
A__ = '''0'''
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__)
self.assertIsNone(fsdp_plugin.auto_wrap_policy)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
A__ = self.dist_env.copy()
A__ = mp_dtype
with mockenv_context(**UpperCAmelCase__):
A__ = Accelerator()
if mp_dtype == "fp16":
A__ = torch.floataa
elif mp_dtype == "bf16":
A__ = torch.bfloataa
A__ = MixedPrecision(param_dtype=UpperCAmelCase__ , reduce_dtype=UpperCAmelCase__ , buffer_dtype=UpperCAmelCase__)
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCAmelCase__)
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , UpperCAmelCase__))
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler)
AcceleratorState._reset_state(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Dict) ->str:
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
A__ = self.dist_env.copy()
A__ = str(UpperCAmelCase__).lower()
with mockenv_context(**UpperCAmelCase__):
A__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCAmelCase__))
@require_fsdp
@require_multi_gpu
@slow
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
super().setUp()
A__ = 0.82
A__ = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
A__ = {
'''multi_gpu_fp16''': 3_200,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
A__ = 160
A__ = 160
A__ = inspect.getfile(accelerate.test_utils)
A__ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps'''])
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = os.path.join(self.test_scripts_folder , '''test_performance.py''')
A__ = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
A__ = cmd.copy()
for i, strategy in enumerate(UpperCAmelCase__):
if strategy.lower() in config:
cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""")
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''')
else:
cmd_config.append('''--mixed_precision=fp16''')
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''')
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""")
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''')
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''')
cmd_config.extend(
[
self.test_file_path,
f"""--output_dir={self.tmpdir}""",
f"""--performance_lower_bound={self.performance_lower_bound}""",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''')
A__ = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(UpperCAmelCase__):
A__ = cmd.copy()
cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""")
if strategy != "FULL_SHARD":
continue
A__ = len(UpperCAmelCase__)
for state_dict_type in FSDP_STATE_DICT_TYPE:
A__ = cmd_config[:state_dict_config_index]
cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""")
cmd_config.extend(
[
self.test_file_path,
f"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
A__ = cmd_config[:-1]
A__ = os.path.join(self.tmpdir , '''epoch_0''')
cmd_config.extend(
[
f"""--resume_from_checkpoint={resume_from_checkpoint}""",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int:
'''simple docstring'''
A__ = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''')
A__ = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
A__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''])
else:
cmd_config.extend(['''--mixed_precision=no'''])
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''])
for i, strategy in enumerate(UpperCAmelCase__):
if strategy.lower() in spec:
cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""")
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''')
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""")
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''')
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''')
cmd_config.extend(
[
self.test_file_path,
f"""--output_dir={self.tmpdir}""",
f"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
f"""--n_train={self.n_train}""",
f"""--n_val={self.n_val}""",
])
with patch_environment(omp_num_threads=1):
execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
| 14 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 1 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
_lowerCamelCase : Tuple = {
"""169M""": 12,
"""430M""": 24,
"""1B5""": 24,
"""3B""": 32,
"""7B""": 32,
"""14B""": 40,
}
_lowerCamelCase : List[Any] = {
"""169M""": 768,
"""430M""": 1024,
"""1B5""": 2048,
"""3B""": 2560,
"""7B""": 4096,
"""14B""": 5120,
}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = list(state_dict.keys() )
for name in state_dict_keys:
A__ = state_dict.pop(lowercase_ )
# emb -> embedding
if name.startswith('''emb.''' ):
A__ = name.replace('''emb.''' , '''embeddings.''' )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('''blocks.0.ln0''' ):
A__ = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' )
# att -> attention
A__ = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , lowercase_ )
# ffn -> feed_forward
A__ = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , lowercase_ )
# time_mix_k -> time_mix_key and reshape
if name.endswith('''.time_mix_k''' ):
A__ = name.replace('''.time_mix_k''' , '''.time_mix_key''' )
# time_mix_v -> time_mix_value and reshape
if name.endswith('''.time_mix_v''' ):
A__ = name.replace('''.time_mix_v''' , '''.time_mix_value''' )
# time_mix_r -> time_mix_key and reshape
if name.endswith('''.time_mix_r''' ):
A__ = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' )
if name != "head.weight":
A__ = '''rwkv.''' + name
A__ = weight
return state_dict
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=None ) -> Any:
"""simple docstring"""
if tokenizer_file is None:
print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' )
A__ = 50_277
A__ = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' )
else:
A__ = PreTrainedTokenizerFast(tokenizer_file=lowercase_ )
A__ = len(lowercase_ )
tokenizer.save_pretrained(lowercase_ )
# 2. Build the config
A__ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A__ = candidate
break
if size is None:
raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' )
if size not in possible_sizes:
raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" )
A__ = RwkvConfig(
vocab_size=lowercase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(lowercase_ )
# 3. Download model file then convert state_dict
A__ = hf_hub_download(lowercase_ , lowercase_ )
A__ = torch.load(lowercase_ , map_location='''cpu''' )
A__ = convert_state_dict(lowercase_ )
# 4. Split in shards and save
A__ , A__ = shard_checkpoint(lowercase_ )
for shard_file, shard in shards.items():
torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) )
if index is not None:
A__ = os.path.join(lowercase_ , lowercase_ )
# Save the index as well
with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f:
A__ = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n'''
f.write(lowercase_ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' )
A__ = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A__ = torch.load(os.path.join(lowercase_ , lowercase_ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase_ , lowercase_ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' )
A__ = AutoModelForCausalLM.from_pretrained(lowercase_ )
model.push_to_hub(lowercase_ , max_shard_size='''2GB''' )
tokenizer.push_to_hub(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint."""
)
parser.add_argument(
"""--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo."""
)
parser.add_argument(
"""--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model."""
)
parser.add_argument(
"""--tokenizer_file""",
default=None,
type=str,
help="""Path to the tokenizer file to use (if not provided, only the model is converted).""",
)
parser.add_argument(
"""--size""",
default=None,
type=str,
help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Push to the Hub the converted model.""",
)
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help="""Name of the pushed model on the Hub, including the username / organization.""",
)
_lowerCamelCase : str = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 14 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 1 |
import functools
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ):
raise ValueError('''The parameter days should be a list of integers''' )
if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ):
raise ValueError('''The parameter costs should be a list of three integers''' )
if len(lowercase_ ) == 0:
return 0
if min(lowercase_ ) <= 0:
raise ValueError('''All days elements should be greater than 0''' )
if max(lowercase_ ) >= 366:
raise ValueError('''All days elements should be less than 366''' )
A__ = set(lowercase_ )
@functools.cache
def dynamic_programming(lowercase_ ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = KandinskyVaaPriorPipeline
UpperCAmelCase__ = ['''prompt''']
UpperCAmelCase__ = ['''prompt''', '''negative_prompt''']
UpperCAmelCase__ = [
'''num_images_per_prompt''',
'''generator''',
'''num_inference_steps''',
'''latents''',
'''negative_prompt''',
'''guidance_scale''',
'''output_type''',
'''return_dict''',
]
UpperCAmelCase__ = False
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]:
'''simple docstring'''
return 32
@property
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
return 32
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]:
'''simple docstring'''
return 100
@property
def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]:
'''simple docstring'''
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''')
return tokenizer
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
torch.manual_seed(0)
A__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(UpperCAmelCase__)
@property
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]:
'''simple docstring'''
torch.manual_seed(0)
A__ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
A__ = PriorTransformer(**UpperCAmelCase__)
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
A__ = nn.Parameter(torch.ones(model.clip_std.shape))
return model
@property
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int:
'''simple docstring'''
torch.manual_seed(0)
A__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
A__ = CLIPVisionModelWithProjection(UpperCAmelCase__)
return model
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple:
'''simple docstring'''
A__ = CLIPImageProcessor(
crop_size=224 , do_center_crop=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.dummy_prior
A__ = self.dummy_image_encoder
A__ = self.dummy_text_encoder
A__ = self.dummy_tokenizer
A__ = self.dummy_image_processor
A__ = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase__ , clip_sample_range=10.0 , )
A__ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=0) ->str:
'''simple docstring'''
if str(UpperCAmelCase__).startswith('''mps'''):
A__ = torch.manual_seed(UpperCAmelCase__)
else:
A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__)
A__ = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = '''cpu'''
A__ = self.get_dummy_components()
A__ = self.pipeline_class(**UpperCAmelCase__)
A__ = pipe.to(UpperCAmelCase__)
pipe.set_progress_bar_config(disable=UpperCAmelCase__)
A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__))
A__ = output.image_embeds
A__ = pipe(
**self.get_dummy_inputs(UpperCAmelCase__) , return_dict=UpperCAmelCase__ , )[0]
A__ = image[0, -10:]
A__ = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
A__ = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
@skip_mps
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = torch_device == '''cpu'''
A__ = True
A__ = False
self._test_inference_batch_single_identical(
test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , )
@skip_mps
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = torch_device == '''cpu'''
A__ = False
self._test_attention_slicing_forward_pass(
test_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , )
| 14 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 1 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : str = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
A__ = torch.load(lowercase_ , map_location='''cpu''' )
if "model" in sd.keys():
A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model''']
# pop unnecessary weights
A__ = [
'''decoder.version''',
'''decoder.output_projection.weight''',
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase_ )
A__ = {
'''decoder.project_in_dim.weight''': '''decoder.project_in.weight''',
'''decoder.project_out_dim.weight''': '''decoder.project_out.weight''',
'''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''',
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
A__ = sd.pop(lowercase_ )
A__ = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
A__ = sd[key]
# We split QKV in separate Q,K,V
A__ = key.replace('''.qkv_proj.''' , '''.q_proj.''' )
A__ = key.replace('''.qkv_proj.''' , '''.k_proj.''' )
A__ = key.replace('''.qkv_proj.''' , '''.v_proj.''' )
A__ = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
A__ , A__ , A__ = torch.split(lowercase_ , depth // 3 , dim=0 )
A__ = q
A__ = k
A__ = v
del sd[key]
return sd
@torch.no_grad()
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]:
"""simple docstring"""
A__ = load_checkpoint(lowercase_ )
if config is not None:
A__ = OPTConfig.from_pretrained(lowercase_ )
else:
A__ = OPTConfig()
A__ = OPTModel(lowercase_ ).half().eval()
model.load_state_dict(lowercase_ )
# Check results
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
model.save_pretrained(lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
_lowerCamelCase : str = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 14 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 1 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_lowerCamelCase : str = logging.getLogger()
def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]:
"""simple docstring"""
A__ = argparse.ArgumentParser()
parser.add_argument('''-f''' )
A__ = parser.parse_args()
return args.f
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->None:
'''simple docstring'''
A__ = logging.StreamHandler(sys.stdout)
logger.addHandler(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->Tuple:
'''simple docstring'''
A__ = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''')
with patch.object(UpperCAmelCase__ , '''argv''' , UpperCAmelCase__):
A__ = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(UpperCAmelCase__ , 0.666)
@slow
@require_torch_non_multi_gpu
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
A__ = '''
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
'''.split()
self.run_and_check(UpperCAmelCase__)
A__ = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(UpperCAmelCase__)
A__ = '''
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
'''.split()
self.run_and_check(UpperCAmelCase__)
| 14 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : int = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
_lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from math import factorial
_lowerCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)}
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError('''Parameter number must be int''' )
if number < 0:
raise ValueError('''Parameter number must be greater than or equal to 0''' )
# Converts number in string to iterate on its digits and adds its factorial.
return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase_ ) )
def SCREAMING_SNAKE_CASE ( lowercase_ = 60 , lowercase_ = 1_000_000 ) -> int:
"""simple docstring"""
if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ):
raise TypeError('''Parameters chain_length and number_limit must be int''' )
if chain_length <= 0 or number_limit <= 0:
raise ValueError(
'''Parameters chain_length and number_limit must be greater than 0''' )
# the counter for the chains with the exact desired length
A__ = 0
# the cached sizes of the previous chains
A__ = {}
for start_chain_element in range(1 , lowercase_ ):
# The temporary set will contain the elements of the chain
A__ = set()
A__ = 0
# Stop computing the chain when you find a cached size, a repeating item or the
# length is greater then the desired one.
A__ = start_chain_element
while (
chain_element not in chain_sets_lengths
and chain_element not in chain_set
and chain_set_length <= chain_length
):
chain_set.add(lowercase_ )
chain_set_length += 1
A__ = digit_factorial_sum(lowercase_ )
if chain_element in chain_sets_lengths:
chain_set_length += chain_sets_lengths[chain_element]
A__ = chain_set_length
# If chain contains the exact amount of elements increase the counter
if chain_set_length == chain_length:
chains_counter += 1
return chains_counter
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'''{solution()}''')
| 14 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : List[Any] = [
"""VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTMSNModel""",
"""ViTMSNForImageClassification""",
"""ViTMSNPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 | 1 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase_ :
'''simple docstring'''
def __init__( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : str=[10, 20, 30, 40] , __UpperCAmelCase : Optional[int]=[1, 1, 2, 1] , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : int="relu" , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : str=None , ) ->List[Any]:
"""simple docstring"""
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__UpperCAmelCase )
def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] , self.num_labels )
a = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self : Optional[Any] ) ->str:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any ) ->List[Any]:
"""simple docstring"""
a = TFRegNetModel(config=__UpperCAmelCase )
a = model(__UpperCAmelCase , training=__UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) ->Union[str, Any]:
"""simple docstring"""
a = self.num_labels
a = TFRegNetForImageClassification(__UpperCAmelCase )
a = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class lowercase_ ( lowercase , lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
__snake_case = (
{'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = False
def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]:
"""simple docstring"""
a = TFRegNetModelTester(self )
a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def __lowerCAmelCase ( self : List[Any] ) ->Any:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self : str ) ->Any:
"""simple docstring"""
pass
def __lowerCAmelCase ( self : int ) ->Union[str, Any]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__UpperCAmelCase )
a = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def __lowerCAmelCase ( self : str ) ->str:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __lowerCAmelCase ( self : Dict ) ->Any:
"""simple docstring"""
def check_hidden_states_output(__UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ):
a = model_class(__UpperCAmelCase )
a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
a = layer_type
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __lowerCAmelCase ( self : int ) ->List[str]:
"""simple docstring"""
a , a = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]={} ):
a = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase )
a = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple()
def recursive_check(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ):
if isinstance(__UpperCAmelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ):
recursive_check(__UpperCAmelCase , __UpperCAmelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__UpperCAmelCase , __UpperCAmelCase ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}"""
) , )
recursive_check(__UpperCAmelCase , __UpperCAmelCase )
for model_class in self.all_model_classes:
a = model_class(__UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} )
def __lowerCAmelCase ( self : Tuple ) ->List[str]:
"""simple docstring"""
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def __lowerCAmelCase ( self : Any ) ->Dict:
"""simple docstring"""
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = TFRegNetModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def _a ( ) -> Tuple:
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowerCAmelCase ( self : Any ) ->Tuple:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]:
"""simple docstring"""
a = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__UpperCAmelCase , return_tensors='''tf''' )
# forward pass
a = model(**__UpperCAmelCase , training=__UpperCAmelCase )
# verify the logits
a = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
a = tf.constant([-0.4180, -1.5051, -3.4836] )
tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 )
| 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]":
"""simple docstring"""
if upper_limit < 0:
raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' )
A__ = [0] * (upper_limit + 1)
# Base case: C(0) = C(1) = 1
A__ = 1
if upper_limit > 0:
A__ = 1
# Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i
for i in range(2 , upper_limit + 1 ):
for j in range(lowercase_ ):
catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1]
return catalan_list
if __name__ == "__main__":
print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""")
print("""\n*** Enter -1 at any time to quit ***""")
print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""")
try:
while True:
_lowerCamelCase : List[Any] = int(input().strip())
if N < 0:
print("""\n********* Goodbye!! ************""")
break
else:
print(F'''The Catalan numbers from 0 through {N} are:''')
print(catalan_numbers(N))
print("""Try another upper limit for the sequence: """, end="""""")
except (NameError, ValueError):
print("""\n********* Invalid input, goodbye! ************\n""")
import doctest
doctest.testmod()
| 14 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__)
class __A ( UpperCamelCase__ ):
def __init__(self : Optional[int] , *__a : Optional[Any] , **__a : Dict ):
warnings.warn(
"The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DonutImageProcessor instead." , __a , )
super().__init__(*__a , **__a )
| 1 |
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict:
"""simple docstring"""
A__ = args.pruning_method
A__ = args.threshold
A__ = args.model_name_or_path.rstrip('''/''' )
A__ = args.target_model_path
print(f"""Load fine-pruned model from {model_name_or_path}""" )
A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
A__ = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "classifier" in name or "qa_output" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
elif "bias" in name:
A__ = tensor
print(f"""Copied layer {name}""" )
else:
if pruning_method == "magnitude":
A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = TopKBinarizer.apply(lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
A__ = name[:-6]
A__ = model[f"""{prefix_}mask_scores"""]
A__ , A__ = -0.1, 1.1
A__ = torch.sigmoid(lowercase_ )
A__ = s * (r - l) + l
A__ = s_bar.clamp(min=0.0 , max=1.0 )
A__ = tensor * mask
print(f"""Pruned layer {name}""" )
else:
raise ValueError('''Unknown pruning method''' )
if target_model_path is None:
A__ = os.path.join(
os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" )
if not os.path.isdir(lowercase_ ):
shutil.copytree(lowercase_ , lowercase_ )
print(f"""\nCreated folder {target_model_path}""" )
torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) )
print('''\nPruned model saved! See you later!''' )
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--pruning_method""",
choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""],
type=str,
required=True,
help=(
"""Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"""
""" sigmoied_threshold = Soft movement pruning)"""
),
)
parser.add_argument(
"""--threshold""",
type=float,
required=False,
help=(
"""For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."""
"""For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."""
"""Not needed for `l0`"""
),
)
parser.add_argument(
"""--model_name_or_path""",
type=str,
required=True,
help="""Folder containing the model that was previously fine-pruned""",
)
parser.add_argument(
"""--target_model_path""",
default=None,
type=str,
required=False,
help="""Folder containing the model that was previously fine-pruned""",
)
_lowerCamelCase : int = parser.parse_args()
main(args)
| 14 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : Any = logging.get_logger(__name__)
lowerCamelCase : Dict = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[Any] = """time_series_transformer"""
lowerCAmelCase__ : Optional[int] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__(self : Any , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : Optional[Union[str, bool]] = "mean" , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : bool = True , UpperCamelCase : str = "gelu" , UpperCamelCase : int = 64 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 100 , UpperCamelCase : float = 0.02 , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ):
'''simple docstring'''
lowercase__ = prediction_length
lowercase__ = context_length or prediction_length
lowercase__ = distribution_output
lowercase__ = loss
lowercase__ = input_size
lowercase__ = num_time_features
lowercase__ = lags_sequence
lowercase__ = scaling
lowercase__ = num_dynamic_real_features
lowercase__ = num_static_real_features
lowercase__ = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ = cardinality
else:
lowercase__ = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCamelCase ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
lowercase__ = embedding_dimension
else:
lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
lowercase__ = num_parallel_samples
# Transformer architecture configuration
lowercase__ = input_size * len(UpperCamelCase ) + self._number_of_features
lowercase__ = d_model
lowercase__ = encoder_attention_heads
lowercase__ = decoder_attention_heads
lowercase__ = encoder_ffn_dim
lowercase__ = decoder_ffn_dim
lowercase__ = encoder_layers
lowercase__ = decoder_layers
lowercase__ = dropout
lowercase__ = attention_dropout
lowercase__ = activation_dropout
lowercase__ = encoder_layerdrop
lowercase__ = decoder_layerdrop
lowercase__ = activation_function
lowercase__ = init_std
lowercase__ = use_cache
super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase )
@property
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 2 |
_lowerCamelCase : Optional[int] = 65521
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = 1
A__ = 0
for plain_chr in plain_text:
A__ = (a + ord(lowercase_ )) % MOD_ADLER
A__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 14 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
lowercase : Optional[Any] = 50_00_00
lowercase , lowercase : Union[str, Any] = os.path.split(__file__)
lowercase : Any = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def lowerCAmelCase_ ( snake_case__ , **snake_case__ ):
'''simple docstring'''
A : Tuple = dataset.map(**snake_case__ )
@get_duration
def lowerCAmelCase_ ( snake_case__ , **snake_case__ ):
'''simple docstring'''
A : str = dataset.filter(**snake_case__ )
def lowerCAmelCase_ ( ):
'''simple docstring'''
A : Dict = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
A : str = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
A : List[Any] = generate_example_dataset(
os.path.join(snake_case__ , '''dataset.arrow''' ) , snake_case__ , num_examples=snake_case__ )
A : Tuple = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=snake_case__ )
def tokenize(snake_case__ ):
return tokenizer(examples['''text'''] )
A : Any = map(snake_case__ )
A : List[Any] = map(snake_case__ , batched=snake_case__ )
A : str = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ )
with dataset.formatted_as(type='''numpy''' ):
A : Union[str, Any] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ )
with dataset.formatted_as(type='''pandas''' ):
A : int = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
A : List[str] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
A : Optional[Any] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ )
A : Any = map(snake_case__ , function=snake_case__ , batched=snake_case__ )
A : str = filter(snake_case__ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(snake_case__ , '''wb''' ) as f:
f.write(json.dumps(snake_case__ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 3 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_lowerCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-ctx_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-ctx_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-question_encoder-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-question_encoder-multiset-base""": (
"""https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : str = {
"""vocab_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""facebook/dpr-reader-single-nq-base""": (
"""https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"""
),
"""facebook/dpr-reader-multiset-base""": (
"""https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"""
),
},
}
_lowerCamelCase : Any = {
"""facebook/dpr-ctx_encoder-single-nq-base""": 512,
"""facebook/dpr-ctx_encoder-multiset-base""": 512,
}
_lowerCamelCase : List[str] = {
"""facebook/dpr-question_encoder-single-nq-base""": 512,
"""facebook/dpr-question_encoder-multiset-base""": 512,
}
_lowerCamelCase : Tuple = {
"""facebook/dpr-reader-single-nq-base""": 512,
"""facebook/dpr-reader-multiset-base""": 512,
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[int] = {
"""facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True},
}
_lowerCamelCase : Optional[Any] = {
"""facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True},
"""facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True},
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRContextEncoderTokenizer
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = DPRQuestionEncoderTokenizer
_lowerCamelCase : int = collections.namedtuple(
"""DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""]
)
_lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""])
_lowerCamelCase : Dict = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ :
'''simple docstring'''
def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding:
'''simple docstring'''
if titles is None and texts is None:
return super().__call__(
UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
elif titles is None or texts is None:
A__ = titles if texts is None else texts
return super().__call__(
UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , )
A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles]
A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts]
A__ = len(UpperCAmelCase__)
A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages
assert len(UpperCAmelCase__) == len(
UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts."""
A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids''']
A__ = {
'''input_ids''': [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__)
]
}
if return_attention_mask is not False:
A__ = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
A__ = attention_mask
return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = reader_input['''input_ids''']
A__ , A__ , A__ = reader_output[:3]
A__ = len(UpperCAmelCase__)
A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__)
A__ = []
for doc_id in sorted_docs:
A__ = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
A__ = sequence_ids.index(self.pad_token_id)
else:
A__ = len(UpperCAmelCase__)
A__ = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , ))
if len(UpperCAmelCase__) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]:
'''simple docstring'''
A__ = []
for start_index, start_score in enumerate(UpperCAmelCase__):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__)
A__ = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]"""
A__ = end_index - start_index + 1
assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}"""
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals):
continue
chosen_span_intervals.append((start_index, end_index))
if len(UpperCAmelCase__) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCAmelCase__ )
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
UpperCAmelCase__ = DPRReaderTokenizer
| 14 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : UNetaDModel
lowerCamelCase : KarrasVeScheduler
def __init__( self : str , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : KarrasVeScheduler ) -> int:
super().__init__()
self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ )
@torch.no_grad()
def __call__( self : Dict , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> Union[Tuple, ImagePipelineOutput]:
lowerCAmelCase = self.unet.config.sample_size
lowerCAmelCase = (batch_size, 3, img_size, img_size)
lowerCAmelCase = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
lowerCAmelCase = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(UpperCAmelCase__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
lowerCAmelCase = self.scheduler.schedule[t]
lowerCAmelCase = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
lowerCAmelCase , lowerCAmelCase = self.scheduler.add_noise_to_input(UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCAmelCase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
lowerCAmelCase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
lowerCAmelCase = self.scheduler.step_correct(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , step_output.prev_sample , step_output['derivative'] , )
lowerCAmelCase = step_output.prev_sample
lowerCAmelCase = (sample / 2 + 0.5).clamp(0 , 1 )
lowerCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase__ )
| 4 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''encoder-decoder'''
UpperCAmelCase__ = True
def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ = kwargs.pop('''encoder''')
A__ = encoder_config.pop('''model_type''')
A__ = kwargs.pop('''decoder''')
A__ = decoder_config.pop('''model_type''')
from ..auto.configuration_auto import AutoConfig
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''')
A__ = True
A__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.encoder.to_dict()
A__ = self.decoder.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 0 |
from __future__ import annotations
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> None:
"""simple docstring"""
if (direction == 1 and array[indexa] > array[indexa]) or (
direction == 0 and array[indexa] < array[indexa]
):
_lowercase , _lowercase =array[indexa], array[indexa]
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> None:
"""simple docstring"""
if length > 1:
_lowercase =int(length / 2 )
for i in range(__snake_case , low + middle ):
comp_and_swap(__snake_case , __snake_case , i + middle , __snake_case )
bitonic_merge(__snake_case , __snake_case , __snake_case , __snake_case )
bitonic_merge(__snake_case , low + middle , __snake_case , __snake_case )
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> None:
"""simple docstring"""
if length > 1:
_lowercase =int(length / 2 )
bitonic_sort(__snake_case , __snake_case , __snake_case , 1 )
bitonic_sort(__snake_case , low + middle , __snake_case , 0 )
bitonic_merge(__snake_case , __snake_case , __snake_case , __snake_case )
if __name__ == "__main__":
UpperCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip()
UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')]
bitonic_sort(unsorted, 0, len(unsorted), 1)
print('''\nSorted array in ascending order is: ''', end='''''')
print(*unsorted, sep=''', ''')
bitonic_merge(unsorted, 0, len(unsorted), 0)
print('''Sorted array in descending order is: ''', end='''''')
print(*unsorted, sep=''', ''')
| 5 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any:
"""simple docstring"""
A__ = [0] * len(lowercase_ )
A__ = []
A__ = [1] * len(lowercase_ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase_ ) ):
if indegree[i] == 0:
queue.append(lowercase_ )
while queue:
A__ = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
A__ = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(lowercase_ )
print(max(lowercase_ ) )
# Adjacency list of Graph
_lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 14 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __A( a ):
def __init__( self , _snake_case , _snake_case ) -> Optional[int]:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
__a = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=_snake_case , scheduler=_snake_case )
@torch.no_grad()
def __call__( self , _snake_case = 1 , _snake_case = None , _snake_case = 0.0 , _snake_case = 50 , _snake_case = None , _snake_case = "pil" , _snake_case = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(self.unet.config.sample_size , _snake_case ):
__a = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
__a = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(_snake_case )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
__a = randn_tensor(_snake_case , generator=_snake_case , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_snake_case )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
__a = self.unet(_snake_case , _snake_case ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
__a = self.scheduler.step(
_snake_case , _snake_case , _snake_case , eta=_snake_case , use_clipped_model_output=_snake_case , generator=_snake_case ).prev_sample
__a = (image / 2 + 0.5).clamp(0 , 1 )
__a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__a = self.numpy_to_pil(_snake_case )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_snake_case ) | 6 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase__ = None
UpperCAmelCase__ = "utf-8"
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = True # deprecated
UpperCAmelCase__ = None # deprecated
UpperCAmelCase__ = 10 << 20 # 10MB
UpperCAmelCase__ = None
class UpperCamelCase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase__ = JsonConfig
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str:
'''simple docstring'''
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''')
A__ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''')
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''')
return datasets.DatasetInfo(features=self.config.features)
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""")
A__ = dl_manager.download_and_extract(self.config.data_files)
if isinstance(UpperCAmelCase__ , (str, list, tuple)):
A__ = data_files
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})]
A__ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase__ , UpperCAmelCase__):
A__ = [files]
A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files}))
return splits
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table:
'''simple docstring'''
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type
A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema)
return pa_table
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str:
'''simple docstring'''
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
# We keep only the field we are interested in
A__ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase__ , (list, tuple)):
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
else:
A__ = dataset
A__ = pa.Table.from_pydict(UpperCAmelCase__)
yield file_idx, self._cast_table(UpperCAmelCase__)
# If the file has one json object per line
else:
with open(UpperCAmelCase__ , '''rb''') as f:
A__ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A__ = max(self.config.chunksize // 32 , 16 << 10)
A__ = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
A__ = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase__)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''')
try:
while True:
try:
A__ = paj.read_json(
io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase__ , pa.ArrowInvalid)
and "straddling" not in str(UpperCAmelCase__)
or block_size > len(UpperCAmelCase__)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
A__ = json.load(UpperCAmelCase__)
except json.JSONDecodeError:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON
try:
A__ = set().union(*[row.keys() for row in dataset])
A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys}
A__ = pa.Table.from_pydict(UpperCAmelCase__)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None
yield file_idx, self._cast_table(UpperCAmelCase__)
break
else:
logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""")
raise ValueError(
f"""Not able to read records in the JSON file at {file}. """
f"""You should probably indicate the field of the JSON file containing your records. """
f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """
f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__)
batch_idx += 1
| 14 | 0 |
from __future__ import annotations
from collections.abc import Callable
lowercase_ = list[list[float | int]]
def _snake_case( SCREAMING_SNAKE_CASE__ : Matrix , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix:
'''simple docstring'''
A__ = len(SCREAMING_SNAKE_CASE__ )
A__ = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE__ )]
A__ = 42
A__ = 42
A__ = 42
A__ = 42
A__ = 42
A__ = 42
for row in range(SCREAMING_SNAKE_CASE__ ):
for col in range(SCREAMING_SNAKE_CASE__ ):
A__ = matrix[row][col]
A__ = vector[row][0]
A__ = 0
A__ = 0
while row < size and col < size:
# pivoting
A__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
A__ , A__ = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , SCREAMING_SNAKE_CASE__ ):
A__ = augmented[rowa][col] / augmented[row][col]
A__ = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , SCREAMING_SNAKE_CASE__ ):
for row in range(SCREAMING_SNAKE_CASE__ ):
A__ = augmented[row][col] / augmented[col][col]
for cola in range(SCREAMING_SNAKE_CASE__ , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE__ )
]
def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] ) -> Callable[[int], int]:
'''simple docstring'''
A__ = len(SCREAMING_SNAKE_CASE__ )
A__ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )]
A__ = [[0] for _ in range(SCREAMING_SNAKE_CASE__ )]
A__ = 42
A__ = 42
A__ = 42
A__ = 42
for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE__ ):
for col in range(SCREAMING_SNAKE_CASE__ ):
A__ = (x_val + 1) ** (size - col - 1)
A__ = y_val
A__ = solve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def interpolated_func(SCREAMING_SNAKE_CASE__ : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(SCREAMING_SNAKE_CASE__ ) )
return interpolated_func
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _snake_case( SCREAMING_SNAKE_CASE__ : Callable[[int], int] = question_function , SCREAMING_SNAKE_CASE__ : int = 10 ) -> int:
'''simple docstring'''
A__ = [func(SCREAMING_SNAKE_CASE__ ) for x_val in range(1 , order + 1 )]
A__ = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
A__ = 0
A__ = 42
A__ = 42
for poly in polynomials:
A__ = 1
while func(SCREAMING_SNAKE_CASE__ ) == poly(SCREAMING_SNAKE_CASE__ ):
x_val += 1
ret += poly(SCREAMING_SNAKE_CASE__ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 7 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random"""
_lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return AutoConfig.from_pretrained(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.num_hidden_layers , 1)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers)
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1)
self.assertEqual(student.config.encoder_layers , 1)
self.assertEqual(student.config.decoder_layers , 1)
def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase__):
create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
| 14 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Dict , _UpperCamelCase : str ) ->List[str]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
snake_case_ = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(_UpperCamelCase )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def snake_case__( self : Dict ) ->Any:
snake_case_ = '''sgugger/tiny-distilbert-classification'''
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , only_pretrain_model=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def snake_case__( self : Optional[Any] ) ->Tuple:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def snake_case__( self : Dict ) ->int:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase )
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase , [config] )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase )
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase , [config] )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def snake_case__( self : Tuple ) ->List[Any]:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def snake_case__( self : List[str] ) ->Optional[Any]:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase )
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase , [config] )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def snake_case__( self : Union[str, Any] ) ->Any:
snake_case_ = '''patrickvonplaten/t5-tiny-random'''
snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase )
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase , configs=[config] )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = '''sshleifer/tiny-gpt2'''
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_UpperCamelCase , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
snake_case_ = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def snake_case__( self : str ) ->Tuple:
snake_case_ = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_UpperCamelCase , save_to_csv=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCamelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_UpperCamelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_UpperCamelCase , '''env.csv''' ) , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_UpperCamelCase , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_UpperCamelCase , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(_UpperCamelCase , '''env.csv''' ) ).exists() )
def snake_case__( self : List[str] ) ->Union[str, Any]:
snake_case_ = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(_UpperCamelCase : int ):
self.assertTrue(hasattr(_UpperCamelCase , '''sequential''' ) )
self.assertTrue(hasattr(_UpperCamelCase , '''cumulative''' ) )
self.assertTrue(hasattr(_UpperCamelCase , '''current''' ) )
self.assertTrue(hasattr(_UpperCamelCase , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCamelCase , '''log.txt''' ) , log_print=_UpperCamelCase , trace_memory_line_by_line=_UpperCamelCase , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , )
snake_case_ = TensorFlowBenchmark(_UpperCamelCase )
snake_case_ = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(_UpperCamelCase , '''log.txt''' ) ).exists() ) | 8 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str:
'''simple docstring'''
A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333}
A__ = parent
A__ = batch_size
A__ = num_channels
A__ = min_resolution
A__ = max_resolution
A__ = do_resize
A__ = size
A__ = do_normalize
A__ = image_mean
A__ = image_std
A__ = do_rescale
A__ = rescale_factor
A__ = do_pad
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]:
'''simple docstring'''
if not batched:
A__ = image_inputs[0]
if isinstance(UpperCAmelCase__ , Image.Image):
A__ , A__ = image.size
else:
A__ , A__ = image.shape[1], image.shape[2]
if w < h:
A__ = int(self.size['''shortest_edge'''] * h / w)
A__ = self.size['''shortest_edge''']
elif w > h:
A__ = self.size['''shortest_edge''']
A__ = int(self.size['''shortest_edge'''] * w / h)
else:
A__ = self.size['''shortest_edge''']
A__ = self.size['''shortest_edge''']
else:
A__ = []
for image in image_inputs:
A__ , A__ = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0]
A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple:
'''simple docstring'''
A__ = DeformableDetrImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad'''))
self.assertTrue(hasattr(UpperCAmelCase__ , '''size'''))
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
A__ = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
A__ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__)
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84})
self.assertEqual(image_processor.do_pad , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , Image.Image)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , np.ndarray)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE ( self : int) ->Tuple:
'''simple docstring'''
A__ = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__)
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase__ , torch.Tensor)
# Test not batched input
A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values
A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''image_id''': 39_769, '''annotations''': target}
# encode them
A__ = DeformableDetrImageProcessor()
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]:
'''simple docstring'''
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''')
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f:
A__ = json.loads(f.read())
A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target}
A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''')
# encode them
A__ = DeformableDetrImageProcessor(format='''coco_panoptic''')
A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''')
# verify pixel values
A__ = torch.Size([1, 3, 800, 1_066])
self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2796, 0.3138, 0.3481])
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4))
# verify area
A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__))
# verify boxes
A__ = torch.Size([6, 4])
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__)
A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3))
# verify image_id
A__ = torch.tensor([39_769])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__))
# verify is_crowd
A__ = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__))
# verify class_labels
A__ = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__))
# verify masks
A__ = 822_873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__)
# verify orig_size
A__ = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__))
# verify size
A__ = torch.tensor([800, 1_066])
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
| 14 | 0 |
import numpy as np
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1e-12 , lowercase__ = 100 , ):
assert np.shape(lowercase__ )[0] == np.shape(lowercase__ )[1]
# Ensure proper dimensionality.
assert np.shape(lowercase__ )[0] == np.shape(lowercase__ )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowercase__ ) == np.iscomplexobj(lowercase__ )
__SCREAMING_SNAKE_CASE : Optional[int] = np.iscomplexobj(lowercase__ )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowercase__ , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Optional[int] = 0
__SCREAMING_SNAKE_CASE : Any = 0
__SCREAMING_SNAKE_CASE : Dict = 1e12
while not convergence:
# Multiple matrix by the vector.
__SCREAMING_SNAKE_CASE : Optional[int] = np.dot(lowercase__ , lowercase__ )
# Normalize the resulting output vector.
__SCREAMING_SNAKE_CASE : int = w / np.linalg.norm(lowercase__ )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__SCREAMING_SNAKE_CASE : str = vector.conj().T if is_complex else vector.T
__SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(lowercase__ , np.dot(lowercase__ , lowercase__ ) )
# Check convergence.
__SCREAMING_SNAKE_CASE : int = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__SCREAMING_SNAKE_CASE : Optional[Any] = True
__SCREAMING_SNAKE_CASE : Tuple = lambda_
if is_complex:
__SCREAMING_SNAKE_CASE : Tuple = np.real(lambda_ )
return lambda_, vector
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
__SCREAMING_SNAKE_CASE : Tuple = np.array([41, 4, 20] )
__SCREAMING_SNAKE_CASE : Tuple = real_input_matrix.astype(np.complexaaa )
__SCREAMING_SNAKE_CASE : str = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__SCREAMING_SNAKE_CASE : Any = real_input_matrix
__SCREAMING_SNAKE_CASE : Optional[Any] = real_vector
elif problem_type == "complex":
__SCREAMING_SNAKE_CASE : List[str] = complex_input_matrix
__SCREAMING_SNAKE_CASE : str = complex_vector
# Our implementation.
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = power_iteration(lowercase__ , lowercase__ )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.eigh(lowercase__ )
# Last eigenvalue is the maximum one.
__SCREAMING_SNAKE_CASE : List[str] = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__SCREAMING_SNAKE_CASE : Optional[int] = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1e-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowercase__ ) - np.abs(lowercase__ ) ) <= 1e-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 9 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 | 0 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowerCAmelCase_ ( __a , __a = "cpu" , __a = None ) -> None:
"""simple docstring"""
lowerCamelCase__: int =torch.load(__a , map_location=__a )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__a , torch.Tensor ):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" )
lowerCamelCase__: Union[str, Any] =v.half()
if save_path is None: # overwrite src_path
lowerCamelCase__: List[str] =src_path
torch.save(__a , __a )
if __name__ == "__main__":
fire.Fire(convert)
| 10 |
from ...processing_utils import ProcessorMixin
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''SpeechT5FeatureExtractor'''
UpperCAmelCase__ = '''SpeechT5Tokenizer'''
def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase__ , UpperCAmelCase__)
def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]:
'''simple docstring'''
A__ = kwargs.pop('''audio''' , UpperCAmelCase__)
A__ = kwargs.pop('''text''' , UpperCAmelCase__)
A__ = kwargs.pop('''text_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__)
A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__)
if audio is not None and text is not None:
raise ValueError(
'''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''')
if audio_target is not None and text_target is not None:
raise ValueError(
'''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''')
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''')
if audio is not None:
A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
elif text is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if audio_target is not None:
A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_values''']
elif text_target is not None:
A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = kwargs.pop('''input_values''' , UpperCAmelCase__)
A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__)
A__ = kwargs.pop('''labels''' , UpperCAmelCase__)
if input_values is not None and input_ids is not None:
raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''')
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''')
if input_values is not None:
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
elif input_ids is not None:
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
else:
A__ = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]):
A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__)
A__ = targets['''input_ids''']
else:
A__ = self.feature_extractor.feature_size
A__ = self.feature_extractor.num_mel_bins
A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__)
A__ = feature_size_hack
A__ = targets['''input_values''']
else:
A__ = None
if inputs is None:
return targets
if targets is not None:
A__ = labels
A__ = targets.get('''attention_mask''')
if decoder_attention_mask is not None:
A__ = decoder_attention_mask
return inputs
def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
| 14 | 0 |
import doctest
from collections import deque
import numpy as np
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self) -> None:
_A : Tuple = [2, 1, 2, -1]
_A : Dict = [1, 2, 3, 4]
def _lowerCamelCase ( self) -> list[float]:
_A : int = len(self.first_signal)
_A : List[str] = len(self.second_signal)
_A : List[str] = max(__lowerCamelCase , __lowerCamelCase)
# create a zero matrix of max_length x max_length
_A : Dict = [[0] * max_length for i in range(__lowerCamelCase)]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(__lowerCamelCase):
_A : int = deque(self.second_signal)
rotated_signal.rotate(__lowerCamelCase)
for j, item in enumerate(__lowerCamelCase):
matrix[i][j] += item
# multiply the matrix with the first signal
_A : Dict = np.matmul(np.transpose(__lowerCamelCase) , np.transpose(self.first_signal))
# rounding-off to two decimal places
return [round(__lowerCamelCase , 2) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 11 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : str = {
"""microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""",
}
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git_vision_model'''
def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**UpperCAmelCase__)
A__ = hidden_size
A__ = intermediate_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = num_channels
A__ = patch_size
A__ = image_size
A__ = initializer_range
A__ = attention_dropout
A__ = layer_norm_eps
A__ = hidden_act
@classmethod
def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCAmelCase__)
A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__)
# get the vision config dict if we are loading from GITConfig
if config_dict.get('''model_type''') == "git":
A__ = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""")
return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = '''git'''
def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any:
'''simple docstring'''
super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__)
if vision_config is None:
A__ = {}
logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''')
A__ = GitVisionConfig(**UpperCAmelCase__)
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = hidden_act
A__ = intermediate_size
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = initializer_range
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = use_cache
A__ = tie_word_embeddings
A__ = num_image_with_embedding
A__ = bos_token_id
A__ = eos_token_id
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = copy.deepcopy(self.__dict__)
A__ = self.vision_config.to_dict()
A__ = self.__class__.model_type
return output
| 14 | 0 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def lowerCamelCase__ ( A__ : Optional[int] ):
'''simple docstring'''
def wrapper(*A__ : Dict , **A__ : Dict ):
__lowerCamelCase = timeit.default_timer()
__lowerCamelCase = func(*A__ , **A__ )
__lowerCamelCase = timeit.default_timer() - starttime
return delta
__lowerCamelCase = func.__name__
return wrapper
def lowerCamelCase__ ( A__ : dict , A__ : Tuple=100 , A__ : Optional[Any]=None ):
'''simple docstring'''
__lowerCamelCase = []
__lowerCamelCase = seq_shapes or {}
for i in range(A__ ):
__lowerCamelCase = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(A__ , _ArrayXD ):
__lowerCamelCase = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(A__ , datasets.Value ):
if v.dtype == "string":
__lowerCamelCase = """The small grey turtle was surprisingly fast when challenged."""
else:
__lowerCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(A__ , datasets.Sequence ):
while isinstance(A__ , datasets.Sequence ):
__lowerCamelCase = v.feature
__lowerCamelCase = seq_shapes[k]
__lowerCamelCase = np.random.rand(*A__ ).astype(v.dtype )
__lowerCamelCase = data
dummy_data.append((i, example) )
return dummy_data
def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Optional[int]=100 , A__ : int=None ):
'''simple docstring'''
__lowerCamelCase = generate_examples(A__ , num_examples=A__ , seq_shapes=A__ )
with ArrowWriter(features=A__ , path=A__ ) as writer:
for key, record in dummy_data:
__lowerCamelCase = features.encode_example(A__ )
writer.write(A__ )
__lowerCamelCase, __lowerCamelCase = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' )
__lowerCamelCase = datasets.Dataset.from_file(filename=A__ , info=datasets.DatasetInfo(features=A__ ) )
return dataset
| 12 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str:
"""simple docstring"""
A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' )
A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
_lowerCamelCase : Optional[Any] = {
"""title""": (
"""Precisely geometry controlled microsupercapacitors for ultrahigh areal """
"""capacitance, volumetric capacitance, and energy density"""
),
"""journal""": """Chem. Mater.""",
"""volume""": 30,
"""pages""": """3979-3990""",
"""year""": 2018,
"""hl""": """en""",
}
print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
| 14 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : int = {
"""facebook/deit-base-distilled-patch16-224""": (
"""https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json"""
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
_UpperCAmelCase : List[str] = '''deit'''
def __init__( self : List[Any] , lowerCAmelCase__ : str=768 , lowerCAmelCase__ : Optional[int]=12 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : Dict=3072 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=1E-12 , lowerCAmelCase__ : int=224 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=16 , **lowerCAmelCase__ : List[str] , ):
super().__init__(**lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: List[Any] = hidden_size
SCREAMING_SNAKE_CASE_: List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE_: int = num_attention_heads
SCREAMING_SNAKE_CASE_: Any = intermediate_size
SCREAMING_SNAKE_CASE_: Any = hidden_act
SCREAMING_SNAKE_CASE_: int = hidden_dropout_prob
SCREAMING_SNAKE_CASE_: Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_: int = initializer_range
SCREAMING_SNAKE_CASE_: str = layer_norm_eps
SCREAMING_SNAKE_CASE_: List[Any] = image_size
SCREAMING_SNAKE_CASE_: Optional[int] = patch_size
SCREAMING_SNAKE_CASE_: Optional[Any] = num_channels
SCREAMING_SNAKE_CASE_: Optional[int] = qkv_bias
SCREAMING_SNAKE_CASE_: Optional[Any] = encoder_stride
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
_UpperCAmelCase : List[str] = version.parse('''1.11''' )
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
])
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple):
return 1E-4
| 13 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]:
"""simple docstring"""
A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
A__ = load_file(lowercase_ )
A__ = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
A__ = pipeline.text_encoder
else:
A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
A__ = pipeline.unet
# find the target layer
A__ = layer_infos.pop(0 )
while len(lowercase_ ) > -1:
try:
A__ = curr_layer.__getattr__(lowercase_ )
if len(lowercase_ ) > 0:
A__ = layer_infos.pop(0 )
elif len(lowercase_ ) == 0:
break
except Exception:
if len(lowercase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
A__ = layer_infos.pop(0 )
A__ = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(lowercase_ )
else:
pair_keys.append(lowercase_ )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
A__ = state_dict[pair_keys[0]].to(torch.floataa )
A__ = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ )
# update visited list
for item in pair_keys:
visited.append(lowercase_ )
return pipeline
if __name__ == "__main__":
_lowerCamelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_lowerCamelCase : Tuple = parser.parse_args()
_lowerCamelCase : List[Any] = args.base_model_path
_lowerCamelCase : Optional[int] = args.checkpoint_path
_lowerCamelCase : Dict = args.dump_path
_lowerCamelCase : Optional[Any] = args.lora_prefix_unet
_lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder
_lowerCamelCase : List[Any] = args.alpha
_lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_lowerCamelCase : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 14 | 0 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
@add_end_docstrings(
__SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ,A : GenericTensor ):
if self.framework == "tf":
__A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
__A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A )
else:
raise ValueError("Unsupported framework" )
return masked_index
def UpperCamelCase_ ( self : int ,A : GenericTensor ):
__A = self.get_masked_index(A )
__A = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
"fill-mask" ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,)
def UpperCamelCase_ ( self : int ,A : GenericTensor ):
if isinstance(A ,A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(A )
def UpperCamelCase_ ( self : List[str] ,A : Optional[Any] ,A : Dict=None ,**A : Dict ):
if return_tensors is None:
__A = self.framework
__A = self.tokenizer(A ,return_tensors=A )
self.ensure_exactly_one_mask_token(A )
return model_inputs
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ):
__A = self.model(**A )
__A = model_inputs["input_ids"]
return model_outputs
def UpperCamelCase_ ( self : Any ,A : int ,A : Any=5 ,A : Any=None ):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
__A = target_ids.shape[0]
__A = model_outputs["input_ids"][0]
__A = model_outputs["logits"]
if self.framework == "tf":
__A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
__A = outputs.numpy()
__A = outputs[0, masked_index, :]
__A = stable_softmax(A ,axis=-1 )
if target_ids is not None:
__A = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) )
__A = tf.expand_dims(A ,0 )
__A = tf.math.top_k(A ,k=A )
__A , __A = topk.values.numpy(), topk.indices.numpy()
else:
__A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
__A = outputs[0, masked_index, :]
__A = logits.softmax(dim=-1 )
if target_ids is not None:
__A = probs[..., target_ids]
__A , __A = probs.topk(A )
__A = []
__A = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ):
__A = []
for v, p in zip(_values ,_predictions ):
# Copy is important since we're going to modify this array in place
__A = input_ids.numpy().copy()
if target_ids is not None:
__A = target_ids[p].tolist()
__A = p
# Filter padding out:
__A = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
__A = self.tokenizer.decode(A ,skip_special_tokens=A )
__A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence}
row.append(A )
result.append(A )
if single_mask:
return result[0]
return result
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Any=None ):
if isinstance(A ,A ):
__A = [targets]
try:
__A = self.tokenizer.get_vocab()
except Exception:
__A = {}
__A = []
for target in targets:
__A = vocab.get(A ,A )
if id_ is None:
__A = self.tokenizer(
A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["input_ids"]
if len(A ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
"We cannot replace it with anything meaningful, ignoring it" )
continue
__A = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
__A = list(set(A ) )
if len(A ) == 0:
raise ValueError("At least one target must be provided when passed." )
__A = np.array(A )
return target_ids
def UpperCamelCase_ ( self : Dict ,A : Union[str, Any]=None ,A : int=None ):
__A = {}
if targets is not None:
__A = self.get_target_ids(A ,A )
__A = target_ids
if top_k is not None:
__A = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." )
return {}, {}, postprocess_params
def __call__( self : Optional[Any] ,A : Optional[int] ,*A : Dict ,**A : Tuple ):
__A = super().__call__(A ,**A )
if isinstance(A ,A ) and len(A ) == 1:
return outputs[0]
return outputs
| 15 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_lowerCamelCase : Any = """
import os
"""
_lowerCamelCase : Optional[int] = """
def foo():
import os
return False
"""
_lowerCamelCase : List[Any] = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Union[str, Any] = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
_lowerCamelCase : List[Any] = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
_lowerCamelCase : str = """
import os
try:
import bar
except:
raise ValueError()
"""
_lowerCamelCase : Optional[Any] = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
_lowerCamelCase : Any = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
_lowerCamelCase : Dict = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = os.path.join(lowercase_ , '''test_file.py''' )
with open(lowercase_ , '''w''' ) as _tmp_file:
_tmp_file.write(lowercase_ )
A__ = get_imports(lowercase_ )
assert parsed_imports == ["os"]
| 14 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( __lowerCamelCase ) -> None:
lowercase__ : Optional[Any] = generate_pascal_triangle(__lowerCamelCase )
for row_idx in range(__lowerCamelCase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[int]]:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowercase__ : list[list[int]] = []
for current_row_idx in range(__lowerCamelCase ):
lowercase__ : int = populate_current_row(__lowerCamelCase , __lowerCamelCase )
triangle.append(__lowerCamelCase )
return triangle
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> list[int]:
lowercase__ : Union[str, Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
lowercase__ , lowercase__ : Tuple = 1, 1
for current_col_idx in range(1 , __lowerCamelCase ):
calculate_current_element(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return current_row
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None:
lowercase__ : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1]
lowercase__ : Dict = triangle[current_row_idx - 1][current_col_idx]
lowercase__ : Dict = above_to_left_elt + above_to_right_elt
def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[int]]:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
lowercase__ : list[list[int]] = [[1]]
for row_index in range(1 , __lowerCamelCase ):
lowercase__ : Any = [0] + result[-1] + [0]
lowercase__ : List[Any] = row_index + 1
# Calculate the number of distinct elements in a row
lowercase__ : List[str] = sum(divmod(__lowerCamelCase , 2 ) )
lowercase__ : Dict = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
lowercase__ : List[Any] = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
lowercase__ : List[Any] = row_first_half + row_second_half
result.append(__lowerCamelCase )
return result
def __UpperCAmelCase ( ) -> None:
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) -> None:
lowercase__ : str = f"""{func.__name__}({value})"""
lowercase__ : Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"""{call:38} -- {timing:.4f} seconds""" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(__lowerCamelCase , __lowerCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 16 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
print('''Truth Table of NOR Gate:''' )
print('''| Input 1 | Input 2 | Output |''' )
print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_a = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
import os
import sys
import unittest
_lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""")
_lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""")
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple:
'''simple docstring'''
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = get_test_to_tester_mapping(UpperCAmelCase__)
A__ = {'''BertModelTest''': '''BertModelTester'''}
A__ = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]:
'''simple docstring'''
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = get_model_to_test_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str:
'''simple docstring'''
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = get_model_to_tester_mapping(UpperCAmelCase__)
A__ = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
A__ = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
| 14 | 0 |
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
__lowerCamelCase : Any = '''hf-internal-testing/tiny-random-bert'''
__lowerCamelCase : Dict = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
__lowerCamelCase : Optional[int] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6'''
class a__ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = cached_file(_A,_A )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_A ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_A,_A ) ) )
with open(os.path.join(_A,"refs","main" ) ) as f:
SCREAMING_SNAKE_CASE_ : Dict = f.read()
self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) )
self.assertTrue(os.path.isfile(_A ) )
# File is cached at the same place the second time.
SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A )
self.assertEqual(_A,_A )
# Using a specific revision to test the full commit hash.
SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="9b8c223" )
self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) )
def __UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
with self.assertRaisesRegex(_A,"is not a valid model identifier" ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file("tiny-random-bert",_A )
with self.assertRaisesRegex(_A,"is not a valid git identifier" ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="aaaa" )
with self.assertRaisesRegex(_A,"does not appear to have a file named" ):
SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" )
def __UpperCamelCase ( self : Any ):
"""simple docstring"""
with self.assertRaisesRegex(_A,"does not appear to have a file named" ):
SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" )
with open(os.path.join(_A,"refs","main" ) ) as f:
SCREAMING_SNAKE_CASE_ : Optional[int] = f.read()
self.assertTrue(os.path.isfile(os.path.join(_A,".no_exist",_A,"conf" ) ) )
SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file(_A,"conf",_raise_exceptions_for_missing_entries=_A )
self.assertIsNone(_A )
SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",local_files_only=_A,_raise_exceptions_for_missing_entries=_A )
self.assertIsNone(_A )
SCREAMING_SNAKE_CASE_ : int = mock.Mock()
SCREAMING_SNAKE_CASE_ : int = 500
SCREAMING_SNAKE_CASE_ : Optional[int] = {}
SCREAMING_SNAKE_CASE_ : List[Any] = HTTPError
SCREAMING_SNAKE_CASE_ : List[str] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request",return_value=_A ) as mock_head:
SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",_raise_exceptions_for_connection_errors=_A )
self.assertIsNone(_A )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) )
def __UpperCamelCase ( self : Any ):
"""simple docstring"""
self.assertIsNone(get_file_from_repo("bert-base-cased","ahah.txt" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_A,"is not a valid model identifier" ):
get_file_from_repo("bert-base-case",_A )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_A,"is not a valid git identifier" ):
get_file_from_repo("bert-base-cased",_A,revision="ahaha" )
SCREAMING_SNAKE_CASE_ : List[str] = get_file_from_repo("bert-base-cased",_A )
# The name is the cached name which is not very easy to test, so instead we load the content.
SCREAMING_SNAKE_CASE_ : Dict = json.loads(open(_A,"r" ).read() )
self.assertEqual(config["hidden_size"],768 )
def __UpperCamelCase ( self : Any ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE_ : Dict = Path(_A ) / "a.txt"
filename.touch()
self.assertEqual(get_file_from_repo(_A,"a.txt" ),str(_A ) )
self.assertIsNone(get_file_from_repo(_A,"b.txt" ) )
| 18 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = patch_size
A__ = num_channels
A__ = is_training
A__ = use_labels
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = type_sequence_label_size
A__ = initializer_range
A__ = encoder_stride
A__ = num_attention_outputs
A__ = embed_dim
A__ = embed_dim + 1
A__ = resolution
A__ = depths
A__ = hidden_sizes
A__ = dim
A__ = mlp_expansion_ratio
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
A__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : int) ->str:
'''simple docstring'''
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict:
'''simple docstring'''
A__ = TFEfficientFormerModel(config=UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]:
'''simple docstring'''
A__ = self.type_sequence_label_size
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
A__ = 1
A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__)
A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE ( self : int) ->List[str]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
UpperCAmelCase__ = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]:
'''simple docstring'''
A__ = TFEfficientFormerModelTester(self)
A__ = ConfigTester(
self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37)
def SCREAMING_SNAKE_CASE ( self : int) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''EfficientFormer does not use inputs_embeds''')
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''EfficientFormer does not support input and output embeddings''')
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(UpperCAmelCase__)
A__ = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict):
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1)
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
if hasattr(self.model_tester , '''encoder_seq_length'''):
A__ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1:
A__ = seq_length * self.model_tester.chunk_length
else:
A__ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A__ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase__ , (list, tuple))
self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__)
self.assertListEqual(
list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int:
'''simple docstring'''
A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__)
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__)
@unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''')
def SCREAMING_SNAKE_CASE ( self : str) ->str:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__)
@slow
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__)
self.assertIsNotNone(UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any) ->str:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__)
A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__)
if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''):
A__ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A__ = True
A__ = False
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ = True
A__ = model_class(UpperCAmelCase__)
A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__)
A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A__ = model_class(UpperCAmelCase__)
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A__ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__)
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A__ = model(UpperCAmelCase__)
self.assertTrue(outputs_dict is not None)
def SCREAMING_SNAKE_CASE ( ) -> Any:
"""simple docstring"""
A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]:
'''simple docstring'''
return (
EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''')
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.0555, 0.4825, -0.0852])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : Dict) ->int:
'''simple docstring'''
A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
'''snap-research/efficientformer-l1-300''')
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''')
# forward pass
A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__)
# verify the logits
A__ = tf.TensorShape((1, 1_000))
self.assertEqual(outputs.logits.shape , UpperCAmelCase__)
A__ = tf.constant([-0.1312, 0.4353, -1.0499])
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
| 14 | 0 |
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
__A =datasets.utils.logging.get_logger(__name__)
@dataclass
class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ):
lowerCAmelCase__ = 1_00_00
lowerCAmelCase__ = None
lowerCAmelCase__ = None
class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ):
lowerCAmelCase__ = ParquetConfig
def SCREAMING_SNAKE_CASE_( self ) -> Any:
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tuple:
if not self.config.data_files:
raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' )
lowerCamelCase_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowercase , (str, list, tuple) ):
lowerCamelCase_ = data_files
if isinstance(lowercase , lowercase ):
lowerCamelCase_ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCamelCase_ = [dl_manager.iter_files(lowercase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
lowerCamelCase_ = []
for split_name, files in data_files.items():
if isinstance(lowercase , lowercase ):
lowerCamelCase_ = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
lowerCamelCase_ = [dl_manager.iter_files(lowercase ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(lowercase ):
with open(lowercase , "rb" ) as f:
lowerCamelCase_ = datasets.Features.from_arrow_schema(pq.read_schema(lowercase ) )
break
splits.append(datasets.SplitGenerator(name=lowercase , gen_kwargs={"files": files} ) )
return splits
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> pa.Table:
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
lowerCamelCase_ = table_cast(lowercase , self.info.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict:
lowerCamelCase_ = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' )
for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase ) ):
with open(lowercase , "rb" ) as f:
lowerCamelCase_ = pq.ParquetFile(lowercase )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
lowerCamelCase_ = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f'{file_idx}_{batch_idx}', self._cast_table(lowercase )
except ValueError as e:
logger.error(f'Failed to read file \'{file}\' with error {type(lowercase )}: {e}' )
raise
| 19 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]:
"""simple docstring"""
A__ = list(range(len(lowercase_ ) ) )
A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )]
index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ )
A__ = 0
A__ = [0] * len(lowercase_ )
for i in index:
if weight[i] <= capacity:
A__ = 1
max_value += value[i]
capacity -= weight[i]
else:
A__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 | 0 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"""kwargs, expected""" , [
({"""num_shards""": 0, """max_num_jobs""": 1}, []),
({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]),
({"""num_shards""": 10, """max_num_jobs""": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]),
({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]),
({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int:
lowercase : Tuple = _distribute_shards(**SCREAMING_SNAKE_CASE__ )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, max_num_jobs, expected""" , [
({"""foo""": 0}, 10, [{"""foo""": 0}]),
({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]),
({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]),
({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]),
({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]),
] , )
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]:
lowercase : Optional[int] = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, expected""" , [
({"""foo""": 0}, 1),
({"""shards""": [0]}, 1),
({"""shards""": [0, 1, 2, 3]}, 4),
({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4),
({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4),
({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError),
] , )
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]:
if expected is RuntimeError:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
_number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ )
else:
lowercase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ )
assert out == expected
| 20 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]:
"""simple docstring"""
A__ = args.log_outputs
A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
A__ = load_metric('''wer''' )
A__ = load_metric('''cer''' )
# compute metrics
A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
A__ = f"""WER: {wer_result}\nCER: {cer_result}"""
print(lowercase_ )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(lowercase_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
A__ = f"""log_{dataset_id}_predictions.txt"""
A__ = f"""log_{dataset_id}_targets.txt"""
with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t:
# mapping function to write output
def write_to_file(lowercase_ , lowercase_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(lowercase_ , with_indices=lowercase_ )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str:
"""simple docstring"""
A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
A__ = re.sub(lowercase_ , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
A__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
A__ = ''' '''.join(text.split(lowercase_ ) )
return text
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]:
"""simple docstring"""
A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
A__ = AutoFeatureExtractor.from_pretrained(args.model_id )
A__ = feature_extractor.sampling_rate
# resample audio
A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) )
# load eval pipeline
if args.device is None:
A__ = 0 if torch.cuda.is_available() else -1
A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase_ ):
A__ = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
A__ = prediction['''text''']
A__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase_ , lowercase_ )
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
_lowerCamelCase : str = parser.parse_args()
main(args)
| 14 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.