code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
class UpperCamelCase_ : '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple) ->Any: '''simple docstring''' A__ = name A__ = val def __str__( self : Optional[int]) ->Optional[Any]: '''simple docstring''' return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : List[Any] , UpperCAmelCase__ : List[Any]) ->Union[str, Any]: '''simple docstring''' return self.val < other.val class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : str) ->int: '''simple docstring''' A__ = {} A__ = {} A__ = self.build_heap(UpperCAmelCase__) def __getitem__( self : str , UpperCAmelCase__ : List[str]) ->int: '''simple docstring''' return self.get_value(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[Any]) ->List[Any]: '''simple docstring''' return (idx - 1) // 2 def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->int: '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Optional[Any]) ->str: '''simple docstring''' return idx * 2 + 2 def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[Any]) ->List[Any]: '''simple docstring''' return self.heap_dict[key] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' A__ = len(UpperCAmelCase__) - 1 A__ = self.get_parent_idx(UpperCAmelCase__) for idx, i in enumerate(UpperCAmelCase__): A__ = idx A__ = i.val for i in range(UpperCAmelCase__ , -1 , -1): self.sift_down(UpperCAmelCase__ , UpperCAmelCase__) return array def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' while True: A__ = self.get_left_child_idx(UpperCAmelCase__) # noqa: E741 A__ = self.get_right_child_idx(UpperCAmelCase__) A__ = idx if l < len(UpperCAmelCase__) and array[l] < array[idx]: A__ = l if r < len(UpperCAmelCase__) and array[r] < array[smallest]: A__ = r if smallest != idx: A__ , A__ = array[smallest], array[idx] ( ( A__ ) , ( A__ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) A__ = smallest else: break def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[Any]) ->Optional[Any]: '''simple docstring''' A__ = self.get_parent_idx(UpperCAmelCase__) while p >= 0 and self.heap[p] > self.heap[idx]: A__ , A__ = self.heap[idx], self.heap[p] A__ , A__ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) A__ = p A__ = self.get_parent_idx(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' return self.heap[0] def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' A__ , A__ = self.heap[-1], self.heap[0] A__ , A__ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) A__ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap) return x def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int) ->str: '''simple docstring''' self.heap.append(UpperCAmelCase__) A__ = len(self.heap) - 1 A__ = node.val self.sift_up(len(self.heap) - 1) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' return len(self.heap) == 0 def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]) ->str: '''simple docstring''' assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" A__ = new_value A__ = new_value self.sift_up(self.idx_of_element[node]) _lowerCamelCase : Optional[Any] = Node("""R""", -1) _lowerCamelCase : int = Node("""B""", 6) _lowerCamelCase : Dict = Node("""A""", 3) _lowerCamelCase : Union[str, Any] = Node("""X""", 1) _lowerCamelCase : Any = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCamelCase : Dict = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
14
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowerCamelCase : str = ["""gpt2"""] _lowerCamelCase : str = """gpt2""" if is_tf_available(): class UpperCamelCase_ ( tf.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__() A__ = tokenizer A__ = AutoConfig.from_pretrained(UpperCAmelCase__) A__ = TFGPTaLMHeadModel.from_config(UpperCAmelCase__) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text'''),)) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->Optional[int]: '''simple docstring''' A__ = self.tokenizer(UpperCAmelCase__) A__ = tokenized['''input_ids'''].to_tensor() A__ = tf.cast(input_ids_dense > 0 , tf.intaa) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A__ = self.model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__)['''logits'''] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' super().setUp() A__ = [GPTaTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in (TOKENIZER_CHECKPOINTS)] A__ = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase__) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers) == len(self.tf_tokenizers) A__ = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] A__ = list(zip(self.test_sentences , self.test_sentences[::-1])) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers): for test_inputs in self.test_sentences: A__ = tokenizer([test_inputs] , return_tensors='''tf''') A__ = tf_tokenizer([test_inputs]) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A__ = python_outputs[key].numpy() A__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape)) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase__ , tf.intaa) == tf_outputs_values)) @slow def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ = tf.function(UpperCAmelCase__) for test_inputs in self.test_sentences: A__ = tf.constant(UpperCAmelCase__) A__ = compiled_tokenizer(UpperCAmelCase__) A__ = tf_tokenizer(UpperCAmelCase__) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key])) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ = ModelToSave(tokenizer=UpperCAmelCase__) A__ = tf.convert_to_tensor([self.test_sentences[0]]) A__ = model.serving(UpperCAmelCase__) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A__ = Path(UpperCAmelCase__) / '''saved.model''' tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={'''serving_default''': model.serving}) A__ = tf.saved_model.load(UpperCAmelCase__) A__ = loaded_model.signatures['''serving_default'''](UpperCAmelCase__)['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output)) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A__ = tf.convert_to_tensor([self.test_sentences[0]]) A__ = tf_tokenizer(UpperCAmelCase__) # Build model with some sample inputs A__ = tf_tokenizer.get_config() A__ = TFGPTaTokenizer.from_config(UpperCAmelCase__) A__ = model_from_config(UpperCAmelCase__) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key])) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run A__ = 123_123 for max_length in [3, 5, 1_024]: A__ = tf.convert_to_tensor([self.test_sentences[0]]) A__ = tf_tokenizer(UpperCAmelCase__ , max_length=UpperCAmelCase__) A__ = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
14
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
1
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: """simple docstring""" create_state_space_tree(lowercase_ , [] , 0 ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> None: """simple docstring""" if index == len(lowercase_ ): print(lowercase_ ) return create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase_ , lowercase_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
14
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = XGLMTokenizer UpperCAmelCase__ = XGLMTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = '''<pad>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(len(UpperCAmelCase__) , 1_008) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' A__ = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__) A__ = tokenizer.tokenize('''This is a test''') self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase__ , f.name) A__ = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase__) A__ = pickle.dumps(UpperCAmelCase__) pickle.loads(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = '''I was born in 92000, and this is falsé.''' A__ = tokenizer.tokenize(UpperCAmelCase__) A__ = rust_tokenizer.tokenize(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) A__ = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(UpperCAmelCase__) A__ = rust_tokenizer.encode(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: '''simple docstring''' A__ = '''Hello World!''' A__ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' A__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off A__ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = { '''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''facebook/xglm-564M''' , padding=UpperCAmelCase__ , )
14
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase : List[str] = """\ """ _lowerCamelCase : List[Any] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _lowerCamelCase : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string'''), }) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Any]=None) ->int: '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A__ = '''cuda''' else: A__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' A__ = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__) A__ = model.to(UpperCAmelCase__) A__ = AutoTokenizer.from_pretrained(UpperCAmelCase__) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A__ = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(UpperCAmelCase__) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A__ = model.config.max_length - 1 else: A__ = model.config.max_length A__ = tokenizer( UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors='''pt''' , return_attention_mask=UpperCAmelCase__ , ).to(UpperCAmelCase__) A__ = encodings['''input_ids'''] A__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A__ = [] A__ = CrossEntropyLoss(reduction='''none''') for start_index in logging.tqdm(range(0 , len(UpperCAmelCase__) , UpperCAmelCase__)): A__ = min(start_index + batch_size , len(UpperCAmelCase__)) A__ = encoded_texts[start_index:end_index] A__ = attn_masks[start_index:end_index] if add_start_token: A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(UpperCAmelCase__) A__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) A__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(UpperCAmelCase__), attn_mask] , dim=1) A__ = encoded_batch with torch.no_grad(): A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__).logits A__ = out_logits[..., :-1, :].contiguous() A__ = labels[..., 1:].contiguous() A__ = attn_mask[..., 1:].contiguous() A__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , UpperCAmelCase__) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCAmelCase__)}
14
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
1
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('''partitions must be a positive number!''' ) if partitions > number_of_bytes: raise ValueError('''partitions can not > number_of_bytes!''' ) A__ = number_of_bytes // partitions A__ = [] for i in range(lowercase_ ): A__ = i * bytes_per_partition + 1 A__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=13 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=37 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : List[Any]=16 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=None , ) ->Dict: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' A__ = DistilBertModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any) ->int: '''simple docstring''' A__ = DistilBertForMaskedLM(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any) ->List[str]: '''simple docstring''' A__ = DistilBertForQuestionAnswering(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' A__ = self.num_labels A__ = DistilBertForSequenceClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = self.num_labels A__ = DistilBertForTokenClassification(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = self.num_choices A__ = DistilBertForMultipleChoice(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCAmelCase__ = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' A__ = DistilBertModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DistilBertModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return A__ = True A__ = model_class(config=UpperCAmelCase__) A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = torch.jit.trace( UpperCAmelCase__ , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , '''traced_model.pt''')) A__ = torch.jit.load(os.path.join(UpperCAmelCase__ , '''traced_model.pt''') , map_location=UpperCAmelCase__) loaded(inputs_dict['''input_ids'''].to(UpperCAmelCase__) , inputs_dict['''attention_mask'''].to(UpperCAmelCase__)) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' A__ = DistilBertModel.from_pretrained('''distilbert-base-uncased''') A__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]]) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)[0] A__ = torch.Size((1, 11, 768)) self.assertEqual(output.shape , UpperCAmelCase__) A__ = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1e-4))
14
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : Any = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _lowerCamelCase : Any = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _lowerCamelCase : Optional[int] = """▁""" class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="[CLS]" , UpperCAmelCase__ : int="[SEP]" , UpperCAmelCase__ : int="<unk>" , UpperCAmelCase__ : Tuple="[SEP]" , UpperCAmelCase__ : List[str]="<pad>" , UpperCAmelCase__ : List[str]="[CLS]" , UpperCAmelCase__ : Union[str, Any]="[MASK]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Any , ) ->None: '''simple docstring''' A__ = ( AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ , normalized=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else mask_token ) A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return len(self.sp_model) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Optional[int]) ->Dict: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : List[Any] , UpperCAmelCase__ : List[Any]) ->int: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int) ->int: '''simple docstring''' if self.remove_space: A__ = ''' '''.join(inputs.strip().split()) else: A__ = inputs A__ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: A__ = unicodedata.normalize('''NFKD''' , UpperCAmelCase__) A__ = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__)]) if self.do_lower_case: A__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' A__ = self.preprocess_text(UpperCAmelCase__) A__ = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) A__ = [] for piece in pieces: if len(UpperCAmelCase__) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): A__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: A__ = cur_pieces[1:] else: A__ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(UpperCAmelCase__) else: new_pieces.append(UpperCAmelCase__) return new_pieces def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int) ->str: '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Dict) ->List[Any]: '''simple docstring''' A__ = [] A__ = '''''' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = True A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) A__ = False out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) + [1] return [1] + ([0] * len(UpperCAmelCase__)) + [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
14
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = KandinskyVaaControlnetImgaImgPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' torch.manual_seed(0) A__ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A__ = UNetaDConditionModel(**UpperCAmelCase__) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' torch.manual_seed(0) A__ = VQModel(**self.dummy_movq_kwargs) return model def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = self.dummy_unet A__ = self.dummy_movq A__ = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } A__ = DDIMScheduler(**UpperCAmelCase__) A__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple=0) ->Any: '''simple docstring''' A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( UpperCAmelCase__) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((256, 256)) # create hint A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__)) A__ = output.images A__ = pipe( **self.get_dummy_inputs(UpperCAmelCase__) , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''') A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') A__ = init_image.resize((512, 512)) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''') A__ = torch.from_numpy(np.array(UpperCAmelCase__)).float() / 255.0 A__ = hint.permute(2 , 0 , 1).unsqueeze(0) A__ = '''A robot, 4k photo''' A__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa) pipe_prior.to(UpperCAmelCase__) A__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa) A__ = pipeline.to(UpperCAmelCase__) pipeline.set_progress_bar_config(disable=UpperCAmelCase__) A__ = torch.Generator(device='''cpu''').manual_seed(0) A__ , A__ = pipe_prior( UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.85 , generator=UpperCAmelCase__ , negative_prompt='''''' , ).to_tuple() A__ = pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__)
14
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : List[str] = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } _lowerCamelCase : Dict = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Any="[UNK]" , UpperCAmelCase__ : List[str]="[SEP]" , UpperCAmelCase__ : Tuple="[PAD]" , UpperCAmelCase__ : str="[CLS]" , UpperCAmelCase__ : Dict="[MASK]" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : List[str] , ) ->Union[str, Any]: '''simple docstring''' super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , do_lower_case=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , tokenize_chinese_chars=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , UpperCAmelCase__) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCAmelCase__) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase__) != tokenize_chinese_chars ): A__ = getattr(UpperCAmelCase__ , normalizer_state.pop('''type''')) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**UpperCAmelCase__) A__ = do_lower_case def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , **UpperCAmelCase__ : int) ->str: '''simple docstring''' A__ = PaddingStrategy.MAX_LENGTH A__ = text A__ = kwargs.pop('''text_pair''' , UpperCAmelCase__) A__ = kwargs.pop('''return_tensors''' , UpperCAmelCase__) A__ = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(UpperCAmelCase__): if batch_text_pair is not None: A__ = batch_text_pair[idx] else: A__ = None A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__) A__ = encoded_candidates.get('''input_ids''') A__ = encoded_candidates.get('''attention_mask''') A__ = encoded_candidates.get('''token_type_ids''') if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase__) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase__) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase__) A__ = {key: item for key, item in output_data.items() if len(UpperCAmelCase__) != 0} return BatchEncoding(UpperCAmelCase__ , tensor_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=None) ->str: '''simple docstring''' A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__) return tuple(UpperCAmelCase__)
14
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
1
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _lowerCamelCase : Any = None _lowerCamelCase : str = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _lowerCamelCase : int = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=1 , lowercase_=256 ) -> Optional[Any]: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" with open(lowercase_ , '''r''' ) as f: return json.load(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" with open(lowercase_ , '''w''' ) as f: json.dump(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=True ) -> Tuple: """simple docstring""" os.makedirs(lowercase_ , exist_ok=lowercase_ ) A__ = os.path.join(lowercase_ , '''tmp''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) A__ = read_json(os.path.join(lowercase_ , '''params.json''' ) ) A__ = NUM_SHARDS[model_size] A__ = params['''n_layers'''] A__ = params['''n_heads'''] A__ = n_heads // num_shards A__ = params['''dim'''] A__ = dim // n_heads A__ = 1_00_00.0 A__ = 1.0 / (base ** (torch.arange(0 , lowercase_ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params['''n_kv_heads'''] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(lowercase_ , lowercase_=n_heads , lowercase_=dim , lowercase_=dim ): return w.view(lowercase_ , dima // n_heads // 2 , 2 , lowercase_ ).transpose(1 , 2 ).reshape(lowercase_ , lowercase_ ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(lowercase_ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded A__ = [ torch.load(os.path.join(lowercase_ , f"""consolidated.{i:02d}.pth""" ) , map_location='''cpu''' ) for i in range(lowercase_ ) ] A__ = 0 A__ = {'''weight_map''': {}} for layer_i in range(lowercase_ ): A__ = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } A__ = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) ) A__ = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , ) A__ = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( lowercase_ , lowercase_ , lowercase_ ) for i in range(lowercase_ ) ] , dim=0 , ).reshape(lowercase_ , lowercase_ ) A__ = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(lowercase_ )] , dim=1 ) A__ = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(lowercase_ )] , dim=0 ) A__ = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(lowercase_ )] , dim=1 ) A__ = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(lowercase_ )] , dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) A__ = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: A__ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(lowercase_ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowercase_ )] , dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) # Write configs A__ = {'''total_size''': param_count * 2} write_json(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin.index.json''' ) ) A__ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 A__ = params['''multiple_of'''] if '''multiple_of''' in params else 256 A__ = LlamaConfig( hidden_size=lowercase_ , intermediate_size=compute_intermediate_size(lowercase_ , lowercase_ , lowercase_ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=lowercase_ , ) config.save_pretrained(lowercase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) A__ = LlamaForCausalLM.from_pretrained(lowercase_ , torch_dtype=torch.floataa , low_cpu_mem_usage=lowercase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(lowercase_ , safe_serialization=lowercase_ ) shutil.rmtree(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) A__ = tokenizer_class(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=lowercase_ , help='''Whether or not to save using `safetensors`.''' ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) A__ = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , lowercase_ ) if __name__ == "__main__": main()
14
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowerCamelCase : Union[str, Any] = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" if isinstance(lowercase_ , torch.Tensor ): return image elif isinstance(lowercase_ , PIL.Image.Image ): A__ = [image] A__ = [trans(img.convert('''RGB''' ) ) for img in image] A__ = torch.stack(lowercase_ ) return image class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict) ->Optional[Any]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM A__ = DDIMScheduler.from_config(scheduler.config) self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : str) ->Dict: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""") def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]) ->int: '''simple docstring''' A__ = min(int(num_inference_steps * strength) , UpperCAmelCase__) A__ = max(num_inference_steps - init_timestep , 0) A__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=None) ->Any: '''simple docstring''' if not isinstance(UpperCAmelCase__ , (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCAmelCase__)}""") A__ = image.to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(UpperCAmelCase__) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase__)}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") A__ = init_latents.shape A__ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__) # get latents print('''add noise to latents at timestep''' , UpperCAmelCase__) A__ = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = init_latents return latents @torch.no_grad() def __call__( self : Tuple , UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] = None , UpperCAmelCase__ : float = 0.8 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(UpperCAmelCase__) # 2. Preprocess image A__ = preprocess(UpperCAmelCase__) # 3. set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ , device=self.device) A__ , A__ = self.get_timesteps(UpperCAmelCase__ , UpperCAmelCase__ , self.device) A__ = timesteps[:1].repeat(UpperCAmelCase__) # 4. Prepare latent variables A__ = self.prepare_latents(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , self.unet.dtype , self.device , UpperCAmelCase__) A__ = latents # 5. Denoising loop for t in self.progress_bar(UpperCAmelCase__): # 1. predict noise model_output A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A__ = self.scheduler.step( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , eta=UpperCAmelCase__ , use_clipped_model_output=UpperCAmelCase__ , generator=UpperCAmelCase__ , ).prev_sample A__ = (image / 2 + 0.5).clamp(0 , 1) A__ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": A__ = self.numpy_to_pil(UpperCAmelCase__) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=UpperCAmelCase__)
14
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) # TODO Update this _lowerCamelCase : Union[str, Any] = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''esm''' def __init__( self : str , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=768 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Dict=3_072 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[int]=1_026 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Optional[Any]=1e-12 , UpperCAmelCase__ : Optional[Any]="absolute" , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : List[Any] , ) ->Tuple: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = emb_layer_norm_before A__ = token_dropout A__ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''') A__ = EsmFoldConfig() elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = EsmFoldConfig(**UpperCAmelCase__) A__ = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''') A__ = get_default_vocab_list() else: A__ = vocab_list else: A__ = None A__ = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''') def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase__): A__ = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = 0 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = 128 UpperCAmelCase__ = None def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' if self.trunk is None: A__ = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase__): A__ = TrunkConfig(**self.trunk) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = asdict(self) A__ = self.trunk.to_dict() return output @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 48 UpperCAmelCase__ = 1024 UpperCAmelCase__ = 128 UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 32 UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = False UpperCAmelCase__ = 4 UpperCAmelCase__ = 128 UpperCAmelCase__ = None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' if self.structure_module is None: A__ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase__): A__ = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""") A__ = self.sequence_state_dim // self.sequence_head_width A__ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""") if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""") if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""") def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' A__ = asdict(self) A__ = self.structure_module.to_dict() return output @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 384 UpperCAmelCase__ = 128 UpperCAmelCase__ = 16 UpperCAmelCase__ = 128 UpperCAmelCase__ = 12 UpperCAmelCase__ = 4 UpperCAmelCase__ = 8 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = 7 UpperCAmelCase__ = 10 UpperCAmelCase__ = 1E-8 UpperCAmelCase__ = 1E5 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' return asdict(self) def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
14
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
from maths.prime_factors import prime_factors def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): A__ = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(lowercase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : Any = 16 _lowerCamelCase : Any = 32 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> Tuple: """simple docstring""" A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : Union[str, Any] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase_ ) == "1": A__ = 2 # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase_ ) def inner_training_loop(lowercase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=lowercase_ ) A__ , A__ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**lowercase_ ) A__ = outputs.loss accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : List[Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Tuple = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = RobertaTokenizer def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[int]="replace" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : List[str]="</s>" , UpperCAmelCase__ : Optional[int]="<s>" , UpperCAmelCase__ : Dict="<unk>" , UpperCAmelCase__ : List[str]="<pad>" , UpperCAmelCase__ : Dict="<mask>" , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Tuple , ) ->int: '''simple docstring''' super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space: A__ = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''')) A__ = add_prefix_space A__ = pre_tok_class(**UpperCAmelCase__) A__ = add_prefix_space A__ = '''post_processor''' A__ = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state['''sep''']) if "cls" in state: A__ = tuple(state['''cls''']) A__ = False if state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get('''trim_offsets''' , UpperCAmelCase__) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(UpperCAmelCase__ , state.pop('''type''')) A__ = component_class(**UpperCAmelCase__) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str]) ->Optional[Any]: '''simple docstring''' A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else value A__ = value def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple) ->BatchEncoding: '''simple docstring''' A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : str) ->BatchEncoding: '''simple docstring''' A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__) return tuple(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=None) ->List[str]: '''simple docstring''' A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
14
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''') A__ = AutoTokenizer.from_pretrained('''google/mt5-small''') A__ = tokenizer('''Hello there''' , return_tensors='''tf''').input_ids A__ = tokenizer('''Hi I am''' , return_tensors='''tf''').input_ids A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__).loss A__ = -tf.math.reduce_mean(UpperCAmelCase__).numpy() A__ = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)
14
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCamelCase : Any = logging.getLogger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : Optional[Any]=-1) ->Tuple: '''simple docstring''' A__ = label_idx def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[Split, str]) ->List[InputExample]: '''simple docstring''' if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = mode.value A__ = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""") A__ = 1 A__ = [] with open(UpperCAmelCase__ , encoding='''utf-8''') as f: A__ = [] A__ = [] for line in f: if line.startswith('''-DOCSTART-''') or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__)) guid_index += 1 A__ = [] A__ = [] else: A__ = line.split(''' ''') words.append(splits[0]) if len(UpperCAmelCase__) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''')) else: # Examples could have no label for mode = "test" labels.append('''O''') if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__)) return examples def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List) ->Optional[Any]: '''simple docstring''' A__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''') or line == "" or line == "\n": writer.write(UpperCAmelCase__) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0) + '''\n''' writer.write(UpperCAmelCase__) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0]) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' if path: with open(UpperCAmelCase__ , '''r''') as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any]) ->int: '''simple docstring''' super().__init__(label_idx=-2) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' if path: with open(UpperCAmelCase__ , '''r''') as f: A__ = f.read().splitlines() if "O" not in labels: A__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[Split, str]) ->List[InputExample]: '''simple docstring''' if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = mode.value A__ = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""") A__ = 1 A__ = [] with open(UpperCAmelCase__ , encoding='''utf-8''') as f: for sentence in parse_incr(UpperCAmelCase__): A__ = [] A__ = [] for token in sentence: words.append(token['''form''']) labels.append(token['''upos''']) assert len(UpperCAmelCase__) == len(UpperCAmelCase__) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__)) guid_index += 1 return examples def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List) ->Dict: '''simple docstring''' A__ = 0 for sentence in parse_incr(UpperCAmelCase__): A__ = preds_list[example_id] A__ = '''''' for token in sentence: out += f"""{token["form"]} ({token["upos"]}|{s_p.pop(0)}) """ out += "\n" writer.write(UpperCAmelCase__) example_id += 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' if path: with open(UpperCAmelCase__ , '''r''') as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
14
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''facebook/bart-large-mnli''' UpperCAmelCase__ = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) UpperCAmelCase__ = '''text_classifier''' UpperCAmelCase__ = AutoTokenizer UpperCAmelCase__ = AutoModelForSequenceClassification UpperCAmelCase__ = ['''text''', ['''text''']] UpperCAmelCase__ = ['''text'''] def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' super().setup() A__ = self.model.config A__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail'''): A__ = int(UpperCAmelCase__) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''') def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]) ->Optional[Any]: '''simple docstring''' A__ = labels return self.pre_processor( [text] * len(UpperCAmelCase__) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Tuple) ->Optional[int]: '''simple docstring''' A__ = outputs.logits A__ = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
14
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]) ->List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__) @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : bool = True , ) ->Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: A__ = self.unet.config.sample_size / self.unet.config.sample_rate A__ = audio_length_in_s * self.unet.config.sample_rate A__ = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""") A__ = int(UpperCAmelCase__) if sample_size % down_scale_factor != 0: A__ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" ''' process.''') A__ = int(UpperCAmelCase__) A__ = next(iter(self.unet.parameters())).dtype A__ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(UpperCAmelCase__) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase__)}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") A__ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ , device=audio.device) A__ = self.scheduler.timesteps.to(UpperCAmelCase__) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__).sample # 2. compute previous image: x_t -> t_t-1 A__ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample A__ = audio.clamp(-1 , 1).float().cpu().numpy() A__ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCAmelCase__)
14
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
1
def SCREAMING_SNAKE_CASE ( lowercase_ = 50 ) -> int: """simple docstring""" A__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
14
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = state_dict.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A__ = value else: A__ = value return new_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Dict: """simple docstring""" A__ = '''''' if is_panoptic: A__ = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: A__ = '''resnet101''' if "dc5" in model_name: A__ = True A__ = '''panoptic''' in model_name if is_panoptic: A__ = 250 else: A__ = 91 A__ = '''huggingface/label-files''' A__ = '''coco-detection-id2label.json''' A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(lowercase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load image processor A__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' A__ = ConditionalDetrImageProcessor(format=lowercase_ ) # prepare image A__ = prepare_img() A__ = image_processor(images=lowercase_ , return_tensors='''pt''' ) A__ = encoding['''pixel_values'''] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub A__ = torch.hub.load('''DeppMeng/ConditionalDETR''' , lowercase_ , pretrained=lowercase_ ).eval() A__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: A__ = '''conditional_detr.''' + src rename_key(lowercase_ , lowercase_ , lowercase_ ) A__ = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): A__ = state_dict.pop(lowercase_ ) A__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: A__ = state_dict.pop(lowercase_ ) A__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: A__ = state_dict.pop(lowercase_ ) A__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A__ = state_dict.pop(lowercase_ ) A__ = val # finally, create HuggingFace model and load state dict A__ = ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() model.push_to_hub(repo_id=lowercase_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion A__ = conditional_detr(lowercase_ ) A__ = model(lowercase_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
14
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Tuple , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase__ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase__ : Tuple[int] = (64,) , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : str = "silu" , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : float = 0.18215 , UpperCAmelCase__ : str = "group" , ) ->Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ = Encoder( in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , down_block_types=UpperCAmelCase__ , block_out_channels=UpperCAmelCase__ , layers_per_block=UpperCAmelCase__ , act_fn=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , double_z=UpperCAmelCase__ , ) A__ = vq_embed_dim if vq_embed_dim is not None else latent_channels A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , 1) A__ = VectorQuantizer(UpperCAmelCase__ , UpperCAmelCase__ , beta=0.25 , remap=UpperCAmelCase__ , sane_index_shape=UpperCAmelCase__) A__ = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , 1) # pass init params to Decoder A__ = Decoder( in_channels=UpperCAmelCase__ , out_channels=UpperCAmelCase__ , up_block_types=UpperCAmelCase__ , block_out_channels=UpperCAmelCase__ , layers_per_block=UpperCAmelCase__ , act_fn=UpperCAmelCase__ , norm_num_groups=UpperCAmelCase__ , norm_type=UpperCAmelCase__ , ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True) ->VQEncoderOutput: '''simple docstring''' A__ = self.encoder(UpperCAmelCase__) A__ = self.quant_conv(UpperCAmelCase__) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCAmelCase__) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: A__ , A__ , A__ = self.quantize(UpperCAmelCase__) else: A__ = h A__ = self.post_quant_conv(UpperCAmelCase__) A__ = self.decoder(UpperCAmelCase__ , quant if self.config.norm_type == '''spatial''' else None) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : bool = True) ->Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ = sample A__ = self.encode(UpperCAmelCase__).latents A__ = self.decode(UpperCAmelCase__).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCAmelCase__)
14
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]=13 , UpperCAmelCase__ : List[Any]=64 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[Any]=32 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : int=10 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Tuple=[1, 16, 4, 4] , UpperCAmelCase__ : Any=None , ) ->Tuple: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size A__ = (self.image_size // 32) ** 2 A__ = num_patches + 1 def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' A__ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [4, 8, 16, 32], '''num_groups''': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = ViTHybridModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]) ->Tuple: '''simple docstring''' A__ = self.type_sequence_label_size A__ = ViTHybridForImageClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : Any) ->Any: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' A__ = ViTHybridModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear)) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(UpperCAmelCase__) for model_class in self.all_model_classes: A__ = model_class(config=UpperCAmelCase__) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": A__ = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ViTHybridModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( UpperCAmelCase__) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''').to(UpperCAmelCase__) # forward pass with torch.no_grad(): A__ = model(**UpperCAmelCase__) # verify the logits A__ = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = torch.tensor([-1.9090, -0.4993, -0.2389]).to(UpperCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow @require_accelerate def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' A__ = ViTHybridImageProcessor.from_pretrained('''google/vit-hybrid-base-bit-384''') A__ = ViTHybridForImageClassification.from_pretrained('''google/vit-hybrid-base-bit-384''' , device_map='''auto''') A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''pt''') A__ = model(**UpperCAmelCase__) A__ = outputs.logits # model predicts one of the 1000 ImageNet classes A__ = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , '''tabby, tabby cat''')
14
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCamelCase : Union[str, Any] = (720, 1280) # Height, Width _lowerCamelCase : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCamelCase : str = 1 / 100 _lowerCamelCase : List[str] = """""" _lowerCamelCase : List[str] = """""" _lowerCamelCase : Optional[Any] = """""" _lowerCamelCase : Dict = 250 def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" A__ , A__ = get_dataset(lowercase_ , lowercase_ ) for index in range(lowercase_ ): A__ = random.sample(range(len(lowercase_ ) ) , 4 ) A__ , A__ , A__ = update_image_and_anno( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , filter_scale=lowercase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ = random_chars(32 ) A__ = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] A__ = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) A__ = [] for anno in new_annos: A__ = anno[3] - anno[1] A__ = anno[4] - anno[2] A__ = anno[1] + width / 2 A__ = anno[2] + height / 2 A__ = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowercase_ ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[list, list]: """simple docstring""" A__ = [] A__ = [] for label_file in glob.glob(os.path.join(lowercase_ , '''*.txt''' ) ): A__ = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(lowercase_ ) as in_file: A__ = in_file.readlines() A__ = os.path.join(lowercase_ , f"""{label_name}.jpg""" ) A__ = [] for obj_list in obj_lists: A__ = obj_list.rstrip('''\n''' ).split(''' ''' ) A__ = float(obj[1] ) - float(obj[3] ) / 2 A__ = float(obj[2] ) - float(obj[4] ) / 2 A__ = float(obj[1] ) + float(obj[3] ) / 2 A__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase_ ) labels.append(lowercase_ ) return img_paths, labels def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.0 , ) -> tuple[list, list, str]: """simple docstring""" A__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ = int(scale_x * output_size[1] ) A__ = int(scale_y * output_size[0] ) A__ = [] A__ = [] for i, index in enumerate(lowercase_ ): A__ = all_img_list[index] path_list.append(lowercase_ ) A__ = all_annos[index] A__ = cva.imread(lowercase_ ) if i == 0: # top-left A__ = cva.resize(lowercase_ , (divid_point_x, divid_point_y) ) A__ = img for bbox in img_annos: A__ = bbox[1] * scale_x A__ = bbox[2] * scale_y A__ = bbox[3] * scale_x A__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right A__ = cva.resize(lowercase_ , (output_size[1] - divid_point_x, divid_point_y) ) A__ = img for bbox in img_annos: A__ = scale_x + bbox[1] * (1 - scale_x) A__ = bbox[2] * scale_y A__ = scale_x + bbox[3] * (1 - scale_x) A__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left A__ = cva.resize(lowercase_ , (divid_point_x, output_size[0] - divid_point_y) ) A__ = img for bbox in img_annos: A__ = bbox[1] * scale_x A__ = scale_y + bbox[2] * (1 - scale_y) A__ = bbox[3] * scale_x A__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right A__ = cva.resize( lowercase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) A__ = img for bbox in img_annos: A__ = scale_x + bbox[1] * (1 - scale_x) A__ = scale_y + bbox[2] * (1 - scale_y) A__ = scale_x + bbox[3] * (1 - scale_x) A__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: A__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" A__ = ascii_lowercase + digits return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
14
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
1
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> List[str]: """simple docstring""" if attention_mask is None: A__ = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = OPTConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict=13 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Optional[int]=99 , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Dict=20 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : int=16 , UpperCAmelCase__ : List[Any]=16 , ) ->Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = embed_dim A__ = word_embed_proj_dim A__ = False def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) A__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) A__ = tf.concat([input_ids, eos_tensor] , axis=1) A__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase__ , **self.config_updates , ) A__ = prepare_opt_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int) ->Optional[Any]: '''simple docstring''' A__ = TFOPTModel(config=UpperCAmelCase__) A__ = inputs_dict['''input_ids'''] A__ = input_ids[:1, :] A__ = inputs_dict['''attention_mask'''][:1, :] A__ = 1 # first forward pass A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__) A__ , A__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size) A__ = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and A__ = tf.concat([input_ids, next_tokens] , axis=-1) A__ = tf.concat([attention_mask, next_attn_mask] , axis=-1) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__)[0] A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice A__ = int(ids_tensor((1,) , output_from_past.shape[-1])) A__ = output_from_no_past[:, -3:, random_slice_idx] A__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1e-3) @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCAmelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = 10 def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = TFOPTModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]): if hasattr(UpperCAmelCase__ , '''weight'''): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCAmelCase__ , '''weight'''): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings A__ = model_class(config=UpperCAmelCase__) A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_input_embeddings()) A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(UpperCAmelCase__) A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_input_embeddings()) A__ = _get_word_embedding_weight(UpperCAmelCase__ , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. A__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase__) # check that weights remain the same after resizing A__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: A__ = False self.assertTrue(UpperCAmelCase__) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase__) A__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: A__ = False self.assertTrue(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" return tf.constant(lowercase_ , dtype=tf.intaa ) @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = 99 def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ = tf.ones((4, 1) , dtype=tf.intaa) * 2 A__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) A__ = input_ids.shape[0] A__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' A__ = TFOPTModel.from_pretrained('''facebook/opt-350m''') A__ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]]) A__ = tf.not_equal(UpperCAmelCase__ , model.config.pad_token_id) with tf.GradientTape(): A__ = model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__).last_hidden_state A__ = (1, 11, 512) self.assertEqual(output.shape , UpperCAmelCase__) A__ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]]) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=4e-3)) A__ = tf.function(UpperCAmelCase__ , jit_compile=UpperCAmelCase__) A__ = xla_generate(UpperCAmelCase__ , UpperCAmelCase__)[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=4e-2)) @require_tf @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' super().setUp() A__ = '''facebook/opt-350m''' def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = TFOPTForCausalLM.from_pretrained(self.path_model) A__ = GPTaTokenizer.from_pretrained(self.path_model) A__ = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) A__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) A__ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ]) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-4)) A__ = tf.function(UpperCAmelCase__ , jit_compile=UpperCAmelCase__) A__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-4)) @require_tf @slow class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' A__ = '''facebook/opt-125m''' A__ = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] A__ = [] A__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__) A__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__) for prompt in self.prompts: A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''').input_ids A__ = model.generate(UpperCAmelCase__ , max_length=10) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = '''facebook/opt-350m''' A__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__) A__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__) A__ = '''left''' # use different length sentences to test batching A__ = [ '''Hello, my dog is a little''', '''Today, I''', ] A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__) A__ = inputs['''input_ids'''] A__ = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs['''attention_mask''']) A__ = tokenizer(sentences[0] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__) A__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa)) A__ = tokenizer(sentences[1] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_length=model.config.max_length - num_paddings) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence]) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ = '''facebook/opt-350m''' A__ = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] A__ = [] A__ = GPTaTokenizer.from_pretrained(UpperCAmelCase__) A__ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase__) for prompt in self.prompts: A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''').input_ids A__ = model.generate(UpperCAmelCase__ , max_length=10) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__)
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : str = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''yolos''' def __init__( self : Any , UpperCAmelCase__ : Tuple=768 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Optional[int]=3_072 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Dict=1e-12 , UpperCAmelCase__ : List[str]=[512, 864] , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[Any]=100 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Optional[Any]=0.1 , **UpperCAmelCase__ : int , ) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = image_size A__ = patch_size A__ = num_channels A__ = qkv_bias A__ = num_detection_tokens A__ = use_mid_position_embeddings A__ = auxiliary_loss # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = eos_coefficient class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self : str) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' return 12
14
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
import heapq import sys import numpy as np _lowerCamelCase : int = tuple[int, int] class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = [] A__ = set() def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''') def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' return len(self.elements) == 0 def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(UpperCAmelCase__) else: # update # print("update", item) A__ = [] ((A__) , (A__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((A__) , (A__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' if item in self.set: self.set.remove(UpperCAmelCase__) A__ = [] ((A__) , (A__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((A__) , (A__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' return self.elements[0][1] def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' ((A__) , (A__)) = heapq.heappop(self.elements) self.set.remove(UpperCAmelCase__) return (priority, item) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = np.array(lowercase_ ) A__ = np.array(lowercase_ ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" return consistent_heuristic(lowercase_ , lowercase_ ) // t def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): A__ = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: A__ = '''#''' A__ = '''-''' A__ = back_pointer[goal] while x != start: ((A__) , (A__)) = x # print(x) A__ = '''-''' A__ = back_pointer[x] A__ = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A__ = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) A__ = back_pointer[x] print(lowercase_ ) sys.exit() def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[str]: """simple docstring""" for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((A__) , (A__)) = s A__ = (x - 1, y) A__ = (x + 1, y) A__ = (x, y + 1) A__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) A__ = -1 A__ = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: A__ = g_function[s] + 1 A__ = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCamelCase : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCamelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _lowerCamelCase : Dict = make_common_ground() _lowerCamelCase : List[Any] = blocks_blk # hyper parameters _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : Any = 1 _lowerCamelCase : List[Any] = 20 _lowerCamelCase : str = 3 # one consistent and two other inconsistent # start and end destination _lowerCamelCase : Union[str, Any] = (0, 0) _lowerCamelCase : Any = (n - 1, n - 1) _lowerCamelCase : Optional[int] = 1 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = {start: 0, goal: float('''inf''' )} A__ = {start: -1, goal: -1} A__ = [] A__ = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) A__ = [] A__ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: A__ , A__ = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: A__ = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
14
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _lowerCamelCase : str = logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: A__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ ) A__ , A__ = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) else: A__ = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase_ ) A__ , A__ = ProphetNetForConditionalGeneration.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) A__ = ['''key_proj''', '''value_proj''', '''query_proj'''] A__ = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: A__ = key.split('''.''' ) if attributes[0] == "lm_head": A__ = prophet A__ = prophet_old else: A__ = prophet.prophetnet A__ = prophet_old.model A__ = False for attribute in attributes: if attribute in mapping: A__ = mapping[attribute] if not hasattr(lowercase_ , lowercase_ ) and len(lowercase_ ) > 0: A__ = attribute elif hasattr(lowercase_ , lowercase_ ): A__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A__ = old_model.weight logger.info(f"""{attribute} is initialized.""" ) A__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A__ = old_model.bias logger.info(f"""{attribute} is initialized""" ) A__ = True break elif attribute in special_keys and hasattr(lowercase_ , '''in_proj_weight''' ): A__ = old_model.in_proj_weight.shape[0] // 3 A__ = getattr(lowercase_ , lowercase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." A__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) A__ = True break if attribute.isdigit(): A__ = model[int(lowercase_ )] A__ = old_model[int(lowercase_ )] else: A__ = getattr(lowercase_ , lowercase_ ) if old_attribute == "": A__ = old_model else: if not hasattr(lowercase_ , lowercase_ ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) A__ = getattr(lowercase_ , lowercase_ ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCamelCase : str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
14
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _lowerCamelCase : str = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _lowerCamelCase : str = TaTokenizerFast _lowerCamelCase : int = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
14
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 class UpperCamelCase_ : '''simple docstring''' def __init__( self : str , UpperCAmelCase__ : int) ->str: '''simple docstring''' A__ = [[] for _ in range(UpperCAmelCase__)] A__ = size def __getitem__( self : List[Any] , UpperCAmelCase__ : int) ->Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex]) @property def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' return self._size def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->Optional[Any]: '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''') self._graph[from_vertex].append(Edge(UpperCAmelCase__ , UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->int | None: '''simple docstring''' A__ = deque([start_vertex]) A__ = [None] * self.size A__ = 0 while queue: A__ = queue.popleft() A__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: A__ = current_distance + edge.weight A__ = distances[edge.destination_vertex] if ( isinstance(UpperCAmelCase__ , UpperCAmelCase__) and new_distance >= dest_vertex_distance ): continue A__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
14
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
1
from graphs.minimum_spanning_tree_kruskal import kruskal def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ = 9 A__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A__ = kruskal(lowercase_ , lowercase_ ) A__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowercase_ ) == sorted(lowercase_ )
14
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowerCamelCase : Tuple = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: A__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=99 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=32 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Dict=0.02 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = eos_token_id A__ = pad_token_id A__ = bos_token_id A__ = initializer_range def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) A__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) A__ = shift_tokens_right(UpperCAmelCase__ , 1 , 2) A__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) A__ = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]) ->int: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = model.encode(inputs_dict['''input_ids''']) A__ , A__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) A__ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__) A__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''') A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) A__ = model.decode(UpperCAmelCase__ , UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]) ->int: '''simple docstring''' A__ = 20 A__ = model_class_name(UpperCAmelCase__) A__ = model.encode(inputs_dict['''input_ids''']) A__ , A__ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) A__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) A__ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__) A__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A__ = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) A__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''') A__ = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) A__ = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__) A__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""") @require_flax class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = 99 def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' A__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A__ = input_ids.shape[0] A__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' A__ , A__ , A__ = self._get_config_and_data() A__ = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__) A__ = lm_model(input_ids=UpperCAmelCase__) A__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]: '''simple docstring''' A__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A__ = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__) A__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) A__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) A__ = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__) A__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) A__ = shift_tokens_right(UpperCAmelCase__ , 1 , 2) A__ = np.equal(UpperCAmelCase__ , 1).astype(np.floataa).sum() A__ = np.equal(UpperCAmelCase__ , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = True UpperCAmelCase__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: '''simple docstring''' A__ = FlaxBlenderbotSmallModelTester(self) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = model_class(UpperCAmelCase__) @jax.jit def encode_jitted(UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : str): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__) with self.subTest('''JIT Enabled'''): A__ = encode_jitted(**UpperCAmelCase__).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): A__ = encode_jitted(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): A__ = model_class(UpperCAmelCase__) A__ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask''']) A__ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest('''JIT Enabled'''): A__ = decode_jitted(**UpperCAmelCase__).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): A__ = decode_jitted(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertEqual(jitted_output.shape , output.shape) @slow def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''') # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A__ = np.ones((1, 1)) * model.config.eos_token_id A__ = model(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__)
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _lowerCamelCase : Dict = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) _lowerCamelCase : Any = dataset.iloc[:, 1:2].values _lowerCamelCase : List[Any] = dataset.iloc[:, 2].values _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = train_test_split(X, y, test_size=0.2, random_state=0) _lowerCamelCase : List[Any] = PolynomialFeatures(degree=4) _lowerCamelCase : Optional[Any] = poly_reg.fit_transform(X) _lowerCamelCase : Tuple = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" plt.scatter(lowercase_ , lowercase_ , color='''red''' ) plt.plot(lowercase_ , pol_reg.predict(poly_reg.fit_transform(lowercase_ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = XCLIPTextConfig() # derive patch size from model name A__ = model_name.find('''patch''' ) A__ = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) A__ = XCLIPVisionConfig(patch_size=lowercase_ , num_frames=lowercase_ ) if "large" in model_name: A__ = 768 A__ = 3_072 A__ = 12 A__ = 1_024 A__ = 4_096 A__ = 16 A__ = 24 A__ = 768 A__ = 3_072 if model_name == "xclip-large-patch14-16-frames": A__ = 336 A__ = XCLIPConfig.from_text_vision_configs(lowercase_ , lowercase_ ) if "large" in model_name: A__ = 768 return config def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" if name == "token_embedding.weight": A__ = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": A__ = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: A__ = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: A__ = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: A__ = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: A__ = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): A__ = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: A__ = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: A__ = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": A__ = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": A__ = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): A__ = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: A__ = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: A__ = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: A__ = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: A__ = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: A__ = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: A__ = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: A__ = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": A__ = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): A__ = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): A__ = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "attn.in_proj" in key: A__ = key.split('''.''' ) if key.startswith('''visual''' ): A__ = key_split[3] A__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: A__ = val[ :dim, : ] A__ = val[ dim : dim * 2, : ] A__ = val[ -dim:, : ] else: A__ = val[ :dim ] A__ = val[ dim : dim * 2 ] A__ = val[ -dim: ] else: if "weight" in key: A__ = val[ :dim, : ] A__ = val[ dim : dim * 2, : ] A__ = val[ -dim:, : ] else: A__ = val[:dim] A__ = val[ dim : dim * 2 ] A__ = val[-dim:] elif key.startswith('''mit''' ): A__ = key_split[2] A__ = config.vision_config.mit_hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] else: A__ = key_split[2] A__ = config.text_config.hidden_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[ dim : dim * 2 ] A__ = val[-dim:] else: A__ = rename_key(lowercase_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: A__ = val.T A__ = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" if num_frames == 8: A__ = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: A__ = '''eating_spaghetti.npy''' elif num_frames == 32: A__ = '''eating_spaghetti_32_frames.npy''' A__ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowercase_ , repo_type='''dataset''' , ) A__ = np.load(lowercase_ ) return list(lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> str: """simple docstring""" A__ = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } A__ = model_to_url[model_name] A__ = 8 if "16-frames" in model_name: A__ = 16 elif "shot" in model_name: A__ = 32 A__ = get_xclip_config(lowercase_ , lowercase_ ) A__ = XCLIPModel(lowercase_ ) model.eval() if "drive" in checkpoint_url: A__ = '''pytorch_model.bin''' gdown.cached_download(lowercase_ , lowercase_ , quiet=lowercase_ ) A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model'''] else: A__ = torch.hub.load_state_dict_from_url(lowercase_ )['''model'''] A__ = convert_state_dict(lowercase_ , lowercase_ ) A__ = XCLIPModel(lowercase_ ) A__ , A__ = model.load_state_dict(lowercase_ , strict=lowercase_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() A__ = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 A__ = VideoMAEImageProcessor(size=lowercase_ ) A__ = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) A__ = XCLIPProcessor(image_processor=lowercase_ , tokenizer=lowercase_ ) A__ = prepare_video(lowercase_ ) A__ = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowercase_ , return_tensors='''pt''' , padding=lowercase_ ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): A__ = model(**lowercase_ ) # Verify outputs A__ = outputs.logits_per_video A__ = logits_per_video.softmax(dim=1 ) print('''Probs:''' , lowercase_ ) # kinetics-400 if model_name == "xclip-base-patch32": A__ = torch.tensor([[0.00_19, 0.99_51, 0.00_30]] ) elif model_name == "xclip-base-patch32-16-frames": A__ = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": A__ = torch.tensor([[0.00_83, 0.96_81, 0.02_36]] ) elif model_name == "xclip-base-patch16-16-frames": A__ = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": A__ = torch.tensor([[0.00_62, 0.98_64, 0.00_75]] ) elif model_name == "xclip-large-patch14-16-frames": A__ = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": A__ = torch.tensor([[0.05_55, 0.89_14, 0.05_31]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": A__ = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": A__ = torch.tensor([[0.00_36, 0.99_20, 0.00_45]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": A__ = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": A__ = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": A__ = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": A__ = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": A__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": A__ = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": A__ = torch.tensor([[0.00_27, 0.99_04, 0.00_70]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": A__ = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": A__ = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(f"""Model name {model_name} not supported""" ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(lowercase_ , organization='''nielsr''' ) processor.push_to_hub(lowercase_ , organization='''nielsr''' ) slow_tokenizer.push_to_hub(lowercase_ , organization='''nielsr''' ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase : List[str] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
14
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : List[Any]=56 , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : str=99 , UpperCAmelCase__ : Tuple=32 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Union[str, Any]=7 , UpperCAmelCase__ : Optional[Any]="gelu_new" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : str=512 , UpperCAmelCase__ : List[str]=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[str]="block_sparse" , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Union[str, Any]=3 , ) ->Union[str, Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices A__ = rescale_embeddings A__ = attention_type A__ = use_bias A__ = block_size A__ = num_random_blocks def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) A__ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = FlaxBigBirdModelTester(self) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' super().test_hidden_states_output() @slow def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('''google/bigbird-roberta-base''') self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): A__ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) A__ = model_class(UpperCAmelCase__) @jax.jit def model_jitted(UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any=None , **UpperCAmelCase__ : Tuple): return model(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , **UpperCAmelCase__) with self.subTest('''JIT Enabled'''): A__ = model_jitted(**UpperCAmelCase__).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): A__ = model_jitted(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertEqual(jitted_output.shape , output.shape) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]="outputs" , UpperCAmelCase__ : Optional[int]=None) ->List[str]: '''simple docstring''' if name.startswith('''outputs.attentions'''): return else: super().check_pt_flax_outputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__)
14
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Union[str, Any] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''detr''' UpperCAmelCase__ = ['''past_key_values'''] UpperCAmelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=None , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : List[str]=100 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : Any=2_048 , UpperCAmelCase__ : str=8 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Any=2_048 , UpperCAmelCase__ : Any=8 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[Any]="relu" , UpperCAmelCase__ : int=256 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Optional[int]=1.0 , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Optional[int]="sine" , UpperCAmelCase__ : Union[str, Any]="resnet50" , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Optional[Any]=1 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Tuple=5 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : str=0.1 , **UpperCAmelCase__ : str , ) ->List[Any]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') A__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = backbone_config.get('''model_type''') A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(UpperCAmelCase__) # set timm attributes to None A__ , A__ , A__ = None, None, None A__ = use_timm_backbone A__ = backbone_config A__ = num_channels A__ = num_queries A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = init_xavier_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = encoder_layers A__ = auxiliary_loss A__ = position_embedding_type A__ = backbone A__ = use_pretrained_backbone A__ = dilation # Hungarian matcher A__ = class_cost A__ = bbox_cost A__ = giou_cost # Loss coefficients A__ = mask_loss_coefficient A__ = dice_loss_coefficient A__ = bbox_loss_coefficient A__ = giou_loss_coefficient A__ = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' return self.d_model @classmethod def SCREAMING_SNAKE_CASE ( cls : int , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Optional[Any]) ->str: '''simple docstring''' return cls(backbone_config=UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Dict[str, any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self : str) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->float: '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' return 12
14
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(lowercase_ ), magnitude * sin(lowercase_ )] return [magnitude * cos(radians(lowercase_ ) ), magnitude * sin(radians(lowercase_ ) )] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = 10**-1 ) -> bool: """simple docstring""" A__ = cross(lowercase_ , lowercase_ ) A__ = sum(lowercase_ ) return abs(lowercase_ ) < eps if __name__ == "__main__": # Test to check if it works _lowerCamelCase : Optional[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowerCamelCase : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowerCamelCase : Union[str, Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowerCamelCase : Dict = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowerCamelCase : Dict = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) _lowerCamelCase : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
from collections import Counter from timeit import timeit def SCREAMING_SNAKE_CASE ( lowercase_ = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> bool: """simple docstring""" if len(lowercase_ ) == 0: return True A__ = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string A__ = {} for character in lower_case_input_str: A__ = character_freq_dict.get(lowercase_ , 0 ) + 1 A__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def SCREAMING_SNAKE_CASE ( lowercase_ = "" ) -> None: """simple docstring""" print('''\nFor string = ''' , lowercase_ , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(lowercase_ ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) _lowerCamelCase : str = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
14
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Tuple = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None _lowerCamelCase : int = namedtuple("""CoinsDistribResult""", """moves excess""") def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(lowercase_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(lowercase_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) A__ , A__ = get_distrib(node.left ) A__ , A__ = get_distrib(node.right ) A__ = 1 - left_distrib_excess A__ = 1 - right_distrib_excess A__ = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) A__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
14
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
1
import operator as op def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = [] A__ = lambda lowercase_ , lowercase_ : int(x / y ) # noqa: E731 integer division operation A__ = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(lowercase_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' ) else: A__ = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' ) A__ = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' ) stack.append( str(opr[x](int(lowercase_ ) , int(lowercase_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(lowercase_ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": _lowerCamelCase : List[Any] = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
14
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowerCamelCase : List[Any] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _lowerCamelCase : Dict = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _lowerCamelCase : Any = """|""".join(sys.argv[1:]) _lowerCamelCase : int = re.compile(rF'''^({joined_dirs}).*?\.py$''') _lowerCamelCase : Any = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
14
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
14
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : Union[str, Any] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCamelCase : str = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''mask2former''' UpperCAmelCase__ = ['''swin'''] UpperCAmelCase__ = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Dict] = None , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 1_024 , UpperCAmelCase__ : str = "relu" , UpperCAmelCase__ : int = 6 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 2_048 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 255 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 2.0 , UpperCAmelCase__ : float = 5.0 , UpperCAmelCase__ : float = 5.0 , UpperCAmelCase__ : int = 12_544 , UpperCAmelCase__ : float = 3.0 , UpperCAmelCase__ : float = 0.75 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : List[int] = [4, 8, 16, 32] , UpperCAmelCase__ : bool = None , **UpperCAmelCase__ : Union[str, Any] , ) ->Optional[Any]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') A__ = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = backbone_config.pop('''model_type''') A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(UpperCAmelCase__) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported)}""") A__ = backbone_config A__ = feature_size A__ = mask_feature_size A__ = hidden_dim A__ = encoder_feedforward_dim A__ = activation_function A__ = encoder_layers A__ = decoder_layers A__ = num_attention_heads A__ = dropout A__ = dim_feedforward A__ = pre_norm A__ = enforce_input_projection A__ = common_stride A__ = ignore_value A__ = num_queries A__ = no_object_weight A__ = class_weight A__ = mask_weight A__ = dice_weight A__ = train_num_points A__ = oversample_ratio A__ = importance_sample_ratio A__ = init_std A__ = init_xavier_std A__ = use_auxiliary_loss A__ = feature_strides A__ = output_auxiliary_logits A__ = decoder_layers super().__init__(**UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : List[Any]) ->str: '''simple docstring''' return cls( backbone_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict[str, any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output
14
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''nat''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Dict=[3, 4, 6, 5] , UpperCAmelCase__ : Dict=[2, 4, 8, 16] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : List[Any]=3.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=1e-5 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Any , ) ->str: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(UpperCAmelCase__) A__ = num_heads A__ = kernel_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = layer_norm_eps A__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(UpperCAmelCase__) - 1)) A__ = layer_scale_init_value A__ = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__) + 1)] A__ , A__ = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names)
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) A__ = [True] * (num + 1) A__ = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase_ ): A__ = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : int = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
14
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[int] , *UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : Optional[Any]) ->Any: '''simple docstring''' super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__) A__ = eval_examples A__ = post_process_function def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Optional[Dataset] = None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[List[str]] = None , UpperCAmelCase__ : str = "eval" , **UpperCAmelCase__ : List[str] , ) ->Dict[str, float]: '''simple docstring''' A__ = gen_kwargs.copy() A__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length ) A__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCAmelCase__) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCAmelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = self.compute_metrics(UpperCAmelCase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): A__ = metrics.pop(UpperCAmelCase__) metrics.update(output.metrics) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCAmelCase__) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__) return metrics def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str = "test" , **UpperCAmelCase__ : int) ->int: '''simple docstring''' A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(UpperCAmelCase__) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCAmelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , '''predict''') A__ = self.compute_metrics(UpperCAmelCase__) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"""{metric_key_prefix}_"""): A__ = metrics.pop(UpperCAmelCase__) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__)
14
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
1
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase : Optional[Any] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class UpperCamelCase_ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' A__ = load_tool('''text-question-answering''') self.tool.setup() A__ = load_tool('''text-question-answering''' , remote=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = self.remote_tool(UpperCAmelCase__ , '''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = self.tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = self.remote_tool(text=UpperCAmelCase__ , question='''What did Hugging Face do in April 2021?''') self.assertEqual(UpperCAmelCase__ , '''launched the BigScience Research Workshop''')
14
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations _lowerCamelCase : Optional[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _lowerCamelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [] A__ = len(lowercase_ ) for i in range(lowercase_ ): A__ = -1 for j in range(i + 1 , lowercase_ ): if arr[i] < arr[j]: A__ = arr[j] break result.append(lowercase_ ) return result def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = [] for i, outer in enumerate(lowercase_ ): A__ = -1 for inner in arr[i + 1 :]: if outer < inner: A__ = inner break result.append(lowercase_ ) return result def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[float]: """simple docstring""" A__ = len(lowercase_ ) A__ = [] A__ = [-1] * arr_size for index in reversed(range(lowercase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: A__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _lowerCamelCase : int = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
14
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = """▁""" _lowerCamelCase : List[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : List[str] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _lowerCamelCase : Optional[int] = { """google/reformer-crime-and-punishment""": 524288, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str]="</s>" , UpperCAmelCase__ : Optional[Any]="<unk>" , UpperCAmelCase__ : List[str]=[] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Dict: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : List[str]) ->Dict: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any) ->int: '''simple docstring''' return self.sp_model.piece_to_id(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[str]) ->Tuple: '''simple docstring''' if index < self.sp_model.get_piece_size(): A__ = self.sp_model.IdToPiece(UpperCAmelCase__) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Dict) ->Tuple: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
14
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = BarthezTokenizer UpperCAmelCase__ = BarthezTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' super().setUp() A__ = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''') tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCAmelCase__) A__ = tokenizer def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = '''<pad>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-1] , '''<mask>''') self.assertEqual(len(UpperCAmelCase__) , 101_122) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101_122) @require_torch def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' A__ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A__ = [0, 57, 3_018, 70_307, 91, 2] A__ = self.tokenizer( UpperCAmelCase__ , max_length=len(UpperCAmelCase__) , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors='''pt''') self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) A__ = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = '''I was born in 92000, and this is falsé.''' A__ = tokenizer.tokenize(UpperCAmelCase__) A__ = rust_tokenizer.tokenize(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) A__ = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(UpperCAmelCase__) A__ = rust_tokenizer.encode(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. A__ = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=UpperCAmelCase__ , )
14
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
1
from sklearn.metrics import fa_score import datasets _lowerCamelCase : Dict = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _lowerCamelCase : Any = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _lowerCamelCase : List[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''')), '''references''': datasets.Sequence(datasets.Value('''int32''')), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32'''), '''references''': datasets.Value('''int32'''), }) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Union[str, Any]=1 , UpperCAmelCase__ : Optional[int]="binary" , UpperCAmelCase__ : str=None) ->Optional[Any]: '''simple docstring''' A__ = fa_score( UpperCAmelCase__ , UpperCAmelCase__ , labels=UpperCAmelCase__ , pos_label=UpperCAmelCase__ , average=UpperCAmelCase__ , sample_weight=UpperCAmelCase__) return {"f1": float(UpperCAmelCase__) if score.size == 1 else score}
14
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp _lowerCamelCase : Any = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } _lowerCamelCase : Optional[int] = { """RUCAIBox/mvp""": 1024, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = MvpTokenizer def __init__( self : Any , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Union[str, Any]="replace" , UpperCAmelCase__ : str="<s>" , UpperCAmelCase__ : Union[str, Any]="</s>" , UpperCAmelCase__ : Dict="</s>" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : List[Any]="<pad>" , UpperCAmelCase__ : Dict="<mask>" , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[Any]=True , **UpperCAmelCase__ : Tuple , ) ->int: '''simple docstring''' super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , trim_offsets=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space: A__ = getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''')) A__ = add_prefix_space A__ = pre_tok_class(**UpperCAmelCase__) A__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A__ = '''post_processor''' A__ = getattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__) if tokenizer_component_instance: A__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ = tuple(state['''sep''']) if "cls" in state: A__ = tuple(state['''cls''']) A__ = False if state.get('''add_prefix_space''' , UpperCAmelCase__) != add_prefix_space: A__ = add_prefix_space A__ = True if state.get('''trim_offsets''' , UpperCAmelCase__) != trim_offsets: A__ = trim_offsets A__ = True if changes_to_apply: A__ = getattr(UpperCAmelCase__ , state.pop('''type''')) A__ = component_class(**UpperCAmelCase__) setattr(self.backend_tokenizer , UpperCAmelCase__ , UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int]) ->List[str]: '''simple docstring''' A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else value A__ = value def SCREAMING_SNAKE_CASE ( self : List[Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[int]) ->BatchEncoding: '''simple docstring''' A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Dict) ->BatchEncoding: '''simple docstring''' A__ = kwargs.get('''is_split_into_words''' , UpperCAmelCase__) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__) return tuple(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=None) ->List[Any]: '''simple docstring''' A__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None) ->List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
14
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''AutoImageProcessor''' UpperCAmelCase__ = '''AutoTokenizer''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Optional[int]) ->Dict: '''simple docstring''' A__ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) A__ = kwargs.pop('''feature_extractor''') A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(UpperCAmelCase__ , UpperCAmelCase__) A__ = self.image_processor A__ = False def __call__( self : str , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[Any]) ->Any: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase__ , **UpperCAmelCase__) A__ = kwargs.pop('''images''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) if len(UpperCAmelCase__) > 0: A__ = args[0] A__ = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''') if images is not None: A__ = self.image_processor(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) if text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) if text is None: return inputs elif images is None: return encodings else: A__ = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE ( self : List[str] , *UpperCAmelCase__ : str , **UpperCAmelCase__ : Optional[Any]) ->str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Any) ->int: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__) @contextmanager def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''') A__ = True A__ = self.tokenizer yield A__ = self.image_processor A__ = False def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : int=None) ->List[Any]: '''simple docstring''' if added_vocab is None: A__ = self.tokenizer.get_added_vocab() A__ = {} while tokens: A__ = re.search(R'''<s_(.*?)>''' , UpperCAmelCase__ , re.IGNORECASE) if start_token is None: break A__ = start_token.group(1) A__ = re.search(Rf"""</s_{key}>""" , UpperCAmelCase__ , re.IGNORECASE) A__ = start_token.group() if end_token is None: A__ = tokens.replace(UpperCAmelCase__ , '''''') else: A__ = end_token.group() A__ = re.escape(UpperCAmelCase__) A__ = re.escape(UpperCAmelCase__) A__ = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCAmelCase__ , re.IGNORECASE) if content is not None: A__ = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node A__ = self.tokenajson(UpperCAmelCase__ , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__) if value: if len(UpperCAmelCase__) == 1: A__ = value[0] A__ = value else: # leaf nodes A__ = [] for leaf in content.split(R'''<sep/>'''): A__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": A__ = leaf[1:-2] # for categorical special tokens output[key].append(UpperCAmelCase__) if len(output[key]) == 1: A__ = output[key][0] A__ = tokens[tokens.find(UpperCAmelCase__) + len(UpperCAmelCase__) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCAmelCase__ , added_vocab=UpperCAmelCase__) if len(UpperCAmelCase__): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Dict) ->Any: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
14
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } _lowerCamelCase : Union[str, Any] = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } _lowerCamelCase : Optional[Any] = { """ctrl""": 256, } _lowerCamelCase : Tuple = { """Pregnancy""": 168629, """Christianity""": 7675, """Explain""": 106423, """Fitness""": 63440, """Saving""": 63163, """Ask""": 27171, """Ass""": 95985, """Joke""": 163509, """Questions""": 45622, """Thoughts""": 49605, """Retail""": 52342, """Feminism""": 164338, """Writing""": 11992, """Atheism""": 192263, """Netflix""": 48616, """Computing""": 39639, """Opinion""": 43213, """Alone""": 44967, """Funny""": 58917, """Gaming""": 40358, """Human""": 4088, """India""": 1331, """Joker""": 77138, """Diet""": 36206, """Legal""": 11859, """Norman""": 4939, """Tip""": 72689, """Weight""": 52343, """Movies""": 46273, """Running""": 23425, """Science""": 2090, """Horror""": 37793, """Confession""": 60572, """Finance""": 12250, """Politics""": 16360, """Scary""": 191985, """Support""": 12654, """Technologies""": 32516, """Teenage""": 66160, """Event""": 32769, """Learned""": 67460, """Notion""": 182770, """Wikipedia""": 37583, """Books""": 6665, """Extract""": 76050, """Confessions""": 102701, """Conspiracy""": 75932, """Links""": 63674, """Narcissus""": 150425, """Relationship""": 54766, """Relationships""": 134796, """Reviews""": 41671, """News""": 4256, """Translation""": 26820, """multilingual""": 128406, } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char A__ = set(lowercase_ ) return pairs class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTROL_CODES def __init__( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]="<unk>" , **UpperCAmelCase__ : List[Any]) ->List[str]: '''simple docstring''' super().__init__(unk_token=UpperCAmelCase__ , **UpperCAmelCase__) with open(UpperCAmelCase__ , encoding='''utf-8''') as vocab_handle: A__ = json.load(UpperCAmelCase__) A__ = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase__ , encoding='''utf-8''') as merges_handle: A__ = merges_handle.read().split('''\n''')[1:-1] A__ = [tuple(merge.split()) for merge in merges] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__)))) A__ = {} @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' return len(self.encoder) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[Any]) ->Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A__ = tuple(UpperCAmelCase__) A__ = tuple(list(word[:-1]) + [word[-1] + '''</w>''']) A__ = get_pairs(UpperCAmelCase__) if not pairs: return token while True: A__ = min(UpperCAmelCase__ , key=lambda UpperCAmelCase__: self.bpe_ranks.get(UpperCAmelCase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(UpperCAmelCase__): try: A__ = word.index(UpperCAmelCase__ , UpperCAmelCase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) A__ = j if word[i] == first and i < len(UpperCAmelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 A__ = tuple(UpperCAmelCase__) A__ = new_word if len(UpperCAmelCase__) == 1: break else: A__ = get_pairs(UpperCAmelCase__) A__ = '''@@ '''.join(UpperCAmelCase__) A__ = word[:-4] A__ = word return word def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Any) ->Optional[int]: '''simple docstring''' A__ = [] A__ = re.findall(R'''\S+\n?''' , UpperCAmelCase__) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase__).split(''' '''))) return split_tokens def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str]) ->Any: '''simple docstring''' return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->int: '''simple docstring''' return self.decoder.get(UpperCAmelCase__ , self.unk_token) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = ''' '''.join(UpperCAmelCase__).replace('''@@ ''' , '''''').strip() return out_string def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__) + '''\n''') A__ = 0 with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''') A__ = token_index writer.write(''' '''.join(UpperCAmelCase__) + '''\n''') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
14
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = checkpoint A__ = {} A__ = vae_state_dict['''encoder.conv_in.weight'''] A__ = vae_state_dict['''encoder.conv_in.bias'''] A__ = vae_state_dict['''encoder.conv_out.weight'''] A__ = vae_state_dict['''encoder.conv_out.bias'''] A__ = vae_state_dict['''encoder.norm_out.weight'''] A__ = vae_state_dict['''encoder.norm_out.bias'''] A__ = vae_state_dict['''decoder.conv_in.weight'''] A__ = vae_state_dict['''decoder.conv_in.bias'''] A__ = vae_state_dict['''decoder.conv_out.weight'''] A__ = vae_state_dict['''decoder.conv_out.bias'''] A__ = vae_state_dict['''decoder.norm_out.weight'''] A__ = vae_state_dict['''decoder.norm_out.bias'''] A__ = vae_state_dict['''quant_conv.weight'''] A__ = vae_state_dict['''quant_conv.bias'''] A__ = vae_state_dict['''post_quant_conv.weight'''] A__ = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only A__ = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) A__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(lowercase_ ) } # Retrieves the keys for the decoder up blocks only A__ = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) A__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(lowercase_ ) } for i in range(lowercase_ ): A__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: A__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) A__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) A__ = renew_vae_resnet_paths(lowercase_ ) A__ = {'''old''': f"""down.{i}.block""", '''new''': f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) A__ = [key for key in vae_state_dict if '''encoder.mid.block''' in key] A__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] A__ = renew_vae_resnet_paths(lowercase_ ) A__ = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) A__ = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] A__ = renew_vae_attention_paths(lowercase_ ) A__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) conv_attn_to_linear(lowercase_ ) for i in range(lowercase_ ): A__ = num_up_blocks - 1 - i A__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: A__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] A__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] A__ = renew_vae_resnet_paths(lowercase_ ) A__ = {'''old''': f"""up.{block_id}.block""", '''new''': f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) A__ = [key for key in vae_state_dict if '''decoder.mid.block''' in key] A__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] A__ = renew_vae_resnet_paths(lowercase_ ) A__ = {'''old''': f"""mid.block_{i}""", '''new''': f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) A__ = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] A__ = renew_vae_attention_paths(lowercase_ ) A__ = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase_ , lowercase_ , lowercase_ , additional_replacements=[meta_path] , config=lowercase_ ) conv_attn_to_linear(lowercase_ ) return new_checkpoint def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , ) -> int: """simple docstring""" A__ = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) A__ = io.BytesIO(r.content ) A__ = OmegaConf.load(lowercase_ ) A__ = 512 A__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open A__ = {} with safe_open(lowercase_ , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): A__ = f.get_tensor(lowercase_ ) else: A__ = torch.load(lowercase_ , map_location=lowercase_ )['''state_dict'''] # Convert the VAE model. A__ = create_vae_diffusers_config(lowercase_ , image_size=lowercase_ ) A__ = custom_convert_ldm_vae_checkpoint(lowercase_ , lowercase_ ) A__ = AutoencoderKL(**lowercase_ ) vae.load_state_dict(lowercase_ ) vae.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") _lowerCamelCase : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
14
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" if not (isinstance(lowercase_ , lowercase_ ) and isinstance(lowercase_ , lowercase_ )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) A__ = len(lowercase_ ) A__ = len(lowercase_ ) A__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] A__ = 0 A__ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: A__ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: A__ = i A__ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
14
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=False , lowercase_=False ) -> Optional[Any]: """simple docstring""" A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): A__ = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) A__ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: """simple docstring""" A__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = dct.pop(lowercase_ ) A__ = val @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" A__ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase_ ) A__ = False A__ = False A__ = False A__ = False if "vqa" in checkpoint_url: A__ = True A__ = 3_129 A__ = '''huggingface/label-files''' A__ = '''vqa2-id2label.json''' A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(lowercase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = ViltForQuestionAnswering(lowercase_ ) elif "nlvr" in checkpoint_url: A__ = True A__ = 2 A__ = {0: '''False''', 1: '''True'''} A__ = {v: k for k, v in config.idalabel.items()} A__ = 3 A__ = ViltForImagesAndTextClassification(lowercase_ ) elif "irtr" in checkpoint_url: A__ = True A__ = ViltForImageAndTextRetrieval(lowercase_ ) elif "mlm_itm" in checkpoint_url: A__ = True A__ = ViltForMaskedLM(lowercase_ ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' )['''state_dict'''] A__ = create_rename_keys(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) if mlm_model or irtr_model: A__ = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: A__ , A__ = model.load_state_dict(lowercase_ , strict=lowercase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase_ ) # Define processor A__ = ViltImageProcessor(size=384 ) A__ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A__ = ViltProcessor(lowercase_ , lowercase_ ) # Forward pass on example inputs (image + text) if nlvr_model: A__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=lowercase_ ).raw ) A__ = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=lowercase_ ).raw ) A__ = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' ) A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' ) A__ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A__ = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=lowercase_ ).raw ) if mlm_model: A__ = '''a bunch of [MASK] laying on a [MASK].''' else: A__ = '''How many cats are there?''' A__ = processor(lowercase_ , lowercase_ , return_tensors='''pt''' ) A__ = model(**lowercase_ ) # Verify outputs if mlm_model: A__ = torch.Size([1, 11, 30_522] ) A__ = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 ) # verify masked token prediction equals "cats" A__ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A__ = torch.Size([1, 3_129] ) A__ = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 ) # verify vqa prediction equals "2" A__ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A__ = torch.Size([1, 2] ) A__ = torch.tensor([-2.87_21, 2.12_91] ) assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
14
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) UpperCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' torch.manual_seed(0) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) A__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0) A__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A__ = CLIPTextModel(UpperCAmelCase__) A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int]=0) ->Tuple: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = 2 A__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__) , ) A__ = floats_tensor(control_image.shape , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64)) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' torch.manual_seed(0) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0) def init_weights(UpperCAmelCase__ : Any): if isinstance(UpperCAmelCase__ , torch.nn.Convad): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) A__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase__) torch.manual_seed(0) A__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCAmelCase__) torch.manual_seed(0) A__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A__ = CLIPTextModel(UpperCAmelCase__) A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') A__ = MultiControlNetModel([controlneta, controlneta]) A__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any]=0) ->Dict: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = 2 A__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCAmelCase__ , device=torch.device(UpperCAmelCase__) , ), ] A__ = floats_tensor(control_image[0].shape , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) A__ = image.cpu().permute(0 , 2 , 3 , 1)[0] A__ = Image.fromarray(np.uinta(UpperCAmelCase__)).convert('''RGB''').resize((64, 64)) A__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def SCREAMING_SNAKE_CASE ( self : Any) ->Any: '''simple docstring''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) pipe.to(UpperCAmelCase__) A__ = 10.0 A__ = 4 A__ = self.get_dummy_inputs(UpperCAmelCase__) A__ = steps A__ = scale A__ = pipe(**UpperCAmelCase__)[0] A__ = self.get_dummy_inputs(UpperCAmelCase__) A__ = steps A__ = scale A__ = pipe(**UpperCAmelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2)[0] A__ = self.get_dummy_inputs(UpperCAmelCase__) A__ = steps A__ = scale A__ = pipe(**UpperCAmelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7])[0] A__ = self.get_dummy_inputs(UpperCAmelCase__) A__ = steps A__ = scale A__ = pipe(**UpperCAmelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3) def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCAmelCase__) except NotImplementedError: pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''') A__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=UpperCAmelCase__ , controlnet=UpperCAmelCase__) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = torch.Generator(device='''cpu''').manual_seed(0) A__ = '''evil space-punk bird''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''').resize((512, 512)) A__ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''').resize((512, 512)) A__ = pipe( UpperCAmelCase__ , UpperCAmelCase__ , control_image=UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) A__ = output.images[0] assert image.shape == (512, 512, 3) A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''') assert np.abs(expected_image - image).max() < 9e-2
14
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowerCamelCase : Optional[int] = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = TOKEN HfFolder.save_token(UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int]) ->Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''') except HTTPError: pass def SCREAMING_SNAKE_CASE ( self : Dict) ->Union[str, Any]: '''simple docstring''' A__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''test-config''' , use_auth_token=self._token) A__ = BertConfig.from_pretrained(f"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__)) # Reset repo delete_repo(token=self._token , repo_id='''test-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase__ , repo_id='''test-config''' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token) A__ = BertConfig.from_pretrained(f"""{USER}/test-config""") for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' A__ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token) A__ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=UpperCAmelCase__ , use_auth_token=self._token) A__ = BertConfig.from_pretrained('''valid_org/test-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase__ , getattr(UpperCAmelCase__ , UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' CustomConfig.register_for_auto_class() A__ = CustomConfig(attribute=42) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''}) A__ = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCAmelCase__) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''') self.assertEqual(new_config.attribute , 42) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A__ = c.n_embd + 1 # int A__ = c.resid_pdrop + 1.0 # float A__ = not c.scale_attn_weights # bool A__ = c.summary_type + '''foo''' # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""") self.assertEqual(UpperCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''') self.assertEqual(UpperCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''') self.assertEqual(UpperCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''') self.assertEqual(UpperCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''') def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ = PretrainedConfig() A__ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version''']) A__ = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase__ , UpperCAmelCase__)] if len(UpperCAmelCase__) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f""" {", ".join(UpperCAmelCase__)}.""") def SCREAMING_SNAKE_CASE ( self : Dict) ->Dict: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): # config is in subfolder, the following should not work without specifying the subfolder A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''') A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''') self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' A__ = mock.Mock() A__ = 500 A__ = {} A__ = HTTPError A__ = {} # Download this model to make sure it's in the cache. A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=UpperCAmelCase__) as mock_head: A__ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''') # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' A__ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = AutoConfig.from_pretrained('''bert-base-cased''') A__ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase__) A__ = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase__ , '''config.4.0.0.json''') , '''w''')) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A__ = AutoConfig.from_pretrained(UpperCAmelCase__) self.assertEqual(new_configuration.hidden_size , 2) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A__ = ['''config.42.0.0.json'''] A__ = 768 configuration.save_pretrained(UpperCAmelCase__) shutil.move(os.path.join(UpperCAmelCase__ , '''config.4.0.0.json''') , os.path.join(UpperCAmelCase__ , '''config.42.0.0.json''')) A__ = AutoConfig.from_pretrained(UpperCAmelCase__) self.assertEqual(new_configuration.hidden_size , 768) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers A__ = '''v4.0.0''' A__ , A__ = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase__ , return_unused_kwargs=UpperCAmelCase__) self.assertEqual(new_configuration.hidden_size , 2) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase__ , {}) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A__ = '''v3.0.0''' A__ = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase__) self.assertEqual(old_configuration.hidden_size , 768)
14
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : str = "▁" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[str, AddedToken] = "<unk>" , UpperCAmelCase__ : Union[str, AddedToken] = "</s>" , UpperCAmelCase__ : Union[str, AddedToken] = "<pad>" , ) ->Optional[Any]: '''simple docstring''' A__ = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } A__ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): A__ = token_dict['''token'''] A__ = Tokenizer(Unigram()) A__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''') , ''' '''), normalizers.Lowercase(), ]) A__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__), pre_tokenizers.Digits(individual_digits=UpperCAmelCase__), pre_tokenizers.Punctuation(), ]) A__ = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__) A__ = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) A__ = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Union[str, List[str]] , UpperCAmelCase__ : int = 8_000 , UpperCAmelCase__ : bool = True , ) ->Tuple: '''simple docstring''' A__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCAmelCase__ : int = 8_000 , UpperCAmelCase__ : bool = True , ) ->List[Any]: '''simple docstring''' A__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ = json.loads(self._tokenizer.to_str()) A__ = self.special_tokens['''unk''']['''id'''] A__ = Tokenizer.from_str(json.dumps(UpperCAmelCase__))
14
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
1
import argparse import os import re _lowerCamelCase : List[str] = """src/transformers""" # Pattern that looks at the indentation in a line. _lowerCamelCase : Optional[Any] = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _lowerCamelCase : Tuple = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowerCamelCase : List[str] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _lowerCamelCase : str = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowerCamelCase : Any = re.compile(r"""\[([^\]]+)\]""") def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = _re_indent.search(lowercase_ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_="" , lowercase_=None , lowercase_=None ) -> List[str]: """simple docstring""" A__ = 0 A__ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowercase_ ): index += 1 A__ = ['''\n'''.join(lines[:index] )] else: A__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A__ = [lines[index]] index += 1 while index < len(lowercase_ ) and (end_prompt is None or not lines[index].startswith(lowercase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowercase_ ) ) if index < len(lowercase_ ) - 1: A__ = [lines[index + 1]] index += 1 else: A__ = [] else: blocks.append('''\n'''.join(lowercase_ ) ) A__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase_ ) > 0: blocks.append('''\n'''.join(lowercase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase_ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" def _inner(lowercase_ ): return key(lowercase_ ).lower().replace('''_''' , '''''' ) return _inner def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None ) -> int: """simple docstring""" def noop(lowercase_ ): return x if key is None: A__ = noop # Constants are all uppercase, they go first. A__ = [obj for obj in objects if key(lowercase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A__ = [obj for obj in objects if key(lowercase_ )[0].isupper() and not key(lowercase_ ).isupper()] # Functions begin with a lowercase, they go last. A__ = [obj for obj in objects if not key(lowercase_ )[0].isupper()] A__ = ignore_underscore(lowercase_ ) return sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) + sorted(lowercase_ , key=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" def _replace(lowercase_ ): A__ = match.groups()[0] if "," not in imports: return f"""[{imports}]""" A__ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) + "]" A__ = import_statement.split('''\n''' ) if len(lowercase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A__ = 2 if lines[1].strip() == '''[''' else 1 A__ = [(i, _re_strip_line.search(lowercase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A__ = sort_objects(lowercase_ , key=lambda lowercase_ : x[1] ) A__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A__ = _re_bracket_content.sub(_replace , lines[1] ) else: A__ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A__ = keys[:-1] A__ = get_indent(lines[1] ) + ''', '''.join([f"""\"{k}\"""" for k in sort_objects(lowercase_ )] ) return "\n".join(lowercase_ ) else: # Finally we have to deal with imports fitting on one line A__ = _re_bracket_content.sub(_replace , lowercase_ ) return import_statement def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=True ) -> Dict: """simple docstring""" with open(lowercase_ , encoding='''utf-8''' ) as f: A__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A__ = split_code_in_indented_blocks( lowercase_ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A__ = main_blocks[block_idx] A__ = block.split('''\n''' ) # Get to the start of the imports. A__ = 0 while line_idx < len(lowercase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A__ = len(lowercase_ ) else: line_idx += 1 if line_idx >= len(lowercase_ ): continue # Ignore beginning and last line: they don't contain anything. A__ = '''\n'''.join(block_lines[line_idx:-1] ) A__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A__ = split_code_in_indented_blocks(lowercase_ , indent_level=lowercase_ ) # We have two categories of import key: list or _import_structure[key].append/extend A__ = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A__ = [(pattern.search(lowercase_ ).groups()[0] if pattern.search(lowercase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A__ = [(i, key) for i, key in enumerate(lowercase_ ) if key is not None] A__ = [x[0] for x in sorted(lowercase_ , key=lambda lowercase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A__ = 0 A__ = [] for i in range(len(lowercase_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: A__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(lowercase_ ) count += 1 # And we put our main block back together with its first and last line. A__ = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase_ ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(lowercase_ ) ) def SCREAMING_SNAKE_CASE ( lowercase_=True ) -> int: """simple docstring""" A__ = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: A__ = sort_imports(os.path.join(lowercase_ , '''__init__.py''' ) , check_only=lowercase_ ) if result: A__ = [os.path.join(lowercase_ , '''__init__.py''' )] if len(lowercase_ ) > 0: raise ValueError(f"""Would overwrite {len(lowercase_ )} files, run `make style`.""" ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _lowerCamelCase : Optional[Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
14
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Dict = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = SpeechTaTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(UpperCAmelCase__) A__ = AddedToken('''<mask>''' , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__) A__ = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token}) tokenizer.add_tokens(['''<ctc_blank>''']) tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : List[Any]) ->List[Any]: '''simple docstring''' A__ = '''this is a test''' A__ = '''this is a test''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Any=20 , UpperCAmelCase__ : int=5) ->Any: '''simple docstring''' A__ , A__ = self.get_input_output_texts(UpperCAmelCase__) A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__) return text, ids def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = '''<pad>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-4] , '''œ''') self.assertEqual(vocab_keys[-2] , '''<mask>''') self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''') self.assertEqual(len(UpperCAmelCase__) , 81) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79) def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=UpperCAmelCase__) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}"""): A__ = tokenizer.vocab_size A__ = len(UpperCAmelCase__) self.assertNotEqual(UpperCAmelCase__ , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A__ = tokenizer.add_tokens(UpperCAmelCase__) A__ = tokenizer.vocab_size A__ = len(UpperCAmelCase__) self.assertNotEqual(UpperCAmelCase__ , 0) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertEqual(UpperCAmelCase__ , len(UpperCAmelCase__)) self.assertEqual(UpperCAmelCase__ , all_size + len(UpperCAmelCase__)) A__ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=UpperCAmelCase__) self.assertGreaterEqual(len(UpperCAmelCase__) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) A__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A__ = tokenizer.add_special_tokens(UpperCAmelCase__) A__ = tokenizer.vocab_size A__ = len(UpperCAmelCase__) self.assertNotEqual(UpperCAmelCase__ , 0) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertEqual(UpperCAmelCase__ , len(UpperCAmelCase__)) self.assertEqual(UpperCAmelCase__ , all_size_a + len(UpperCAmelCase__)) A__ = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=UpperCAmelCase__) self.assertGreaterEqual(len(UpperCAmelCase__) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize('''This is a test''') # fmt: off self.assertListEqual(UpperCAmelCase__ , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t''']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( UpperCAmelCase__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) # fmt: off self.assertListEqual(UpperCAmelCase__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26]) # fmt: on A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__) self.assertListEqual( UpperCAmelCase__ , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.''']) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[Any]: '''simple docstring''' A__ = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off A__ = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=UpperCAmelCase__ , )
14
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , UpperCAmelCase__ , ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = RobertaConfig UpperCAmelCase__ = '''roberta''' def __init__( self : Any , UpperCAmelCase__ : List[str]) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase__) A__ = RobertaEmbeddings(UpperCAmelCase__) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , UpperCAmelCase__ , ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = RobertaConfig UpperCAmelCase__ = '''roberta''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Tuple) ->Dict: '''simple docstring''' super().__init__(UpperCAmelCase__) A__ = config.num_labels A__ = config.num_hidden_layers A__ = DeeRobertaModel(UpperCAmelCase__) A__ = nn.Dropout(config.hidden_dropout_prob) A__ = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Dict=-1 , UpperCAmelCase__ : Optional[int]=False , ) ->Optional[int]: '''simple docstring''' A__ = self.num_layers try: A__ = self.roberta( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , position_ids=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , ) A__ = outputs[1] A__ = self.dropout(UpperCAmelCase__) A__ = self.classifier(UpperCAmelCase__) A__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A__ = e.message A__ = e.exit_layer A__ = outputs[0] if not self.training: A__ = entropy(UpperCAmelCase__) A__ = [] A__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(logits.view(-1) , labels.view(-1)) else: A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits A__ = [] for highway_exit in outputs[-1]: A__ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression A__ = MSELoss() A__ = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: A__ = CrossEntropyLoss() A__ = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(UpperCAmelCase__) if train_highway: A__ = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: A__ = (loss,) + outputs if not self.training: A__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
14
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase : List[Any] = """bert-base-cased""" _lowerCamelCase : Any = """fp16""" _lowerCamelCase : Tuple = """bf16""" _lowerCamelCase : List[str] = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' super().setUp() A__ = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCAmelCase__): A__ = self.dist_env.copy() A__ = f"""{i + 1}""" A__ = strategy with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCAmelCase__): A__ = self.dist_env.copy() A__ = prefetch_policy with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCAmelCase__): A__ = self.dist_env.copy() A__ = state_dict_type with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = AutoModel.from_pretrained(UpperCAmelCase__) for policy in FSDP_AUTO_WRAP_POLICY: A__ = self.dist_env.copy() A__ = policy if policy == "TRANSFORMER_BASED_WRAP": A__ = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A__ = '''2000''' with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) A__ = self.dist_env.copy() A__ = '''TRANSFORMER_BASED_WRAP''' A__ = '''T5Layer''' with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() with self.assertRaises(UpperCAmelCase__) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception)) A__ = self.dist_env.copy() A__ = '''SIZE_BASED_WRAP''' A__ = '''0''' with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase__) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A__ = self.dist_env.copy() A__ = mp_dtype with mockenv_context(**UpperCAmelCase__): A__ = Accelerator() if mp_dtype == "fp16": A__ = torch.floataa elif mp_dtype == "bf16": A__ = torch.bfloataa A__ = MixedPrecision(param_dtype=UpperCAmelCase__ , reduce_dtype=UpperCAmelCase__ , buffer_dtype=UpperCAmelCase__) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCAmelCase__) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCAmelCase__)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A__ = self.dist_env.copy() A__ = str(UpperCAmelCase__).lower() with mockenv_context(**UpperCAmelCase__): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCAmelCase__)) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' super().setUp() A__ = 0.82 A__ = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A__ = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A__ = 160 A__ = 160 A__ = inspect.getfile(accelerate.test_utils) A__ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['''scripts''', '''external_deps''']) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , '''test_performance.py''') A__ = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A__ = cmd.copy() for i, strategy in enumerate(UpperCAmelCase__): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") break if "fp32" in config: cmd_config.append('''--mixed_precision=no''') else: cmd_config.append('''--mixed_precision=fp16''') if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy()) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''') A__ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(UpperCAmelCase__): A__ = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") if strategy != "FULL_SHARD": continue A__ = len(UpperCAmelCase__) for state_dict_type in FSDP_STATE_DICT_TYPE: A__ = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""") cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy()) A__ = cmd_config[:-1] A__ = os.path.join(self.tmpdir , '''epoch_0''') cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy()) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''') A__ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A__ = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16''']) else: cmd_config.extend(['''--mixed_precision=no''']) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp''']) for i, strategy in enumerate(UpperCAmelCase__): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""") break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''') elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''') cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy())
14
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _lowerCamelCase : Tuple = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } _lowerCamelCase : List[Any] = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = list(state_dict.keys() ) for name in state_dict_keys: A__ = state_dict.pop(lowercase_ ) # emb -> embedding if name.startswith('''emb.''' ): A__ = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): A__ = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention A__ = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , lowercase_ ) # ffn -> feed_forward A__ = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , lowercase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): A__ = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): A__ = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): A__ = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": A__ = '''rwkv.''' + name A__ = weight return state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=None ) -> Any: """simple docstring""" if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) A__ = 50_277 A__ = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: A__ = PreTrainedTokenizerFast(tokenizer_file=lowercase_ ) A__ = len(lowercase_ ) tokenizer.save_pretrained(lowercase_ ) # 2. Build the config A__ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: A__ = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) A__ = RwkvConfig( vocab_size=lowercase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase_ ) # 3. Download model file then convert state_dict A__ = hf_hub_download(lowercase_ , lowercase_ ) A__ = torch.load(lowercase_ , map_location='''cpu''' ) A__ = convert_state_dict(lowercase_ ) # 4. Split in shards and save A__ , A__ = shard_checkpoint(lowercase_ ) for shard_file, shard in shards.items(): torch.save(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) if index is not None: A__ = os.path.join(lowercase_ , lowercase_ ) # Save the index as well with open(lowercase_ , '''w''' , encoding='''utf-8''' ) as f: A__ = json.dumps(lowercase_ , indent=2 , sort_keys=lowercase_ ) + '''\n''' f.write(lowercase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) A__ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: A__ = torch.load(os.path.join(lowercase_ , lowercase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase_ , lowercase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) A__ = AutoModelForCausalLM.from_pretrained(lowercase_ ) model.push_to_hub(lowercase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) _lowerCamelCase : str = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
14
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
1
import functools def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(lowercase_ ) == 0: return 0 if min(lowercase_ ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(lowercase_ ) >= 366: raise ValueError('''All days elements should be less than 366''' ) A__ = set(lowercase_ ) @functools.cache def dynamic_programming(lowercase_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
14
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = KandinskyVaaPriorPipeline UpperCAmelCase__ = ['''prompt'''] UpperCAmelCase__ = ['''prompt''', '''negative_prompt'''] UpperCAmelCase__ = [ '''num_images_per_prompt''', '''generator''', '''num_inference_steps''', '''latents''', '''negative_prompt''', '''guidance_scale''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[Any]: '''simple docstring''' torch.manual_seed(0) A__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } A__ = PriorTransformer(**UpperCAmelCase__) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A__ = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' torch.manual_seed(0) A__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A__ = CLIPVisionModelWithProjection(UpperCAmelCase__) return model @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' A__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.dummy_prior A__ = self.dummy_image_encoder A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_image_processor A__ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase__ , clip_sample_range=10.0 , ) A__ = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=0) ->str: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__)) A__ = output.image_embeds A__ = pipe( **self.get_dummy_inputs(UpperCAmelCase__) , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -10:] A__ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A__ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]: '''simple docstring''' A__ = torch_device == '''cpu''' A__ = True A__ = False self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , ) @skip_mps def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = torch_device == '''cpu''' A__ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , )
14
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = torch.load(lowercase_ , map_location='''cpu''' ) if "model" in sd.keys(): A__ = torch.load(lowercase_ , map_location='''cpu''' )['''model'''] # pop unnecessary weights A__ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase_ ) A__ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A__ = sd.pop(lowercase_ ) A__ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A__ = sd[key] # We split QKV in separate Q,K,V A__ = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) A__ = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) A__ = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) A__ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A__ , A__ , A__ = torch.split(lowercase_ , depth // 3 , dim=0 ) A__ = q A__ = k A__ = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[int]: """simple docstring""" A__ = load_checkpoint(lowercase_ ) if config is not None: A__ = OPTConfig.from_pretrained(lowercase_ ) else: A__ = OPTConfig() A__ = OPTModel(lowercase_ ).half().eval() model.load_state_dict(lowercase_ ) # Check results Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _lowerCamelCase : str = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
14
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
1
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowerCamelCase : str = logging.getLogger() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument('''-f''' ) A__ = parser.parse_args() return args.f class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->None: '''simple docstring''' A__ = logging.StreamHandler(sys.stdout) logger.addHandler(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->Tuple: '''simple docstring''' A__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''') with patch.object(UpperCAmelCase__ , '''argv''' , UpperCAmelCase__): A__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCAmelCase__ , 0.666) @slow @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str: '''simple docstring''' A__ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(UpperCAmelCase__) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(UpperCAmelCase__) A__ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(UpperCAmelCase__)
14
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : int = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
from math import factorial _lowerCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase_ ) ) def SCREAMING_SNAKE_CASE ( lowercase_ = 60 , lowercase_ = 1_000_000 ) -> int: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length A__ = 0 # the cached sizes of the previous chains A__ = {} for start_chain_element in range(1 , lowercase_ ): # The temporary set will contain the elements of the chain A__ = set() A__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. A__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase_ ) chain_set_length += 1 A__ = digit_factorial_sum(lowercase_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] A__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution()}''')
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[Any]=10 , __UpperCAmelCase : str=[10, 20, 30, 40] , __UpperCAmelCase : Optional[int]=[1, 1, 2, 1] , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : int="relu" , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : str=None , ) ->List[Any]: """simple docstring""" a = parent a = batch_size a = image_size a = num_channels a = embeddings_size a = hidden_sizes a = depths a = is_training a = use_labels a = hidden_act a = num_labels a = scope a = len(__UpperCAmelCase ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[Any] ) ->str: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any ) ->List[Any]: """simple docstring""" a = TFRegNetModel(config=__UpperCAmelCase ) a = model(__UpperCAmelCase , training=__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) ->Union[str, Any]: """simple docstring""" a = self.num_labels a = TFRegNetForImageClassification(__UpperCAmelCase ) a = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase_ ( lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __snake_case = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = TFRegNetModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __lowerCAmelCase ( self : List[Any] ) ->Any: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self : str ) ->Any: """simple docstring""" pass def __lowerCAmelCase ( self : int ) ->Union[str, Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ): a = model_class(__UpperCAmelCase ) a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a = layer_type a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]={} ): a = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ) a = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple() def recursive_check(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ): if isinstance(__UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__UpperCAmelCase , __UpperCAmelCase ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__UpperCAmelCase , __UpperCAmelCase ) for model_class in self.all_model_classes: a = model_class(__UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {'''output_hidden_states''': True} ) def __lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFRegNetModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _a ( ) -> Tuple: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" a = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__UpperCAmelCase , return_tensors='''tf''' ) # forward pass a = model(**__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits a = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) a = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 )
0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A__ = 1 if upper_limit > 0: A__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _lowerCamelCase : List[Any] = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
14
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : Optional[int] , *__a : Optional[Any] , **__a : Dict ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: """simple docstring""" A__ = args.pruning_method A__ = args.threshold A__ = args.model_name_or_path.rstrip('''/''' ) A__ = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) A__ = torch.load(os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) A__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: A__ = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: A__ = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": A__ = MagnitudeBinarizer.apply(inputs=lowercase_ , threshold=lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = TopKBinarizer.apply(lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ = ThresholdBinarizer.apply(lowercase_ , lowercase_ , lowercase_ ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ = name[:-6] A__ = model[f"""{prefix_}mask_scores"""] A__ , A__ = -0.1, 1.1 A__ = torch.sigmoid(lowercase_ ) A__ = s * (r - l) + l A__ = s_bar.clamp(min=0.0 , max=1.0 ) A__ = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: A__ = os.path.join( os.path.dirname(lowercase_ ) , f"""bertarized_{os.path.basename(lowercase_ )}""" ) if not os.path.isdir(lowercase_ ): shutil.copytree(lowercase_ , lowercase_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(lowercase_ , os.path.join(lowercase_ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) _lowerCamelCase : int = parser.parse_args() main(args)
14
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Dict = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = """time_series_transformer""" lowerCAmelCase__ : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__(self : Any , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "student_t" , UpperCamelCase : str = "nll" , UpperCamelCase : int = 1 , UpperCamelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase : Optional[Union[str, bool]] = "mean" , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : int = 32 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : int = 2 , UpperCamelCase : bool = True , UpperCamelCase : str = "gelu" , UpperCamelCase : int = 64 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : float = 0.1 , UpperCamelCase : int = 100 , UpperCamelCase : float = 0.02 , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' lowercase__ = prediction_length lowercase__ = context_length or prediction_length lowercase__ = distribution_output lowercase__ = loss lowercase__ = input_size lowercase__ = num_time_features lowercase__ = lags_sequence lowercase__ = scaling lowercase__ = num_dynamic_real_features lowercase__ = num_static_real_features lowercase__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = cardinality else: lowercase__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) lowercase__ = embedding_dimension else: lowercase__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ = num_parallel_samples # Transformer architecture configuration lowercase__ = input_size * len(UpperCamelCase ) + self._number_of_features lowercase__ = d_model lowercase__ = encoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = encoder_ffn_dim lowercase__ = decoder_ffn_dim lowercase__ = encoder_layers lowercase__ = decoder_layers lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = activation_function lowercase__ = init_std lowercase__ = use_cache super().__init__(is_encoder_decoder=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
2
_lowerCamelCase : Optional[int] = 65521 def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = 1 A__ = 0 for plain_chr in plain_text: A__ = (a + ord(lowercase_ )) % MOD_ADLER A__ = (b + a) % MOD_ADLER return (b << 16) | a
14
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase : Optional[Any] = 50_00_00 lowercase , lowercase : Union[str, Any] = os.path.split(__file__) lowercase : Any = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCAmelCase_ ( snake_case__ , **snake_case__ ): '''simple docstring''' A : Tuple = dataset.map(**snake_case__ ) @get_duration def lowerCAmelCase_ ( snake_case__ , **snake_case__ ): '''simple docstring''' A : str = dataset.filter(**snake_case__ ) def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: A : str = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) A : List[Any] = generate_example_dataset( os.path.join(snake_case__ , '''dataset.arrow''' ) , snake_case__ , num_examples=snake_case__ ) A : Tuple = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=snake_case__ ) def tokenize(snake_case__ ): return tokenizer(examples['''text'''] ) A : Any = map(snake_case__ ) A : List[Any] = map(snake_case__ , batched=snake_case__ ) A : str = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type='''numpy''' ): A : Union[str, Any] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type='''pandas''' ): A : int = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): A : List[str] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): A : Optional[Any] = map(snake_case__ , function=lambda snake_case__ : None , batched=snake_case__ ) A : Any = map(snake_case__ , function=snake_case__ , batched=snake_case__ ) A : str = filter(snake_case__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(snake_case__ , '''wb''' ) as f: f.write(json.dumps(snake_case__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
3
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : str = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[int] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRContextEncoderTokenizer class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = DPRQuestionEncoderTokenizer _lowerCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCamelCase : Dict = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ : '''simple docstring''' def __call__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Optional[str] = None , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Union[bool, str] = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Optional[bool] = None , **UpperCAmelCase__ : Optional[int] , ) ->BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = titles if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [titles] A__ = texts if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [texts] A__ = len(UpperCAmelCase__) A__ = questions if not isinstance(UpperCAmelCase__ , UpperCAmelCase__) else [questions] * n_passages assert len(UpperCAmelCase__) == len( UpperCAmelCase__), f"""There should be as many titles than texts but got {len(UpperCAmelCase__)} titles and {len(UpperCAmelCase__)} texts.""" A__ = super().__call__(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = super().__call__(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase__ , UpperCAmelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : BatchEncoding , UpperCAmelCase__ : DPRReaderOutput , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 4 , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCAmelCase__) A__ = sorted(range(UpperCAmelCase__) , reverse=UpperCAmelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCAmelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCAmelCase__ , top_spans=UpperCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCAmelCase__ , start_index=UpperCAmelCase__ , end_index=UpperCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCAmelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , ) ->List[DPRSpanPrediction]: '''simple docstring''' A__ = [] for start_index, start_score in enumerate(UpperCAmelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__: x[1] , reverse=UpperCAmelCase__) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCAmelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = DPRReaderTokenizer
14
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : UNetaDModel lowerCamelCase : KarrasVeScheduler def __init__( self : str , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : KarrasVeScheduler ) -> int: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Dict , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> Union[Tuple, ImagePipelineOutput]: lowerCAmelCase = self.unet.config.sample_size lowerCAmelCase = (batch_size, 3, img_size, img_size) lowerCAmelCase = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCAmelCase = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCAmelCase = self.scheduler.schedule[t] lowerCAmelCase = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCAmelCase , lowerCAmelCase = self.scheduler.add_noise_to_input(UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowerCAmelCase = self.scheduler.step_correct( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , step_output.prev_sample , step_output['derivative'] , ) lowerCAmelCase = step_output.prev_sample lowerCAmelCase = (sample / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
4
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''encoder-decoder''' UpperCAmelCase__ = True def __init__( self : List[str] , **UpperCAmelCase__ : Union[str, Any]) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase__) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop('''encoder''') A__ = encoder_config.pop('''model_type''') A__ = kwargs.pop('''decoder''') A__ = decoder_config.pop('''model_type''') from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__) A__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : PretrainedConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Union[str, Any]) ->PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''') A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
14
0
from __future__ import annotations def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _lowercase , _lowercase =array[indexa], array[indexa] def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> None: """simple docstring""" if length > 1: _lowercase =int(length / 2 ) for i in range(__snake_case , low + middle ): comp_and_swap(__snake_case , __snake_case , i + middle , __snake_case ) bitonic_merge(__snake_case , __snake_case , __snake_case , __snake_case ) bitonic_merge(__snake_case , low + middle , __snake_case , __snake_case ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> None: """simple docstring""" if length > 1: _lowercase =int(length / 2 ) bitonic_sort(__snake_case , __snake_case , __snake_case , 1 ) bitonic_sort(__snake_case , low + middle , __snake_case , 0 ) bitonic_merge(__snake_case , __snake_case , __snake_case , __snake_case ) if __name__ == "__main__": UpperCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
5
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = [0] * len(lowercase_ ) A__ = [] A__ = [1] * len(lowercase_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase_ ) ): if indegree[i] == 0: queue.append(lowercase_ ) while queue: A__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: A__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase_ ) print(max(lowercase_ ) ) # Adjacency list of Graph _lowerCamelCase : Optional[int] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
14
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A( a ): def __init__( self , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __a = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_snake_case , scheduler=_snake_case ) @torch.no_grad() def __call__( self , _snake_case = 1 , _snake_case = None , _snake_case = 0.0 , _snake_case = 50 , _snake_case = None , _snake_case = "pil" , _snake_case = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(self.unet.config.sample_size , _snake_case ): __a = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __a = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_snake_case )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __a = randn_tensor(_snake_case , generator=_snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __a = self.unet(_snake_case , _snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __a = self.scheduler.step( _snake_case , _snake_case , _snake_case , eta=_snake_case , use_clipped_model_output=_snake_case , generator=_snake_case ).prev_sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
6
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _lowerCamelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = "utf-8" UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = True # deprecated UpperCAmelCase__ = None # deprecated UpperCAmelCase__ = 10 << 20 # 10MB UpperCAmelCase__ = None class UpperCamelCase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__ = JsonConfig def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''') A__ = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''') if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''') return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""") A__ = dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase__ , (str, list, tuple)): A__ = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files})] A__ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [files] A__ = [dl_manager.iter_files(UpperCAmelCase__) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'''files''': files})) return splits def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : pa.Table) ->pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): A__ = self.config.features.arrow_schema.field(UpperCAmelCase__).type A__ = pa_table.append_column(UpperCAmelCase__ , pa.array([None] * len(UpperCAmelCase__) , type=UpperCAmelCase__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ = table_cast(UpperCAmelCase__ , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) # We keep only the field we are interested in A__ = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(UpperCAmelCase__ , (list, tuple)): A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} else: A__ = dataset A__ = pa.Table.from_pydict(UpperCAmelCase__) yield file_idx, self._cast_table(UpperCAmelCase__) # If the file has one json object per line else: with open(UpperCAmelCase__ , '''rb''') as f: A__ = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ = max(self.config.chunksize // 32 , 16 << 10) A__ = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A__ = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(UpperCAmelCase__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ = batch.decode(self.config.encoding , errors=UpperCAmelCase__).encode('''utf-8''') try: while True: try: A__ = paj.read_json( io.BytesIO(UpperCAmelCase__) , read_options=paj.ReadOptions(block_size=UpperCAmelCase__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(UpperCAmelCase__ , pa.ArrowInvalid) and "straddling" not in str(UpperCAmelCase__) or block_size > len(UpperCAmelCase__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(UpperCAmelCase__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""") block_size *= 2 except pa.ArrowInvalid as e: try: with open( UpperCAmelCase__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: A__ = json.load(UpperCAmelCase__) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__): # list is the only sequence type supported in JSON try: A__ = set().union(*[row.keys() for row in dataset]) A__ = {col: [row.get(UpperCAmelCase__) for row in dataset] for col in keys} A__ = pa.Table.from_pydict(UpperCAmelCase__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError(f"""Not able to read records in the JSON file at {file}.""") from None yield file_idx, self._cast_table(UpperCAmelCase__) break else: logger.error(f"""Failed to read file '{file}' with error {type(UpperCAmelCase__)}: {e}""") raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys()))}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase__) batch_idx += 1
14
0
from __future__ import annotations from collections.abc import Callable lowercase_ = list[list[float | int]] def _snake_case( SCREAMING_SNAKE_CASE__ : Matrix , SCREAMING_SNAKE_CASE__ : Matrix ) -> Matrix: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = [[0 for _ in range(size + 1 )] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = 42 for row in range(SCREAMING_SNAKE_CASE__ ): for col in range(SCREAMING_SNAKE_CASE__ ): A__ = matrix[row][col] A__ = vector[row][0] A__ = 0 A__ = 0 while row < size and col < size: # pivoting A__ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A__ , A__ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , SCREAMING_SNAKE_CASE__ ): A__ = augmented[rowa][col] / augmented[row][col] A__ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , SCREAMING_SNAKE_CASE__ ): for row in range(SCREAMING_SNAKE_CASE__ ): A__ = augmented[row][col] / augmented[col][col] for cola in range(SCREAMING_SNAKE_CASE__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(SCREAMING_SNAKE_CASE__ ) ] def _snake_case( SCREAMING_SNAKE_CASE__ : list[int] ) -> Callable[[int], int]: '''simple docstring''' A__ = len(SCREAMING_SNAKE_CASE__ ) A__ = [[0 for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = [[0] for _ in range(SCREAMING_SNAKE_CASE__ )] A__ = 42 A__ = 42 A__ = 42 A__ = 42 for x_val, y_val in enumerate(SCREAMING_SNAKE_CASE__ ): for col in range(SCREAMING_SNAKE_CASE__ ): A__ = (x_val + 1) ** (size - col - 1) A__ = y_val A__ = solve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def interpolated_func(SCREAMING_SNAKE_CASE__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(SCREAMING_SNAKE_CASE__ ) ) return interpolated_func def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Callable[[int], int] = question_function , SCREAMING_SNAKE_CASE__ : int = 10 ) -> int: '''simple docstring''' A__ = [func(SCREAMING_SNAKE_CASE__ ) for x_val in range(1 , order + 1 )] A__ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A__ = 0 A__ = 42 A__ = 42 for poly in polynomials: A__ = 1 while func(SCREAMING_SNAKE_CASE__ ) == poly(SCREAMING_SNAKE_CASE__ ): x_val += 1 ret += poly(SCREAMING_SNAKE_CASE__ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
7
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCamelCase : List[Any] = """sshleifer/bart-tiny-random""" _lowerCamelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return AutoConfig.from_pretrained(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase__) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ , *A__ = create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' with self.assertRaises(UpperCAmelCase__): create_student_by_copying_alternating_layers(UpperCAmelCase__ , tempfile.mkdtemp() , e=UpperCAmelCase__ , d=UpperCAmelCase__)
14
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : str ) ->List[str]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): snake_case_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__( self : Dict ) ->Any: snake_case_ = '''sgugger/tiny-distilbert-classification''' snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , only_pretrain_model=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__( self : Dict ) ->int: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase ) snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase , [config] ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase ) snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase , [config] ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__( self : List[str] ) ->Optional[Any]: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase ) snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase , [config] ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = '''patrickvonplaten/t5-tiny-random''' snake_case_ = AutoConfig.from_pretrained(_UpperCamelCase ) snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase , configs=[config] ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''sshleifer/tiny-gpt2''' snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_UpperCamelCase , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) snake_case_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCamelCase , save_to_csv=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCamelCase , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(_UpperCamelCase , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(_UpperCamelCase , '''env.csv''' ) , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , '''env.csv''' ) ).exists() ) def snake_case__( self : List[str] ) ->Union[str, Any]: snake_case_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_UpperCamelCase : int ): self.assertTrue(hasattr(_UpperCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''current''' ) ) self.assertTrue(hasattr(_UpperCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCamelCase , '''log.txt''' ) , log_print=_UpperCamelCase , trace_memory_line_by_line=_UpperCamelCase , eager_mode=_UpperCamelCase , multi_process=_UpperCamelCase , ) snake_case_ = TensorFlowBenchmark(_UpperCamelCase ) snake_case_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_UpperCamelCase , '''log.txt''' ) ).exists() )
8
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : List[Any]=30 , UpperCAmelCase__ : Any=400 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase__ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[int]=1 / 255 , UpperCAmelCase__ : Optional[Any]=True , ) ->str: '''simple docstring''' A__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False) ->Optional[Any]: '''simple docstring''' if not batched: A__ = image_inputs[0] if isinstance(UpperCAmelCase__ , Image.Image): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size['''shortest_edge'''] * h / w) A__ = self.size['''shortest_edge'''] elif w > h: A__ = self.size['''shortest_edge'''] A__ = int(self.size['''shortest_edge'''] * w / h) else: A__ = self.size['''shortest_edge'''] A__ = self.size['''shortest_edge'''] else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[0])[0] A__ = max(UpperCAmelCase__ , key=lambda UpperCAmelCase__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_rescale''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_pad''')) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''')) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase__) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84}) self.assertEqual(image_processor.do_pad , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors='''pt''').pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(UpperCAmelCase__ , batched=UpperCAmelCase__) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''image_id''': 39_769, '''annotations''': target} # encode them A__ = DeformableDetrImageProcessor() A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: A__ = json.loads(f.read()) A__ = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} A__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them A__ = DeformableDetrImageProcessor(format='''coco_panoptic''') A__ = image_processing(images=UpperCAmelCase__ , annotations=UpperCAmelCase__ , masks_path=UpperCAmelCase__ , return_tensors='''pt''') # verify pixel values A__ = torch.Size([1, 3, 800, 1_066]) self.assertEqual(encoding['''pixel_values'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCAmelCase__ , atol=1e-4)) # verify area A__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCAmelCase__)) # verify boxes A__ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCAmelCase__) A__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCAmelCase__ , atol=1e-3)) # verify image_id A__ = torch.tensor([39_769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCAmelCase__)) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCAmelCase__)) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCAmelCase__)) # verify masks A__ = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCAmelCase__) # verify orig_size A__ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCAmelCase__)) # verify size A__ = torch.tensor([800, 1_066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCAmelCase__))
14
0
import numpy as np def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ = 1e-12 , lowercase__ = 100 , ): assert np.shape(lowercase__ )[0] == np.shape(lowercase__ )[1] # Ensure proper dimensionality. assert np.shape(lowercase__ )[0] == np.shape(lowercase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase__ ) == np.iscomplexobj(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = np.iscomplexobj(lowercase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 1e12 while not convergence: # Multiple matrix by the vector. __SCREAMING_SNAKE_CASE : Optional[int] = np.dot(lowercase__ , lowercase__ ) # Normalize the resulting output vector. __SCREAMING_SNAKE_CASE : int = w / np.linalg.norm(lowercase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __SCREAMING_SNAKE_CASE : str = vector.conj().T if is_complex else vector.T __SCREAMING_SNAKE_CASE : Optional[Any] = np.dot(lowercase__ , np.dot(lowercase__ , lowercase__ ) ) # Check convergence. __SCREAMING_SNAKE_CASE : int = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Tuple = lambda_ if is_complex: __SCREAMING_SNAKE_CASE : Tuple = np.real(lambda_ ) return lambda_, vector def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __SCREAMING_SNAKE_CASE : Tuple = np.array([41, 4, 20] ) __SCREAMING_SNAKE_CASE : Tuple = real_input_matrix.astype(np.complexaaa ) __SCREAMING_SNAKE_CASE : str = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __SCREAMING_SNAKE_CASE : Any = real_input_matrix __SCREAMING_SNAKE_CASE : Optional[Any] = real_vector elif problem_type == "complex": __SCREAMING_SNAKE_CASE : List[str] = complex_input_matrix __SCREAMING_SNAKE_CASE : str = complex_vector # Our implementation. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = power_iteration(lowercase__ , lowercase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.eigh(lowercase__ ) # Last eigenvalue is the maximum one. __SCREAMING_SNAKE_CASE : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __SCREAMING_SNAKE_CASE : Optional[int] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase__ ) - np.abs(lowercase__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
14
0
from typing import Union import fire import torch from tqdm import tqdm def lowerCAmelCase_ ( __a , __a = "cpu" , __a = None ) -> None: """simple docstring""" lowerCamelCase__: int =torch.load(__a , map_location=__a ) for k, v in tqdm(state_dict.items() ): if not isinstance(__a , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowerCamelCase__: Union[str, Any] =v.half() if save_path is None: # overwrite src_path lowerCamelCase__: List[str] =src_path torch.save(__a , __a ) if __name__ == "__main__": fire.Fire(convert)
10
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''SpeechT5FeatureExtractor''' UpperCAmelCase__ = '''SpeechT5Tokenizer''' def __init__( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Dict , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Any) ->Optional[Any]: '''simple docstring''' A__ = kwargs.pop('''audio''' , UpperCAmelCase__) A__ = kwargs.pop('''text''' , UpperCAmelCase__) A__ = kwargs.pop('''text_target''' , UpperCAmelCase__) A__ = kwargs.pop('''audio_target''' , UpperCAmelCase__) A__ = kwargs.pop('''sampling_rate''' , UpperCAmelCase__) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: A__ = self.feature_extractor(UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) elif text is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if audio_target is not None: A__ = self.feature_extractor(audio_target=UpperCAmelCase__ , *UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_values'''] elif text_target is not None: A__ = self.tokenizer(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = kwargs.pop('''input_values''' , UpperCAmelCase__) A__ = kwargs.pop('''input_ids''' , UpperCAmelCase__) A__ = kwargs.pop('''labels''' , UpperCAmelCase__) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) elif input_ids is not None: A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) else: A__ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase__ , UpperCAmelCase__) and "input_ids" in labels[0]): A__ = self.tokenizer.pad(UpperCAmelCase__ , **UpperCAmelCase__) A__ = targets['''input_ids'''] else: A__ = self.feature_extractor.feature_size A__ = self.feature_extractor.num_mel_bins A__ = self.feature_extractor.pad(UpperCAmelCase__ , *UpperCAmelCase__ , **UpperCAmelCase__) A__ = feature_size_hack A__ = targets['''input_values'''] else: A__ = None if inputs is None: return targets if targets is not None: A__ = labels A__ = targets.get('''attention_mask''') if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self : Any , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__)
14
0
import doctest from collections import deque import numpy as np class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> None: _A : Tuple = [2, 1, 2, -1] _A : Dict = [1, 2, 3, 4] def _lowerCamelCase ( self) -> list[float]: _A : int = len(self.first_signal) _A : List[str] = len(self.second_signal) _A : List[str] = max(__lowerCamelCase , __lowerCamelCase) # create a zero matrix of max_length x max_length _A : Dict = [[0] * max_length for i in range(__lowerCamelCase)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase): _A : int = deque(self.second_signal) rotated_signal.rotate(__lowerCamelCase) for j, item in enumerate(__lowerCamelCase): matrix[i][j] += item # multiply the matrix with the first signal _A : Dict = np.matmul(np.transpose(__lowerCamelCase) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(__lowerCamelCase , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
11
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git_vision_model''' def __init__( self : Any , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : int=3_072 , UpperCAmelCase__ : List[str]=12 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Union[str, Any]="quick_gelu" , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any=0.02 , **UpperCAmelCase__ : Any , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls : Any , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : int) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''') == "git": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''git''' def __init__( self : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : int=30_522 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Dict=6 , UpperCAmelCase__ : int=12 , UpperCAmelCase__ : List[str]=3_072 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=1_024 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Any=1e-12 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : List[Any]="absolute" , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : int=101 , UpperCAmelCase__ : Tuple=102 , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''') A__ = GitVisionConfig(**UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = tie_word_embeddings A__ = num_image_with_embedding A__ = bos_token_id A__ = eos_token_id def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
14
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' def wrapper(*A__ : Dict , **A__ : Dict ): __lowerCamelCase = timeit.default_timer() __lowerCamelCase = func(*A__ , **A__ ) __lowerCamelCase = timeit.default_timer() - starttime return delta __lowerCamelCase = func.__name__ return wrapper def lowerCamelCase__ ( A__ : dict , A__ : Tuple=100 , A__ : Optional[Any]=None ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = seq_shapes or {} for i in range(A__ ): __lowerCamelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(A__ , _ArrayXD ): __lowerCamelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(A__ , datasets.Value ): if v.dtype == "string": __lowerCamelCase = """The small grey turtle was surprisingly fast when challenged.""" else: __lowerCamelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(A__ , datasets.Sequence ): while isinstance(A__ , datasets.Sequence ): __lowerCamelCase = v.feature __lowerCamelCase = seq_shapes[k] __lowerCamelCase = np.random.rand(*A__ ).astype(v.dtype ) __lowerCamelCase = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any] , A__ : Optional[int]=100 , A__ : int=None ): '''simple docstring''' __lowerCamelCase = generate_examples(A__ , num_examples=A__ , seq_shapes=A__ ) with ArrowWriter(features=A__ , path=A__ ) as writer: for key, record in dummy_data: __lowerCamelCase = features.encode_example(A__ ) writer.write(A__ ) __lowerCamelCase, __lowerCamelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __lowerCamelCase = datasets.Dataset.from_file(filename=A__ , info=datasets.DatasetInfo(features=A__ ) ) return dataset
12
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = '''deit''' def __init__( self : List[Any] , lowerCAmelCase__ : str=768 , lowerCAmelCase__ : Optional[int]=12 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : Dict=3072 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=1E-12 , lowerCAmelCase__ : int=224 , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[Any]=16 , **lowerCAmelCase__ : List[str] , ): super().__init__(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = hidden_size SCREAMING_SNAKE_CASE_: List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_: int = num_attention_heads SCREAMING_SNAKE_CASE_: Any = intermediate_size SCREAMING_SNAKE_CASE_: Any = hidden_act SCREAMING_SNAKE_CASE_: int = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = initializer_range SCREAMING_SNAKE_CASE_: str = layer_norm_eps SCREAMING_SNAKE_CASE_: List[Any] = image_size SCREAMING_SNAKE_CASE_: Optional[int] = patch_size SCREAMING_SNAKE_CASE_: Optional[Any] = num_channels SCREAMING_SNAKE_CASE_: Optional[int] = qkv_bias SCREAMING_SNAKE_CASE_: Optional[Any] = encoder_stride class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return 1E-4
13
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" A__ = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A__ = load_file(lowercase_ ) A__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A__ = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) A__ = pipeline.text_encoder else: A__ = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) A__ = pipeline.unet # find the target layer A__ = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: A__ = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: A__ = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A__ = layer_infos.pop(0 ) A__ = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: A__ = state_dict[pair_keys[0]].to(torch.floataa ) A__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") _lowerCamelCase : Tuple = parser.parse_args() _lowerCamelCase : List[Any] = args.base_model_path _lowerCamelCase : Optional[int] = args.checkpoint_path _lowerCamelCase : Dict = args.dump_path _lowerCamelCase : Optional[Any] = args.lora_prefix_unet _lowerCamelCase : Optional[int] = args.lora_prefix_text_encoder _lowerCamelCase : List[Any] = args.alpha _lowerCamelCase : int = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) _lowerCamelCase : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : str ,A : GenericTensor ): if self.framework == "tf": __A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ) else: raise ValueError("Unsupported framework" ) return masked_index def UpperCamelCase_ ( self : int ,A : GenericTensor ): __A = self.get_masked_index(A ) __A = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,) def UpperCamelCase_ ( self : int ,A : GenericTensor ): if isinstance(A ,A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCamelCase_ ( self : List[str] ,A : Optional[Any] ,A : Dict=None ,**A : Dict ): if return_tensors is None: __A = self.framework __A = self.tokenizer(A ,return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCamelCase_ ( self : Union[str, Any] ,A : int ): __A = self.model(**A ) __A = model_inputs["input_ids"] return model_outputs def UpperCamelCase_ ( self : Any ,A : int ,A : Any=5 ,A : Any=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __A = target_ids.shape[0] __A = model_outputs["input_ids"][0] __A = model_outputs["logits"] if self.framework == "tf": __A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __A = outputs.numpy() __A = outputs[0, masked_index, :] __A = stable_softmax(A ,axis=-1 ) if target_ids is not None: __A = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) ) __A = tf.expand_dims(A ,0 ) __A = tf.math.top_k(A ,k=A ) __A , __A = topk.values.numpy(), topk.indices.numpy() else: __A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __A = outputs[0, masked_index, :] __A = logits.softmax(dim=-1 ) if target_ids is not None: __A = probs[..., target_ids] __A , __A = probs.topk(A ) __A = [] __A = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): __A = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place __A = input_ids.numpy().copy() if target_ids is not None: __A = target_ids[p].tolist() __A = p # Filter padding out: __A = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __A = self.tokenizer.decode(A ,skip_special_tokens=A ) __A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Any=None ): if isinstance(A ,A ): __A = [targets] try: __A = self.tokenizer.get_vocab() except Exception: __A = {} __A = [] for target in targets: __A = vocab.get(A ,A ) if id_ is None: __A = self.tokenizer( A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["input_ids"] if len(A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue __A = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __A = list(set(A ) ) if len(A ) == 0: raise ValueError("At least one target must be provided when passed." ) __A = np.array(A ) return target_ids def UpperCamelCase_ ( self : Dict ,A : Union[str, Any]=None ,A : int=None ): __A = {} if targets is not None: __A = self.get_target_ids(A ,A ) __A = target_ids if top_k is not None: __A = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : Optional[Any] ,A : Optional[int] ,*A : Dict ,**A : Tuple ): __A = super().__call__(A ,**A ) if isinstance(A ,A ) and len(A ) == 1: return outputs[0] return outputs
15
import os import pytest from transformers.dynamic_module_utils import get_imports _lowerCamelCase : Any = """ import os """ _lowerCamelCase : Optional[int] = """ def foo(): import os return False """ _lowerCamelCase : List[Any] = """ def foo(): def bar(): if True: import os return False return bar() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : Union[str, Any] = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ _lowerCamelCase : List[Any] = """ import os try: import bar except ImportError as e: raise ValueError() """ _lowerCamelCase : str = """ import os try: import bar except: raise ValueError() """ _lowerCamelCase : Optional[Any] = """ import os try: import bar import baz except ImportError: raise ValueError() """ _lowerCamelCase : Any = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ _lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" A__ = os.path.join(lowercase_ , '''test_file.py''' ) with open(lowercase_ , '''w''' ) as _tmp_file: _tmp_file.write(lowercase_ ) A__ = get_imports(lowercase_ ) assert parsed_imports == ["os"]
14
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> None: lowercase__ : Optional[Any] = generate_pascal_triangle(__lowerCamelCase ) for row_idx in range(__lowerCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowercase__ : list[list[int]] = [] for current_row_idx in range(__lowerCamelCase ): lowercase__ : int = populate_current_row(__lowerCamelCase , __lowerCamelCase ) triangle.append(__lowerCamelCase ) return triangle def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> list[int]: lowercase__ : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowercase__ , lowercase__ : Tuple = 1, 1 for current_col_idx in range(1 , __lowerCamelCase ): calculate_current_element( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return current_row def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> None: lowercase__ : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1] lowercase__ : Dict = triangle[current_row_idx - 1][current_col_idx] lowercase__ : Dict = above_to_left_elt + above_to_right_elt def __UpperCAmelCase ( __lowerCamelCase ) -> list[list[int]]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) lowercase__ : list[list[int]] = [[1]] for row_index in range(1 , __lowerCamelCase ): lowercase__ : Any = [0] + result[-1] + [0] lowercase__ : List[Any] = row_index + 1 # Calculate the number of distinct elements in a row lowercase__ : List[str] = sum(divmod(__lowerCamelCase , 2 ) ) lowercase__ : Dict = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowercase__ : List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowercase__ : List[Any] = row_first_half + row_second_half result.append(__lowerCamelCase ) return result def __UpperCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) -> None: lowercase__ : str = f"""{func.__name__}({value})""" lowercase__ : Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowerCamelCase , __lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
16
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
14
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
import os import sys import unittest _lowerCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : Any = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") _lowerCamelCase : str = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = get_test_to_tester_mapping(UpperCAmelCase__) A__ = {'''BertModelTest''': '''BertModelTester'''} A__ = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[Any]: '''simple docstring''' A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = get_model_to_test_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = get_model_to_tester_mapping(UpperCAmelCase__) A__ = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A__ = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(get_test_info.to_json(UpperCAmelCase__) , UpperCAmelCase__)
14
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCamelCase : Any = '''hf-internal-testing/tiny-random-bert''' __lowerCamelCase : Dict = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') __lowerCamelCase : Optional[int] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = cached_file(_A,_A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_A,_A ) ) ) with open(os.path.join(_A,"refs","main" ) ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.read() self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) ) self.assertTrue(os.path.isfile(_A ) ) # File is cached at the same place the second time. SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A ) self.assertEqual(_A,_A ) # Using a specific revision to test the full commit hash. SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="9b8c223" ) self.assertEqual(_A,os.path.join(_A,"snapshots",_A,_A ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" with self.assertRaisesRegex(_A,"is not a valid model identifier" ): SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file("tiny-random-bert",_A ) with self.assertRaisesRegex(_A,"is not a valid git identifier" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_file(_A,_A,revision="aaaa" ) with self.assertRaisesRegex(_A,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" ) def __UpperCamelCase ( self : Any ): """simple docstring""" with self.assertRaisesRegex(_A,"does not appear to have a file named" ): SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf" ) with open(os.path.join(_A,"refs","main" ) ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() self.assertTrue(os.path.isfile(os.path.join(_A,".no_exist",_A,"conf" ) ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file(_A,"conf",_raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",local_files_only=_A,_raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) SCREAMING_SNAKE_CASE_ : int = mock.Mock() SCREAMING_SNAKE_CASE_ : int = 500 SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : List[Any] = HTTPError SCREAMING_SNAKE_CASE_ : List[str] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request",return_value=_A ) as mock_head: SCREAMING_SNAKE_CASE_ : Any = cached_file(_A,"conf",_raise_exceptions_for_connection_errors=_A ) self.assertIsNone(_A ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only",_A ) ) def __UpperCamelCase ( self : Any ): """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased","ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_A,"is not a valid model identifier" ): get_file_from_repo("bert-base-case",_A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_A,"is not a valid git identifier" ): get_file_from_repo("bert-base-cased",_A,revision="ahaha" ) SCREAMING_SNAKE_CASE_ : List[str] = get_file_from_repo("bert-base-cased",_A ) # The name is the cached name which is not very easy to test, so instead we load the content. SCREAMING_SNAKE_CASE_ : Dict = json.loads(open(_A,"r" ).read() ) self.assertEqual(config["hidden_size"],768 ) def __UpperCamelCase ( self : Any ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ : Dict = Path(_A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(_A,"a.txt" ),str(_A ) ) self.assertIsNone(get_file_from_repo(_A,"b.txt" ) )
18
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : Optional[Any]=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int) ->str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=False) ->int: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->Any: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
14
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A =datasets.utils.logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): lowerCAmelCase__ = 1_00_00 lowerCAmelCase__ = None lowerCAmelCase__ = None class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): lowerCAmelCase__ = ParquetConfig def SCREAMING_SNAKE_CASE_( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Tuple: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowerCamelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowercase , (str, list, tuple) ): lowerCamelCase_ = data_files if isinstance(lowercase , lowercase ): lowerCamelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ = [dl_manager.iter_files(lowercase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCamelCase_ = [] for split_name, files in data_files.items(): if isinstance(lowercase , lowercase ): lowerCamelCase_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase_ = [dl_manager.iter_files(lowercase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(lowercase ): with open(lowercase , "rb" ) as f: lowerCamelCase_ = datasets.Features.from_arrow_schema(pq.read_schema(lowercase ) ) break splits.append(datasets.SplitGenerator(name=lowercase , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE_( self , lowercase ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase_ = table_cast(lowercase , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Dict: lowerCamelCase_ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowercase ) ): with open(lowercase , "rb" ) as f: lowerCamelCase_ = pq.ParquetFile(lowercase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCamelCase_ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(lowercase ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(lowercase )}: {e}' ) raise
19
from __future__ import annotations def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: """simple docstring""" A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
14
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Tuple = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Optional[int] = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: lowercase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
20
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0